

Document Title: KMOS
Data Reduction Library Design &

 User Manual

Document Number: VLT-MAN-KMO-146611-007

Issue: 2.16

Date: 24.03.2015

Document
Prepared By:

A. Agudo Berbel

E. Wiezorrek

R. Davies

N. Förster Schreiber

Y. Jung

Signature and Date:

Document
Approved By:

P. Rees Signature and Date:

Document
Released By:

A. Fairley Signature and Date:

Data Reduction Library Design & Manual

2 of 184

Change Record

Issue Date Section(s) Affected Description of Change/Change
Request Reference/Remarks

1.1 07.09.07 All Merging KMOS Data Reduction
Library and User Manual

1.2 04.02.08 updated 3.2.1, 5.3, 7.3.4, 9.3.1, 9.3.4,
9.3.5, 9.3.11
inserted & updated 5.1

updated after implementing basic
tools 1

1.3 28.10.08 updated 7.3.7, 7.3.9, 7.3.15, 7.3.17,
9.3.7, 9.3.9, 9.3.15, 9.3.17

updated after implementing basic
tools 2

1.4. 08.05.09 updated 6.1.1, 6.1.2, 6.1.3, 6.1.4,
7.1.1, 7.1.1, 7.1.2, 7.1.3, 8.2, 9.1.1,
9.1.2, 9.1.3
deleted 8.4 (kmo_split_frame)

updated after implementing
calibration recipes 2

1.5. 16.07.09 updated 7.3.8, 9.3.8 updated after implementing basic
tools 3

1.6 10.08.10 added sections 4.1, 4.2, 5.5 updated after implementing basic
tools 4

1.7 13.04.10 updated 4.3
updated 5.3.3
updated 6.1

templates to change
F2L can contain multiple extensions
Spec_align recipe obsolete

1.8 10.11.11 All Issue prepared for TRR

2.2 30.03.12 All Issue prepared for PAE

2.3 updated 7.1.7

2.4 updated 3.3

2.5 10.06.13 whole document Issue prepared for software
verification

2.6 02.08.13 updated 7.3.12 and 7.2.1 kmo_sky_tweak now implemented

2.7. 07.08.13 updated 9.4

2.8 20.09.13 updated Error! Reference source
not found.

enhanced kmo_multi_reconstruct
functionality

2.9 29.10.13 added section 7.1.5 kmo_illumination_flat implemented

2.10 25.11.13 updated sections 7.1.6, 7.2.1 and
7.3.2
released with pipeline v1.2.7

- added new product frame
NOISE_SPEC in kmo_std_star
- added new product frame
EXP_MASK in kmo_combine and
kmo_sci_red

2.11 11.12.13 updated section 7 and 7.2.1 - updated Figure 22
- kmos_sci_red: velocity offset and
arbitrary IFU association

2.12 05.03.14 removed section on kmo_dev_setup
updated 7.2.2, 7.3.8.5 and 11.3

removed obsolete parameters, recipe
and environment variable, added
comment in 7.2.2

2.13 25.07.14 Added Release Notes section at the
beginning

Renamed recipes
kmo_dark/flat/wave_cal/illuminati
on in kmos_dark/...

Data Reduction Library Design & Manual

3 of 184

2.15 13.02.15 Renamed recipes kmo_sci_red in
kmos_sci_red. The recipe has 2
additional parameters and produces
optionally extra products

2.16 24.03.15 Renamed kmo_reconstruct and
kmo_std_star
New parameters for kmos_std_star.
kmos_sci_red products in physical
units

Data Reduction Library Design & Manual

4 of 184

Table of Contents

Change Record ... 2

Table of Contents .. 4
Acronyms and Abbreviations .. 7
Applicable and Referenced Documents .. 8
Stylistic Conventions .. 9
Scope of this Document .. 10

Release Notes ... 10
PART I: DRS DESIGN .. 11
1 Instrument Description .. 11

1.1 Brief Description .. 11

1.2 Modes and Configurations ... 11
1.2.1 Instrument Flexure .. 12
1.2.2 Inputs .. 12

1.2.3 Outputs .. 12
1.2.4 Data Formats ... 13

1.2.5 CPL ... 13
1.2.6 Pipeline Modes ... 13

2 Mathematical Description ... 14
2.1 Interpolation ... 14

2.1.1 Nearest Neighbour .. 15

2.1.2 Cubic Spline Interpolation .. 15
2.1.3 Modified Shepard’s Method ... 16

2.2 Error Propagation ... 17

2.2.1 Initial Noise Estimate.. 17
2.2.2 Mathematical Manipulations .. 17

2.2.3 Combining Datasets .. 18
2.2.4 Extracting Spectra ... 18

2.2.5 Creating Images .. 18

3 Instrument Data Description ... 19
3.1 Orientation of the IFUs on the detectors .. 21
3.2 FITS header keywords .. 22

3.2.1 Primary header .. 22
3.2.2 Extension header ... 23

3.3 Raw file types ... 24
3.3.1 Dark .. 25
3.3.2 Flatfields ... 25

3.3.3 Wavelength ... 25

3.3.4 Standard Star ... 25

3.3.5 Science Object .. 25
3.4 Processing Table ... 25
3.5 IFU Layout in the Mapping Templates .. 26

4 Data Reduction Library Data Structures... 27
4.1 Classification Tags ... 27
4.2 Intermediate Data Formats ... 28

4.2.1 Detector based floating point products ... 28

Data Reduction Library Design & Manual

5 of 184

4.2.2 1-dimensional detector based products ... 28
4.2.3 Detector based binary digit products .. 29
4.2.4 1-dimensional IFU based products ... 29

4.2.5 2-dimensional IFU based products ... 30
4.2.6 Naming convention ... 31

4.3 External Data Formats .. 31
4.3.1 Lists ... 31
4.3.2 1-dimensional spectra ... 32

4.3.3 Lookup tables .. 32
4.4 Final Output Data Formats ... 32

4.4.1 3-dimensional IFU based products ... 32
4.5 Calibration Data Formats ... 33

4.5.1 Calibration at multiple rotator angles ... 35

4.6 RTD Data Formats ... 35

5 Data Reduction Library QC1 Parameters ... 39
5.1 QC1 Parameter descriptions ... 39

5.1.1 Dark Frames .. 39
5.1.2 Flat Frames ... 40
5.1.3 Wavelength Calibration .. 40

5.1.4 Illumination Correction... 41
5.1.5 Standard Star Observations ... 42

PART II: DRS RECIPE REFERENCE ... 44
6 Preliminaries ... 44

6.1 Standard workflow ... 44

6.2 Generating Test Data .. 45
6.3 Predefined wavelength ranges .. 45

6.4 Lookup table (LUT) for reconstruction .. 45

7 Recipes ... 47
7.1 Calibration Recipes .. 50

7.1.1 kmos_dark: Master Dark Frames .. 50
7.1.2 kmos_flat: Master Flat Field ... 54
7.1.3 kmos_wave_cal: Wavelength Calibration .. 61

7.1.4 kmos_illumination: Illumination Correction .. 69
7.1.5 kmo_illumination_flat: Illumination Correction .. 75
7.1.6 kmo_std_star: Telluric Standard Star ... 80

7.2 Science Reduction Recipes... 89
7.2.1 kmos_sci_red: Processing for Science Data ... 89

7.3 Common Recipes ... 100
7.3.1 kmo_arithmetic: Basic Arithmetic .. 100
7.3.2 kmo_combine: Combining Cubes .. 104

7.3.3 kmo_copy: Copy Cube Sections ... 111
7.3.4 kmos_extract_spec: Extracting Spectra .. 115
7.3.5 kmo_fit_profile: Fitting Spectral and Spatial Profiles .. 120
7.3.6 kmo_make_image: Making Images .. 123

7.3.7 kmo_noise_map: Noise Estimation .. 127
7.3.8 kmos_reconstruct: Reconstructing a Cube ... 129
7.3.9 kmo_rotate: Rotating a Cube .. 133

7.3.10 kmo_shift: Translating a Cube .. 136

Data Reduction Library Design & Manual

6 of 184

7.3.11 kmo_sky_mask: Creating a Mask of Sky Pixels .. 139
7.3.12 kmo_sky_tweak: Second Order Sky Subtraction ... 143
kmo_stats: Basic Statistics ... 146

7.3.13 kmo_fits_strip: Stripping FITS files ... 149
7.4 Development Recipes ... 151

7.4.1 kmo_fits_check: Check FITS files ... 151
7.4.2 kmo_fits_stack: Creating a KMOS-conform FITS file manually 153

8 Data Reduction Library Functions ... 157
8.1 Acquisition Reduction for RTD ... 157

8.1.1 Description .. 157
8.1.2 Flow Chart .. 158

8.2 Combine frames using pixel rejection .. 160
8.2.1 Description .. 160

8.2.2 Flow Chart .. 161
8.3 Scientific reconstruction of a data cube.. 163

8.3.1 Description .. 163
8.3.2 Flow Chart .. 163

PART III: DRS Maintainance & Development ... 165

9 Updating the Calibration Data .. 165
9.1 Standard Data Handling at the VLT ... 165
9.2 Alphabetical listing of all calibration files ... 167

9.2.1 Subset of calibration files needed for Karma and RTD (kmclipm) 167
9.3 Calibration Schedule .. 169

9.3.1 Every few months to a year or after instrument maintainance 169

9.3.2 After instrument maintainance.. 169
9.3.3 Rarely or almost never to renew ... 172

9.4 How to create XCAL, YCAL and LCAL ... 172

10 Updating the DRS version number ... 175
11 Environment variables ... 176

11.1 Variables influencing fitting of slitlet edges .. 176
11.2 Variables influencing wavelength calibration .. 176
11.3 Variables influencing reconstruction .. 177

11.4 Variables influencing RTD reconstruction ... 178
11.5 Variables influencing the debugging .. 178

Appendix A Data Processing Tables ... 179
Appendix B The KMOS data interface dictionary .. 181

Data Reduction Library Design & Manual

7 of 184

Acronyms and Abbreviations

ADU Analog to Digital Unit – unit used to quantify CCD signal intensity

CLIP C Library for Image Processing

CPL Common Pipeline Library

DFO Data Flow Operations Group (ESO Garching)

DFS Data Flow System

DIT Detector Integration Time

DO Data Organiser

DR Data Reduction

DRL Data Reduction Library

DRS Data Reduction Software

ESO European Southern Observatory

FITS Flexible Image Transport System

IFU Integral Field Unit

IPSRV Image Processing Server

KMOS K-band Multi Object Spectrometer

LUT Look-up Table

MPE Max-Planck-Institut für extraterrestrische Physik

OB Observation Block

OS Observing Software

PSF Point Spread Function

RTD Real Time Display

QC Quality Control

UK ATC United Kingdom Astronomy Technology Centre

USM Universitäts-Sternwarte der Ludwig-Maximilians-Universität München

WCS World Coordinate System

Data Reduction Library Design & Manual

8 of 184

Applicable and Referenced Documents

[AD01] KMOS technical specification, VLT-SPE-ESO-14660-3190, issue 1.0

[AD02] KMOS Data Reduction Library Specification, VLT-SPE-KMO-146611-001, issue

1.1

[RD01] KMOS Instrument Software Design Description, VLT-SPE-KMO-146606-003,

issue 1.0

[RD02] Bentley J., Friedman J., 1979, “Data Structures for range searching”, ACM

Computing Surveys, 11, 397-409

[RD03] Clark I., Harper W., 2000, “Practical Geostatistics 2000”, pub. Geostokos

[RD04] Yang C.-S. et al., 2004, “12 Different Interpolation Methods”, in Geo-Imagery

Bridging Continents, XXth ISPRS Congress

[RD05] Lekien F., Marsden J., 2005, “Tricubic interpolation in 3 dimensions”, Int. J.

Numer. Meth. Engang, 63, 455-471

[RD06] Renka R., 1988, “Multivariate interpolation of large sets of scattered data”, ACM

Trans. Math. Software, 14, 139-148

[RD07] Shepard D., 1968, “A 2-dimensional interpolation function for irregularly spaced

data”, Proc. 23rd Nat. Conf. ACM, 517-523

[RD08] Farage C., Pimbblet K., 2005, PASA, 22, 249

[RD09] van Dokkum P., 2001, PASP, 113, 1420

[RD10] Davies R., 2007, MNRAS, 375, 1099

[RD11] Cappellari M., Copin Y., 2003, MNRAS, 342, 345

Data Reduction Library Design & Manual

9 of 184

Stylistic Conventions

The following styles are used in the description of the data reduction to easily identify the type of

object being referred to:

 Recipe names

lowercase_arial, for example kmos_flat.

 Function names

lowercase_bold_font, for example kmo_create_masterdark.

 I/O names

LowerCaseItalics with each word capitalised, for example MasterDark. References to a specific

column in a fits table, or extension in a fits file, are denoted by suffixing the name or number, for

example MasterFlat: 2.

 Parameter names

lowercase_underscore_italic, with each word separated by an underscore, for example

threshold_sigma.

 Keywords

ALL.UPPERCASE.COURIER.NEW, for example RON. Note that no underscores may be used

for keywords

Data Reduction Library Design & Manual

10 of 184

Scope of this Document

This document defines the design of the data reduction library for the KMOS pipeline, including

all modules of the DRL to process KMOS data as well as the additional DFS tools. It provides a

technical description of the instrument modes, data formats and data processing required for

scientific observations, calibrations, and instrument monitoring tasks for KMOS. It is based on the

DRL Specification [AD02] and supersedes that document.

Release Notes

This version 1.3.11 of the KMOS pipeline implements:

 Recipes

1. kmo_std_star replaced by kmos_std_star: Recipe logic has been re-written

2. kmo_reconstruct replaced by kmos_recontruct: Recipe logic has been re-written

3. kmo_extract_spec fails when noise is missing.

 The recipes was fixed and re-written/renamed to kmos_extract_spec

 (https://jira.eso.org/browse/PIPE-5812)

4. Results of kmos_sci_red must be in physical units

 (https://jira.eso.org/browse/PIPE-5740)

5. kmos_std_star THROUGHPUT looks strange

 (https://jira.eso.org/browse/PIPE-5841)

 Reflex:

Provide an easy way to call the defined viewer on a displayed file - will be available with

reflex 2.8

 (https://jira.eso.org/browse/PIPE-5743)

https://jira.eso.org/browse/PIPE-5740

Data Reduction Library Design & Manual

11 of 184

PART I: DRS DESIGN

1 Instrument Description

1.1 Brief Description

KMOS is a multi-object near infrared spectrograph with a spectral resolution of R~3000,

depending on bandpass observed. It comprises 24 arms which can be positioned so as to cover

almost any combination of objects within a 7.2arcmin patrol field. Each arm is an integral field

spectrometer with a field of view of 2.8arcsec × 2.8arcsec and a sampling of 0.2arcsec per pixel.

So that the light can be dispersed in the conventional way, each field is sliced by a suite of mirrors

into 14 slitlets, each 14 pixels long. These are then rearranged by a second suite of mirrors into a

single pseudo-longslit. The primary aim of the data processing software is to reconstruct the 3D

data cubes from the 2D data on the detectors.

KMOS is designed so that 8 IFU arms are fed into a single spectrograph and have their light

dispersed onto a single detector. Thus, in total there are 3 spectrographs and 3 detectors. Each

section is identical with all the others. Hence, the format of the data on each detector is, modulo

optical alignment and manufacturing tolerances, identical.

KMOS generates its own internal flatfields. For this it uses 2 lamps mounted in an integrating

sphere outside the instrument. The light is directed through a sealed tube to another integration

sphere in the centre of the cryostat, and thence to each arm. In order to detect light from the

flatfield lamps, the arms must be positioned correctly outside the patrol field. It is possible that for

some configurations, parts of some arms may be vignetted. In addition, there may be unexpected

spatial non-uniformities in the flatfield. As a result it will be possible to make an illumination

correction by observing a blank sky field during twilight. This will provide a correction to the

spatial (rather than spectral) component of the flatfield.

KMOS has also internal lamps (Argon and Neon) which will be used for wavelength calibration.

As an example, these are estimated to produce 35 lines in the K-band with more than 100 counts

in a 150-second integration.

1.2 Modes and Configurations

Although KMOS itself is a complex instrument, the only observing mode available is multiple

integral field spectroscopy.

The only instrument configuration that the observer can make (and which has an impact on the

subsequent data reduction, with respect to the appropriate calibration data) involves the

wavebands – for each of which there is a single fixed spectral format and range, and a fixed filter.

The wavebands offered cover near-infrared wavelengths from 0.8μm to 2.5μm, and hence the

observing strategy is the same for all bandpasses.

Data Reduction Library Design & Manual

12 of 184

1.2.1 Instrument Flexure

KMOS is mounted at a Nasmyth focus of the VLT and hence rotates. It is therefore inevitable that

there will be at least some flexure. For individual exposures, the most noticeable impact (i.e.

elongated PSF) will be when the telescope is pointing close to zenith and the parallactic angle is

changing rather quickly. However, calculations suggest that spatial flexure will be very small

(less than 1 pixel). On a scheme how to handle this can be found in Sec. 4.5.1.

On the other hand, spectral flexure is expected to be significant: exceeding the Technical

Specification on wavelength accuracy. Although mechanical solutions have been investigated, it

has been decided that it is more reliable, more accurate, and simpler to correct this in software

rather than hardware. Since science exposures will typically have integration times of at least a

few minutes, the OH sky lines will be bright and clear in individual frames. The processing will

reconstruct an initial cube from each science frame using the wavelength solution derived from

the arc lamp. It will then measure the wavelength offset of the frame by comparing the observed

wavelengths of the OH lines with respect to their theoretical wavelengths. This offset will be

folded back into the wavelength solution and the cube reconstructed anew from the raw data (and

the initial reconstruction will be deleted). Thus correcting the spectral flexure will not

compromise the quality of the data by requiring additional interpolation steps.

1.2.2 Inputs

The DRS pipeline receives as input:

 Raw images from KMOS as a single file with 3 extensions

 Calibration data, of which there are two types:

o master calibrations, generated by the pipeline, typically from daytime calibrations

o ancillary data such as reference line catalogues

1.2.3 Outputs

The KMOS DRS pipeline creates the following data:

 3D cubes, which are calibrated in wavelength, spatial position, and flux.

 associated error cubes (as FITS extension)

 QC1 parameters and performance monitoring values.

It should be noted that spectra will be extracted for standard star observations, in order to generate

the necessary telluric corrections. But in general spectra will not be extracted from science

observations, although it would in principle be possible to do this using exactly the same

technique and recipe as for standard stars. The reason is that often it is not obvious from which

spatial pixels the spectrum should be taken. This is particularly true for observations of high

redshift galaxies (one of the primary science drivers of KMOS), where continuum emission is

either very weak or even undetected. Attempting to extract spectra automatically from fields

where either the object of interest is very faint or there are multiple objects, can lead to misleading

and confusing results. On the other hand, extracting a spectrum manually is very quick and easy

to do within QFitsView. As one moves the cursor across the displayed image of the spatial field

of view, it enables one to see in real time integrated spectra from different groups of spaxels. This

tool is already available at Paranal, and users are recommended to use it to do exactly this.

Data Reduction Library Design & Manual

13 of 184

QFitsView also enables the user to create a collapsed image from the cube (or even a linemap)

across any wavelength range in an equally straightforward and speedy manner.

While bad pixel masks are generated during the processing, these are not part of the output. The

main reason is that due to the necessary interpolation step, there does not exist a one-to-one

correspondence between pixels in the final cube and pixels on the detector. However, the impact

of bad pixels is reflected in the noise cube which is created along with the data cube (see Section

2.2). Bad pixels are simply ignored during the interpolation. This will result in a local increase in

the noise, which will be apparent in the noise cube.

1.2.4 Data Formats

Only standard FITS data formats with extensions are used for tables, 2D and 3D images.

ASCII files are used for parameter files (e.g. EsoRex or Gasgano configuration files).

1.2.5 CPL

The DRS recipes are written in standard ANSI/ISO-C99 C using the ESO Common Pipeline

Library CPL.

1.2.6 Pipeline Modes

The DRS pipeline will be able to run in 3 specific default modes which are built from the same set

of recipes but with different input parameters, and 1 more general mode. These are:

 Acquisition pipeline mode: this will run on Paranal in real time to aid in acquiring targets.

In order to achieve the maximum speed, a number of stages will be omitted and the reconstructed

data will be approximate (although sufficient for the task in hand); the final output will be a set of

images.

 On-line pipeline mode: this will run on Paranal in quasi real time in an automated manner

with a primary goal of monitoring the scientific results from execution of an OB, and generating

initial QC parameters.

 Off-line pipeline mode: this will be run by the DFO in Garching in order to generate all

necessary calibration products, which will be certified by the DFO and archived. It will also be

used to generate reduced frames from service mode observations, which are then sent to the

proposer.

 Desktop Processing: the pipeline can be run by an observer at their home institution using

the EsoRex and Gasgano tools. External software such as QFitsView can be used to view

intermediate and final data products; the observer can freely select all parameters; and if required

add in their own processing steps.

Data Reduction Library Design & Manual

14 of 184

2 Mathematical Description

2.1 Interpolation

In KMOS, reconstruction of a (rectilinear) 3D datacube from raw 2D data will be performed in a

single step. This is no more risky or difficult than interpolating in 2-dimensions. However, being

able to conceptualise it requires that the calibrations are viewed in a particular way. Traditionally,

calibrations are considered to be the mathematical functions (polynomials) which allow one to

correct the curvature in the recorded data. Instead, calibrations should be considered as a look-up

table associating each data value in the raw frame with its (x,y,λ) position in the reconstructed

cube. This is shown graphically in Figure 1, where the calibration look-up tables would allow one

to go from (a) to (b).

Figure 1: Illustrative example of the perspective required in order to interpolate in 3D. (a)

Observed data are sampled regularly in the reference frame of the detector. (b) This sampling is

irregular in the reference frame of the reconstructed cube; bad pixels can simply be omitted from

the set of sampled points. (c) One can freely specify the required gridding (i.e. spatial/spectral

pixel scale) for the reconstructed data; it is independent of the actual sampling. (d) Each required

grid point is interpolated from the sampled points which lie in its neighbourhood. Any suitable

algorithm (see below) can be used for the interpolation.

The recorded data on the detector can then be considered as a set of values at irregularly spaced

sampling positions in the final cube. Once this is done, one can dissociate the data completely

from the detector frame and simply generate a list of values and positions:

 value0, x0, y0, λ0

 value1, x1, y1, λ1

 …

 valuen, xn, yn, λn

Data Reduction Library Design & Manual

15 of 184

Each grid position in the reconstructed cube is interpolated from its nearby neighbours, which are

selected from this list of data values. Bad pixels are simply excluded from the list. Doing this

brings a number of advantages:

 The 3D datacube can be reconstructed in a single step, improving the noise properties of

the final dataset

 One can combine frames during the interpolation by concatenating as many lists as

required from various raw frames; this simply increases the number of sample points close

to each interpolated grid point.

 One can choose the sampling of the reconstructed cube arbitrarily. This is useful if one

wishes to compare the data to that from another instrument: the KMOS data can be directly

reconstructed at a matching pixel scale.

 The data can be smoothed during the reconstruction (for some algorithms), simply by

increasing the size of the local neighbourhood from which sampling points are taken.

It is fortunate that there are many different schemes available for interpolating points in 3-

dimensional space, since no single one is optimal for every situation. Each has its advantages and

disadvantages. It is for this reason that we will make several schemes available. In this section the

methods we propose to include within the KMOS data reduction software are described. While

these are all standard methods, few have actually been applied extensively to astronomical data. It

is not practical to provide a full description of each here, and so only the salient points are

described. The reader is referred to various references for further details.

2.1.1 Nearest Neighbour

This is the simplest, and also one of the fastest, methods imaginable for interpolation: one simply

adopts the value of the nearest data point. This method is included since no additional noise is

added during the interpolation process, and as a result there may be instances when an observer

wishes to use this method: e.g. when signal-to-noise is more critical than optimal spatial/spectral

accuracy. The efficiency of this method can be enhanced using the cell method developed by

Bentley & Friedman (1979) [RD02]. A script called ngp.pro which performs this interpolation

is available from the IDL Astronomy User’s Library.

This method is available in the KMOS pipeline as value “NN” in the corresponding parameter

settings.

2.1.2 Cubic Spline Interpolation

Cubic spline interpolation is a standard technique which is discussed in detail in, amongst others,

Numerical Recipes. As far as we are aware, it is applied commonly throughout astrophysical data.

The goal of a cubic spline is to get a formula that is smooth in the first derivative and continuous

in the second derivative, not only within an interval but also at its boundaries. We will use the

natural cubic spline, which has zero second derivative at its boundaries.

The issue here is how to apply it in 3 dimensions. A method has been developed by Lekien &

Marsden (2005) [RD05] which does this; but it requires that the data are gridded regularly. While

the KMOS data are gridded regularly on the detector, their position (x,y,λ) is not uniform and

Data Reduction Library Design & Manual

16 of 184

therefore it would be quite difficult to apply this method – indeed to do so one would need to

calculate accurately where on the detector any particular point in (x,y,λ) would fall.

The alternative most commonly employed is to perform multiple 1-dimensional interpolations.

This makes the cubic spline method relatively straight forward mathematically. One useful

characteristic of the data in this respect is the fact that the pixel spacing perpendicular to the

slitlets in each IFU is regular – which, due to optical distortions, is not the case either along each

slitlet or along the spectral axis. One can then perform the first set of interpolations along this axis

and then propagate the regular spacing to the other dimensions.

This method is available in the KMOS pipeline as value “BCS” in the corresponding parameter

settings.

2.1.3 Modified Shepard’s Method

This fits a smooth function to a set of data points scattered in 3 dimensions using a modification

by Renka (1988) [RD06] of a method developed by Shepard (1968) [RD07]. The necessary

algorithms are part of the NAG library (their nag_3d_shep_interp and

nag_3d_shep_eval routines). It is also available in IDL as the grid3.pro routine.

The original basic method constructs a function Q(x,y,z) which interpolates a set of m scattered

data points at positions (xi,yi,zi) and having values fi with a weighted mean:

where the weights are simply

The modification is that the method is made local by truncating the weights wi beyond a specified

distance Rw.

This method is available in the KMOS pipeline as value “swNN” in the corresponding parameter

settings, where the truncation radius can be specified (recommended box size is 1.1 pixels). An

analogous linear distance weighted scheme is also available under the name “lwNN”.

We note that in the full Modified Shepard’s method, the performance is improve by replacing

each fr by qr(x,y,z) which is a quadratic fitted by weighted least-squares to local data (i.e. within a

radius Rq). The resulting surface is continuous and has continuous first partial derivatives. It is the

calculation of each qr(x,y,z) that takes most of the processing time, but nevertheless the method is

remarkably fast, as shown by Yan et al. (2004). The radii Rw and Rq are chosen to be large enough

to include Nw and Nq data points respectively, and it is these latter numbers that define how

localised the interpolant is. For smaller numbers, the interpolation only uses local data and so is








m

i

i

m

i

ii

zyxw

fzyxw

zyxQ

1

1

),,(

),,(

),,(

222)()()(

1
),,(

iii

i
zzyyxx

zyxw




Data Reduction Library Design & Manual

17 of 184

faster but possibly less accurate; for larger numbers the computational cost is higher. The method

is not thought to be particularly sensitive to the choice of these parameters and typical values of

Nw = 32 and Nq = 17 seem to work well, based on experimental results reported by Renka (1988).

2.2 Error Propagation

One of the goals of the pipeline is to produce (at least a reasonable approximation to) an error

cube to complement the final reduced and combined data cube. This is an important consideration

since the noise is strongly wavelength dependent – being affected most by the presence of OH

lines and the thermal background. In addition, in a combined cube, the noise will be spatially

dependent.

In principle creating a noise cube ought to be straight forward since the basic mathematics of error

propagation are straight forward and well known. In practice, this is not so, most notably due to

systematic effects when combining different datasets. Any useful estimate of the error should

include these, and as a result our methods assess the noise from the data themselves rather than

simply propagating a formal estimate.

2.2.1 Initial Noise Estimate

It is assumed that the gain (e-/ADU) and the readnoise (e-) are either known or can be measured.

In this case the noise in any raw 2D frame can be found (or strictly, only estimated, because the

counts measured are themselves subject to noise) simply as

This relation can be tested as follows: for a large number (e.g. 20) identical exposures, the

standard deviation between the values at each position on the detector should be equal to σ as

estimated above. Alternatively, since the readnoise is approximated by the noise in a frame with

exposure time of MINDIT, this same method can be used to derive the gain.

2.2.2 Mathematical Manipulations

The recipe kmo_arithmetic allows one to perform mathematical manipulations on the data. For

these cases, the errors can be propagated in a strictly mathematical way. This applies similarly to

the recipes kmo_rotate and kmo_shift. We have ignored covariance terms since they are

expected to be small for uncorrelated data.

For example, if one adds (or subtracts) two frames then (ignoring cross terms) the noise adds in

quadrature.

if x = au+bv then

And if one multiples (or divides) two frames, then (again ignoring cross terms) the noise

combines as:

if x = auv then

gain

readnoisegaincounts
ADU

2

)(




2222

vux ba  

2

2

2

2

vux

vux 


Data Reduction Library Design & Manual

18 of 184

Similarly, raising a number to some power

if x=aub then

And lastly, for exponentials and logarithms one has

if x=aebu then

and

if x=a ln(bu) then

2.2.3 Combining Datasets

We described two methods for estimating the noise in the result when multiple cubes are

combined. Both of these options will be available; the latter will be the default.

If one is combining cubes which have either small spatial dithers between them (i.e. multiple

exposures of the same field) or large dithers (i.e. in order to mosaic a larger field) one can in

principle use the formal relations above to combine the individual error estimates. Thus

where there are pixels overlapping. For all image regions where there is no overlap one simply

propagates the noise estimate directly.

While this can always be applied, it has a disadvantage in that it does not take into account

systematic effects between the different data sets being combined (e.g. offsets in the background

level). Thus an alternative method which will be offered is to estimate the noise directly from the

standard deviation of the pixel values at each spatial/spectral position. This has the advantage that

one can iteratively reject values which lie outside a threshold defined in terms of the standard

deviation of the (remaining) pixels – thus yielding a better mean value in the combined cube.

The only restriction is that such a noise estimate can only be made if there are at least 3 values

available at any given spatial/spectral position; in practice positions where this criterion is not met

will simply be assigned a noise of NaN.

2.2.4 Extracting Spectra

The process of extracting a spectrum from a datacube is simply adding up spectra within a given

aperture (possibly weighted appropriately). The noise can therefore be propagated from the cube

to the spectrum very simply, by using the relation for a weighted sum given in Section 2.2.2.

2.2.5 Creating Images

Images are created simply by collapsing the cube along its spectral axis within specified

wavelength ranges (and perhaps also excluding some intermediate wavelength ranges). As for

spectra, the noise can therefore easily be propagated using the relation for a weighted sum in

Section 2.2.2.

u
b

x

ux 


u
x b

x





u
a u

x


 

)...(
1 22

2

2

1 ncombine
n

 

Data Reduction Library Design & Manual

19 of 184

3 Instrument Data Description

The aim of this section is to describe the structure of the raw data produced by KMOS, which

corresponds to the RAW format.

KMOS comprises 24 IFUs, each of which has 14×14 spatial pixels and approximately 2000

spectral pixels. The data from these are recorded by three 2k×2k HAWAII 2RG detectors, with 8

IFUs assigned to each detector. The field of each IFU is sliced into 14 slitlets which are

rearranged along a pseudo-longslit and then dispersed. The raw data for each IFU therefore

consists of 14 sets of standard 2-dimensional (1 spatial, 1 spectral) slit spectra, which is arranged

next to each other on the detector, separated by a few blank pixels. The same pattern is repeated 8

times for each of the 3 detectors. A single exposure therefore produces approximately 50Mb data.

Figure 3 illustrates how the data appears on each detector. See also Figure 19 for an illustration of

how the raw data appears in the RTD.

A single integration with KMOS will produce three 2-dimensional frames, each 2048×2048

pixels, stacked in 3 extensions of a single fits file with an empty primary header.

Figure 2 Format of a RAW file as the instrumentation software delivers it. The value for the

EXTNAME keyword can be seen in the blue rectangles.

Calibration observations are performed in a standard way and typically yield data with a similar

format: darks, flats, wavelength calibration and spectral curvature. The exceptions are the

illumination correction and standard stars.

Data Reduction Library Design & Manual

20 of 184

Figure 3 - illustrative layout of the data format on each detector (curvature has been enhanced for

visual purposes). Upper panel: full detector showing OH emission lines on the H-band; Lower

panel: left side, stretched to show individual slitlets within each IFU are arranged.

Data Reduction Library Design & Manual

21 of 184

3.1 Orientation of the IFUs on the detectors

Due to the optical path realised in the KMOS instrument the spatial orientation of the IFUs on the

detector frames isn’t the same for all of them, as one would expect intuitively. The orientation of

a reconstructed slitlet of an IFU can be flipped or rotated. The orientation of the wavelength axis

never changes. The wavelength is always lowest at the bottom and highest at the top of the

detector frame as depicted in Figure 3.

Figure 4 Numbering of pixels and slitlets as they are referenced to in Figure 5

For IFUs 17, 18, 19, and 20 the pixels in a slitlet are orientated from left to right and the slitlets

are stacked from top to bottom.

For IFUs 21, 22, 23 and 24 the pixels in the slitlet are oriented just the other way round, from

right to left. As well the stack orientation is flipped, it goes from bottom to top.

Whereas in IFUs 1, 2, 3, 4, 13, 14, 15 and 16 the slitlets are oriented vertically from bottom to

top. The stacks are stacked from left to right.

Finally in IFUs 5, 6, 7, 8, 9, 10, 11 and 12 the slitlets are also vertical but go from top to bottom

and they are stacked from right to left.

Data Reduction Library Design & Manual

22 of 184

Figure 5 Orientation of the slitlets for the different IFUs

3.2 FITS header keywords

The tables below define the FITS header keywords which are required by the data reduction

pipeline. The Instrumentation Software will provide these keywords in the headers of raw frames

– see KMOS Instrument Software Design Description [RD01].

3.2.1 Primary header

Keyword value comment

DATE string Date the file was written

Data Reduction Library Design & Manual

23 of 184

DATE-OBS string Observing date

EXTEND bool There may be FITS extensions

NAXIS int number of array dimensions

NAXIS1 int # of pixels in axis1

NAXIS2 int # of pixels in axis2

HIERARCH ESO DET NDIT int Number of detector integrations

HIERARCH ESO DET SEQ1 MINDIT double Minimum DIT

HIERARCH ESO OBS ID int Observation block ID

HIERARCH ESO INS FILTi ID

(i=1-3)

string Filter unique id

HIERARCH ESO INS GRATi ID

(i=1-3)

string Grating unique ID

HIERARCH ESO INS LAMPi ST

(i=1-4)

bool arc lamp status (on/off), i=1,2

flatfield lamp status (on/off) , i=3,4

HIERARCH ESO OCS ARMi ALPHA

(i=1-24)

double RA centre of arm i (J2000)

HIERARCH ESO OCS ARMi DELTA

(i=1-24)

double Dec centre of arm i (J2000)

HIERARCH ESO OCS ARMi NAME

(i=1-24)

string Target name hosted by arm i

HIERARCH ESO OCS ARMi NOTUSED

(i=1-24)

string String containing error message. If

keyword isn’t present, then the arm is

functional

HIERARCH ESO OCS ARMi TYPE

(i=1-24)

HIERARCH ESO OCS ROT OFFANGLE double Rotator offset angle

HIERARCH ESO OCS TARG DITHA double Telescope dither in ALPHA [arcsec]

HIERARCH ESO OCS TARG DITHD double Telescope dither in DELTA [arcsec]

3.2.2 Extension header

Keyword value comment

EXPTIME double Integration time

EXTNAME string string describing the extension

NAXIS int number of data axes

NAXIS1 int length of data axis 1

NAXIS2 int length of data axis 2

XTENSION string IMAGE extension

HIERARCH ESO DET CHIP GAIN double Gain in e-/ADU

HIERARCH ESO DET CHIP

INDEX

int Chip index

HIERARCH ESO DET CHIP RON double Read-out noise in e-

The reduction pipeline updates the headers in a way that information applying to all frames is

stored in the empty primary header. Detector or IFU specific information is stored in the

subsequent headers (see also section 4).

Data Reduction Library Design & Manual

24 of 184

3.3 Raw file types

The raw files are generated using different templates that represent the available modes to use

KMOS with. When a template is executed the following keywords are written into all generated

files:

- HIERARCH ESO DPR TYPE (unique identifiers to perform DO categorisation)

- HIERARCH ESO DPR CATG (qualitative category of the file)

- HIERARCH ESO DPR TECH (technical category of the file)

- HIERARCH ESO OCS TEMPL ID (the applied template)

With these keywords it is possible for the Data Organiser (DO) to classify the files and provide

the corresponding DO category that is needed to run the KMOS pipeline properly.

The raw files with DPR.TECH equal IMAGE or SPECTRUM require no reconstruction of the

data cubes. In these cases the data will be treated as the simple 2D frame that it is.

DO category DPR TYPE DPR CATG DPR TECH OCS TEMPL ID

DARK DARK CALIB IMAGE KMOS_spec_cal_dark
FLAT_ON

FLAT_OFF

FLAT,LAMP

FLAT,OFF

CALIB

CALIB

SPECTRUM

IMAGE

KMOS_spec_cal_calunitflat

ARC_ON

ARC_OFF

WAVE,LAMP

WAVE,OFF

CALIB

CALIB

SPECTRUM

IMAGE

KMOS_spec_cal_wave

FLAT_SKY FLAT,SKY CALIB IFU KMOS_spec_cal_skyflat
STD OBJECT,SKY,STD,FLUX CALIB IFU KMOS_spec_cal_stdstar

KMOS_spec_cal_stdstarscipatt
SCIENCE OBJECT,SKY SCIENCE IFU KMOS_spec_obs_nodtosky

KMOS_spec_obs_stare
KMOS_spec_obs_mapping8
KMOS_spec_obs_mapping24
KMOS_spec_obs_freedither

The following DO categories are not used in the pipeline itself.

Although acquisition frames will need to be processed in order to reconstruct the acquisition

images needed for the real time display, the recipe will be triggered by CLIP rather than any

header keywords (because the frames do not have headers at this stage).

For acquisition frames one exposure will have objects in (some) arms and the subsequent

exposure will be of blank sky fields. However, for most science observations, this will not be the

case: in any single exposure some arms will be on sky and some arms will be on objects.

DO category DPR TYPE DPR CATG DPR TECH OCS TEMPL ID
ACQ_OBJ OBJECT ACQUISITION IFU KMOS_spec_acq

KMOS_spec_acq_lutatcfstars
ACQ_SKY SKY ACQUISITION IFU KMOS_spec_acq

KMOS_spec_acq_lutatcfstars
ACQ_STD OBJECT,SKY ACQUISITION IFU KMOS_spec_acq_stdstar

KMOS_spec_acq_stdstarscipatt

The technical templates do not require specific data processing other than reconstructing the

cubes. All measurements of the source size and position will be done afterwards manually.

DO category DPR TYPE DPR CATG DPR TECH OCS TEMPL ID
FOCUS LAMP,FOCUS TECHNICAL SPECTRUM KMOS_spec_tec_focus

Data Reduction Library Design & Manual

25 of 184

LOOKUP OBJECT, LOOKUP TECHNICAL IMAGE KMOS_spec_tec_lutatcfstars

3.3.1 Dark

File types: DARK

These frames are observed with the filter wheel in a ‘blocked’ position. Dark frames are used as

the OFF frames for the illumination correction.

3.3.2 Flatfields

File types: FLAT_ON, FLAT_OFF, FLAT_SKY

The standard flatfield is illuminated by a pair of lamps via an integrating sphere. Each set of

flatfields FLAT_ON has an associated set of FLAT_OFF frames, taken immediately before

(although in principle a standard dark frame could suffice). In case there are spatial non-

uniformities in the flatfield, and also to take into account vignetting further upstream in the light

path, an illumination correction can be performed. Since this is taken on sky, a dark frame is used

as the corresponding OFF frame. The edges of the illuminated regions of the flatfields can also be

used to trace the spectral curvature.

In order to measure the spectral curvature and calibrate KMOS while it is mounted, the edges of

the illuminated regions in the flatfields will be traced. This provides 2 traces per slitlet. As a result

one has to assume that the magnification as a function of wavelength is uniform across the slitlet.

3.3.3 Wavelength

File types: ARC_ON, ARC_OFF

These frames are illuminated simultaneously by Ar and Ne arc lamps. Each ARC_ON frame has

an associated ARC_OFF frame, taken immediately before (although in principle a standard dark

frame could suffice).

3.3.4 Standard Star

File types: STD (object and sky)

This type identifies observations of a telluric standard star. In addition, for the many such stars

where the magnitude is well known, these also provide the photometric calibration. Because the

standard stars are observed in an IFU, there are no issues associated with limited slit width, seeing

corrections, etc.

3.3.5 Science Object

File types: SCIENCE (object and sky)

These frames are illuminated by a science target. It should be noted that in most cases, for any

particular exposure only some of the 24 IFUs will be on objects and the rest will be on sky. The

necessary keywords OCS.ARMi.TYPE indicating whether each individual IFU is on sky or on

object in any particular frame are written into the header by the OS.

3.4 Processing Table

The different recipes for generating calibration and science products are listed in the Data

Processing Tables in Appendix A. These relate the various calibration recipes to their respective

Data Reduction Library Design & Manual

26 of 184

raw data types. The tables connect the classification keywords, the DO category, and the

observing template. Required input from the calibration database is indicated, as are the final

products. A summary of the main processing steps is given, as are the FITS header keywords

needed by the recipe.

3.5 IFU Layout in the Mapping Templates

The mapping modes of KMOS have specific templates to perform the observations. But the data

are treated by the pipeline in exactly the same way as for any other science observation.

It is often useful to know which IFUs in which exposures makes up the various parts of the

patchwork mosaic. Figure 6 and Figure 7 show this information for the 8-arm and 24-arm

mapping modes respectively.

Figure 8 Left – Arrangement of the IFUs used in the template KMOS_spec_obs_mapping8

used for the Mapping8 mosaic mode. Right – order (from A to I) of the 9 dithers performed

during the Mapping8 mode. The IFUs are separated by 8.1” and each dither is 2.7” so that, at the

end, there is a 0.1” (half-pixel) overlap between adjacent pieces.

Figure 9 Left – Arrangement of the IFUs used in the template KMOS_spec_obs_mapping24.

Right – order (from A to P) of the 16 dithers performed during the Mapping24 mode. The IFUs

are separated by 10.8” and each dither is 2.7” so that, at the end, there is a 0.1” (half-pixel)

overlap between adjacent pieces.

Data Reduction Library Design & Manual

27 of 184

4 Data Reduction Library Data Structures

During the different processing steps, the raw data is modified and associated with additional

information, which is either produced during the reduction or originates externally. The resulting

data types are described in this section.

Note that in both of these tables, the file type is given as a 3-character identification:

 the first character refers to whether the data in the file is stored as a floating point number

(‘F’, number of bits unspecified) or a binary digit (‘B’);

 the second character indicates the dimension of the data (1, 2, or 3);

 the third character indicates whether the data refers to a complete detector array (‘D’), an

individual IFU (‘I’), a look-up table or list (‘L’), or a spectrum of arbitrary size (‘S’).

4.1 Classification Tags

The classification of intermediate and final data products that will be generated by the calibration

recipes and pipeline is given below, together with the recipe which generates them and a brief

description of the product:

PCATG type recipe description

MASTER_DARK F2D kmos_dark - dark frame (including noise map)

MASTER_FLAT

XCAL

YCAL

F2D

F2D

F2D

kmos_flat - flatfield frame (including noise

map)

- spatial solution lookup frame

- spatial solution lookup frame

LCAL F2D kmos_wave_cal - wavelength solution lookup frame

ILLUM_CORR F2I kmos_illumination - illumination correction to flatfield

TELLURIC

STAR_SPEC

STD_IMAGE

STD_MASK

F1I

F1I

F2I

F2I

kmos_std_star - normalised telluric spectrum

(including noise map)

-extracted star spectrum

-images from a standard star cube

collapsed along the spectral axis

- mask used for extracting the spectra

SCI_COMBINED

SCI_RECONSTRUCTED

F3I

F3I
kmos_sci_red - reconstructed and combined science

cubes (including noise map)

- intermediate reconstructed science

cubes (including noise map)

The classification of ancillary external data files is given below:

PCATG file type description

ARC_LIST F1L list of arc line wavelengths & strengths

OH_LIST F1S spectrum of OH line wavelengths & strengths

ATMOS_MODEL F1S high resolution model spectrum of atmospheric

transmission

SOLAR_SPEC F1S high resolution solar spectrum

SPEC_TYPE_LOOKUP F2L lookup table to find stellar effective temperature

from spectral type and luminosity class

Data Reduction Library Design & Manual

28 of 184

The various formats are detailed in the following subsections.

4.2 Intermediate Data Formats

All files have an empty primary header, data and noise maps are stored in extensions as described

below.

4.2.1 Detector based floating point products

File Type: F2D

PCTAG: MASTER_DARK, MASTER_FLAT

For these files, the detector pixel space (i.e. 2048×2048 pixels) is still the reference frame in

which the data are stored. The data of each detector is stored in an extension of the FITS file. for

the dark and flat frames), these will be stored in extensions of the same FITS file. In this case the

first extensions will contain the data of the first detector, the second extension will contain the

associated noise map and so on.

Figure 10 The two valid configurations of a F2D-frame either with or without noise maps. The

value for the EXTNAME keyword can be seen in the blue and red rectangles.

4.2.2 1-dimensional detector based products

File Type: F1D

PCTAG: -

These files can be created by some intermediate recipes, e.g. kmo_stats. When statistics are to be

calculated from a detector based frame, then the output frame follows the same naming

convention. F1D frames can either have one or three extensions. With noise it will be two or six

extensions.

Data Reduction Library Design & Manual

29 of 184

Figure 11 The valid configurations of F1D-frames either with or without noise maps.

4.2.3 Detector based binary digit products

File Type: B2D

PCTAG: BADPIXEL_DARK, BADPIXEL_FLAT

These files also have the detector as the reference frame in which the data are stored, in fact they

are almost identical to F2D frames. But the data stored has another meaning: i.e. ‘0’ stands for a

bad pixel, ‘1’ for a good pixel. The FITS files will have extensions corresponding to the 3 detec-

tors (like in Figure 10 on the left side). A B2D frame can’t contain any noise frames.

Note that although a list of bad pixels would require less file space, it requires additional proces-

sing and does not allow for an easy way to visually check the bad pixel map.

To distinguish F2D from B2D frames the EXTNAME keyword contains DET.1.BADPIX,

DET.2.BADPIX and DET.3.BADPIX.

Figure 12 The valid configuration of a B2D-frame either with or without noise maps.

4.2.4 1-dimensional IFU based products

File Type: F1I

PCTAG: TELLURIC, STAR_SPEC

The IFU spectral domain is the reference for the storage of these data – i.e. the data is a simple

spectrum, the length and sampling of which correspond exactly to those of the spectral axis of a

reconstructed cube. The same telluric correction will be used for all IFUs, and so the only

extension in the FITS file will correspond to the noise spectrum. A F1I-frame can either contain

Data Reduction Library Design & Manual

30 of 184

the spectrum of just one IFU or of up to 24 IFUs. For inactive IFUs (for which hence no data

exists) an empty extension is inserted for data as well for the noise map.

Figure 13 All valid configurations of a F1I-frame either with or without noise maps. The value

for the EXTNAME keyword can be seen in the blue and red rectangles.

4.2.5 2-dimensional IFU based products

File Type: F2I

PCTAG: ILLUM_CORR, STD_IMAGE

The IFU spatial field is the reference for the storage of these data (i.e. 14×14 pixels) – i.e. the data

correspond to a cube which is collapsed along the spectral axis. Since KMOS has 24 IFUs, the

data will be stored in up to 24 extensions or in 48 extensions with noise maps in a single FITS

file. All extensions will be presenting every file produced; those for which no data exist will be

left empty. A F2I-frame can either contain images of just one IFU or of up to 24 IFUs.

Data Reduction Library Design & Manual

31 of 184

Figure 14 All valid configurations of a F2I-frame either with or without noise maps.

4.2.6 Naming convention

For all intermediate data formats described in section 4.2 (and also for F3I in section 4.4.1) the

convention is followed that in all extensions the EXTNAME keyword is describing its origin and

content. The format is “TYPE.NR.CONTENT”,

where TYPE can be DET or IFU,

where NR can be a number between 1 to 24 and

where CONTENT can be DATA, NOISE or BADPIX.

This convention is modified when cubes are combined using the recipe kmo_combine. Since the

cubes to be combined needn’t to stem from the same IFU (for example an object is observed in

the first OB on IFU #2 and in the second OB on IFU #13), the format will be changed to

“TYPE.CONTENT”.The user will have to keep track himself of the history of the IFUs if he

desires so. kmo_combine will take the header of the first fits file in the sof-file and modify it

accordingly.

4.3 External Data Formats

All files have an empty primary header, data and noise is stored in extensions as described below.

4.3.1 Lists

File Type: F1L

PCTAG: ARC_LIST

Data Reduction Library Design & Manual

32 of 184

These file types will be stored as a binary fits table. The EXTNAME keyword contains the string

“LIST”.

The line list will have three columns: the first column will contain a list of wavelengths

corresponding to the positions of the lines; the second column will contain a corresponding list of

approximate line strengths. The third column contains a string, either “Ar” or “Ne” depending to

which gas the line belongs to. With this information, it will be possible both to generate a

spectrum at the appropriate resolution to match that of the bandpass and also to unambiguously

identify particular lines in an observed spectrum. Note that because two different arc lamps are

used, there is uncertainty in the relative strengths of the lines between these two lamps. Therefore

the arc line strengths will not be used by the automatic pipeline. However, the information will be

retained in the data file for the astronomer and possible future upgrades or other unforeseen uses.

4.3.2 1-dimensional spectra

File Type: F1S

PCATG: ATMOS_MODEL, SOLAR_SPEC, OH_LIST

These data formats will be stored as linearly sampled spectra, with the standard parameters

defining the wavelength sampling given in the header. These spectra are at very high resolution

and cover the entire wavelength range of all the bandpasses used within KMOS. When needed,

the appropriate section of the spectrum can be convolved to the required resolution. The structure

of a F1S file follows the definition of a F1I file, except that there can only be one data extension

without noise and the EXTNAME keyword contains the string “SPEC”.

4.3.3 Lookup tables

File Type: F2L

PCATG: SPEC_TYPE_LOOKUP, FLAT_EDGE, REF_LINES

A lookup table is by definition 2-dimensional. Therefore this data format will consist of a binary

fits table with an appropriate number of rows and columns. The EXTNAME keyword contains

the string “LIST”.

In the case of SPEC_TYPE_LOOKUP, the aim is to cover the most common MK spectral types so

that the effective temperature of any telluric star (typically a B or G2V star) can be estimated:

luminosity classes: I, II, III, IV, V

spectral type: O5, O9, B0, B2, B5, B8, A0, A2, A5, F0, F2, F5, F8, G0, G2, G5, G8

This file type can either have one or 24 extensions.

4.4 Final Output Data Formats

4.4.1 3-dimensional IFU based products

File Type: F3I

PCATG: CUBE_DARK, CUBE_FLAT, CUBE_ARC, CUBE_OBJECT, CUBE_STD,

REDUCED_CUBE

The processed datacubes (i.e. 14×14×2048 pixels), one corresponding to each of the 24 IFUs is

stored in a F3I fits file. As the other formats described above, F3I has as well an empty primary

header and data and noise maps are stored alternately. Extensions for inactive IFUs are left empty.

Data Reduction Library Design & Manual

33 of 184

Figure 15 All valid configurations of a F3I-frame either with or without noise maps.

4.5 Calibration Data Formats

Since the orientation of all IFUs isn’t the same due to the optical path of the KMOS instrument

the spatial solution lookup frames XCAL and YCAL (see section 4.1) are intermixed. The

assembly of the RAW frames in respect to the IFUs is explained in section 3.1 in detail.

Following figures show the setup of the three calibration frames XCAL, YCAL and LCAL:

Data Reduction Library Design & Manual

34 of 184

Figure 16 XCAL: In the first two detector frames there is the same data value inside each slitlet.

So the visible gradient extends over the whole IFU. In the third detector frame the extends over

each slitlet individually (see magnification)

Figure 17 YCAL: The same pattern as above is observed but just switched between the detectors.

Figure 18 LCAL: The gradiant extends over the wavelength axis in the same way for all

detectors, IFUs and slitlets.

Data Reduction Library Design & Manual

35 of 184

4.5.1 Calibration at multiple rotator angles

Calibrations should as well compensate as much as possible for the flexure. There are two main

sources of flexure. On one hand the flexure of the whole instrument as such and on the other hand

the flexure introduced inside the instrument (spectrographs, arms etc.).

Compensating the outer flexure hasn’t been solved satisfactory until now since the characteristics

are quite inpredictable. The flexure results in offset of about 1 pix, which lie in the specifications

of the instrument.

To compensate for the inner flexure the KMOS DRS pipline allows to take calibration exposures

at several rotator angles and to process them in a single run of the associated recipes. The recipes

applying reconstruction will then choose the closest calibration frames regarding the rotator angle

of the input science frame to reconstruct. If the angle lies inbetween two calibrations, the

calibration frames will be temporarily interpolated.

The calibration frames XCAL, YCAL and LCAL generated with the recipes kmos_flat and

kmos_wave_cal therefore don’t just contain 3 extensions each, but rather 3 times the number of

rotator angles.

A default value of 6 rotator angles at an increment step of 60° has proved to be sufficient.

4.6 RTD Data Formats

Data which will be displayed in the RTD does not have a designated type since it is not archived,

nor does it play a role in the pipeline processing of the science OBs. The formats are included

here for completeness and to clarify how the data will appear in the RTD.

There will be 2 RTDs for KMOS.

The first will display the raw data, which will appear as a single frame, from which the

contributions from the 3 detectors (each 2048×2048 pixels) are spliced together in a row, making

a frame of 6144×2048 pixels as shown in Figure 19.

Data Reduction Library Design & Manual

36 of 184

Figure 19: illustrative example of how the raw data appears in the first RTD (top), with the 3

detector frames spliced together. Below is shown a zoom of one part of this, in which it is

possible to distinguish individual slitlets from the IFUs, the OH lines, and the spectral traces of 1

or 2 objects. Note that no curvature has been included in this example; the actual curvature will be

small.

The second RTD shows the reconstructed images. There is a button so that the user can choose

between seeing these images in a grid (Figure 20) or in their actual location within the patrol field

(Figure 21).

Data Reduction Library Design & Manual

37 of 184

Figure 20: reconstructed images from the 24 IFUs displayed in a 5×5 grid format. This allows

one to see immediately and easily what each IFU is looking at.

Each sub-image of the grid-format will be 14×14 pixels. Since a spacing of 1 pixel is included

between each sub-image, the whole montage will be 76×76 pixels. Any sub-images which are not

reconstructed (e.g. during acquisition, typically only a few IFUs will be used) will be left blank.

Thus the position of a sub-image for a particular IFU will always be the same, regardless of how

many are reconstructed.

The patrol field format will cover 7.2arcmin (plus some extra blank space) at a sampling of 0.2”

which matches that of the individual reconstructed images. Thus it will be 2200×2200 pixels. The

sub-images will be inserted at the nearest integer position to their actual locations. This is done to

avoid the necessity of resampling the reconstructed images, and because this accuracy (i.e. to half

a pixel, or 0.1”) is sufficient for the purpose of this format.

Data Reduction Library Design & Manual

38 of 184

Figure 21: reconstructed images from the 24 IFUs placed in their actual locations within the

patrol field. This mode will mostly be used for testing and commissioning KMOS, but may also

be useful during certain astronomical acquisitions and observations.

Data Reduction Library Design & Manual

39 of 184

5 Data Reduction Library QC1 Parameters

KMOS has 24 IFUs, each of which has 14 slitlets, giving a total of 336 distinct 2-dimensional

spectra. Due to alignment and manufacturing tolerances, the spectral traces and dispersion

solutions of these spectra need to be determined independently (e.g. there could be discrete shifts

between neighbouring spectra). Furthermore, these parameters will depend on the bandpass used.

As a result monitoring all the coefficients of all the fits would yield many thousands of QC1

parameters – which is clearly impractical.

This section concerns the way in which the number of QC1 parameters will be kept to a

manageable total. However, it should be realised that in many cases, it is nevertheless necessary

to track QC1 parameters separately for

(a) each of the 3 detectors since these correspond, in effect, to optically separate systems.

(b) each of the 5 bandpasses, since many of the optical properties depend on the

grating/filter used.

Information about the detector or grating to which each QC1 parameter is associated will be given

in the associated PAF.

A concise summary of all the QC1 parameters is given in Appendix B.

5.1 QC1 Parameter descriptions

5.1.1 Dark Frames

QC DARK

Direct calculation of the mean value in the Master Dark frame for each detector.

(Stored in each detector header of all created output frames)

QC DARK MEDIAN

Direct calculation of the median value in the Master Dark frame for each detector.

(Stored in each detector header of all created output frames)

QC RON

Direct calculation of the mean value of the noise of the Master Dark frame for each detector.

(Stored in each detector header of all created output frames)

QC RON MEDIAN

Direct calculation of the median value of the noise of the Master Dark frame for each detector.

(Stored in each detector header of all created output frames)

QC DARKCUR

Mean value (with iterative rejection) for each detector of a long exposure Master Dark frame,

after the Master Dark has been subtracted, divided by the exposure time.

(Stored in each detector header of all created output frames)

QC BADPIX NCOUNTS

Total number of pixels in each detector flagged as ‘bad’ in a Master Dark or Master Dark frame.

The mimimum number is 32’704, since the four-pixel border around the detector frame (used to

monitor detector health) is marked always as bad.

Data Reduction Library Design & Manual

40 of 184

(Stored in each detector headers of all created output frames)

5.1.2 Flat Frames

QC FLAT EFF

The main concern here is whether the brightness of the flatfield lamps has changed, and so a

single value suffices for all detectors together. It is defined as the mean normalisation for the

Master Flat divided by the exposure time, for each bandpass.

(Stored in the primary headers of all created output frames)

QC FLAT SAT NCOUNTS

This parameter tracks how many of the 12 million pixels (in all three detectors) are saturated in

the Master Flat, for each bandpass. It allows one to set the optimal exposure time (DIT). A pixel

is flagged as saturated if its value is above some defined limit in at least two of the individual ON

frames used to generate the Master Flat.

(Stored in the primary header s of all created output frames)

QC FLAT SN

This parameter tracks the signal-to-noise in the illuminated regions of the Master Flat, for each

bandpass. It is defined as the total signal in these regions divided by the total noise (i.e. every

illuminated pixel is given equal weighting). This will allow one to monitor whether the signal-to-

noise in the flatfield meets the required specification, and adjust the number of co-adds (NDIT)

appropriately.

(Stored in the primary headers of all created output frames)

QC GAP MEAN, QC GAP SDV, QC GAP MAXDEV

QC SLIT MEAN, QC SLIT SDV, QC SLIT MAXDEV

For all detected edges the width of gaps and slitlets are determined using the fitted polynomial

functions. Deviant values are rejected. Then the mean, standard deviation and maximum deviation

(in units of standard deviation) are calculated and Y will be compared to nominal values stored in

external files (see Section 4 lower table and Section 4.3 for the data format), which will be

determined during testing and updated during commissioning. This will yield two sets of numbers

which ideally would have a small scatter about zero.

These 6 parameters are sufficient to monitor changes in spectral curvature solution for each of the

detectors and bandpasses.

(Stored in each detector header of all created output frames)

5.1.3 Wavelength Calibration

QC ARC AR EFF,

QC ARC NE EFF

The main concern here is whether the brightness of the argon and neon arc lamps has changed,

and so a single value for each lamp suffices for all detectors together. They are defined as the total

counts of several specified lines, divided by the exposure time, for each bandpass.

(Stored in the primary header)

QC ARC SAT NCOUNTS

Data Reduction Library Design & Manual

41 of 184

This parameter tracks how many of the 12 million pixels (in all three detectors) are saturated in

the arc frame, for each bandpass. It allows one to set the optimal exposure time (DIT). A pixel is

flagged as saturated if its value is above some defined limit in at least two of the individual ON

frames used to generate the arc frame.

(Stored in the primary header)

QC ARC AR SPECRES, QC ARC AR ERR SPECRES,

QC ARC NE SPECRES, QC ARC NE ERR SPECRES

This monitors the spectral resolution and its errors of each grating for both the argon and neon

lamp. The FWHM of a specified arc line is measured for each bandpass and each detector.

(Stored in each detector header)

QC ARC DISP0 MEAN, QC ARC DISP0 SDV, QC ARC DISP0 MAXDEV,

QC ARC DISP1 MEAN, QC ARC DISP1 SDV, QC ARC DISP1 MAXDEV,

QC ARC DISP2 MEAN, QC ARC DISP2 SDV, QC ARC DISP2 MAXDEV

For each slitlet, a set of coefficients relating the pixel position on the detector to its wavelength is

determined. The constant (zeroth order), first order, and second order coefficients in Y will be

compared to nominal values stored in external files (see Section 4 lower table and Section 4.3 for

the data format), which will be determined during testing and updated during commissioning.

This will yield three sets of numbers which ideally would have a small scatter about zero.

These 9 parameters are sufficient to monitor changes in dispersion solution for each of the

detectors and bandpasses.

(Stored in each detector header)

QC ARC MAX DIFF, QC ARC MAX DIFF ID,

QC ARC MAX SDV, QC ARC MAX SDV ID,

QC ARC MEAN DIFF,

QC ARC MEAN SDV

Once the wavelength calibration look-up table has been generated, the arc frame is reconstructed

into a cube. Several prominent arc lines will be used to check the quality of the wavelength

calibration. For each IFU the difference between the wavelength of the emission line (across all

spaxels) and its true wavelength will be measured. The maximum difference, and the

corresponding IFU identity will be written as QC parameters. Similarly, the standard deviation of

the wavelengths in each spaxel will be calculated. The maximum value and the identity of the

corresponding IFU will be written to a second pair of QC parameters.

These 4 parameters are sufficient to monitor the quality of the dispersion solution for each of the

detectors and bandpasses. Similarly, the mean difference and the mean standard deviation are

calculated.

(Stored in each detector header)

5.1.4 Illumination Correction

QC SPAT UNIF

This parameter is defined as the RMS of all 14×14 spatial pixels in all the illumination correction

images corresponding to the 24 IFUs. It is a simple measure of how uniform the Master Flat is,

for each bandpass. It is also sensitive to differences in throughput (e.g. due to vignetting) both

between IFUs, and within any individual IFU.

(Stored in the primary header of the created output frame)

Data Reduction Library Design & Manual

42 of 184

QC SPAT MAX DEV,

QC SPAT MAX DEV ID

For these parameters, the mean of the illumination correction is calculated for each of the IFUs in

each bandpass. The IFU that deviates most from unity is flagged, as is the amount by which it

deviates.

(Stored in the primary header of the created output frame)

QC SPAT MAX NONUNIF,

QC SPAT MAX NONUNIF ID

For these parameters, the standard deviation of the illumination correction is calculated for each

of the IFUs in each bandpass. The IFU with the largest standard deviation is flagged, and the

standard deviation itself is also recorded.

(Stored in the primary header of the created output frame)

5.1.5 Standard Star Observations

QC ZPOINT

This is defined as the mean zeropoint of all standard stars observed in various IFUs for a single

pointing, and for which a magnitude is given (although the number of stars may typically be 1). It

is different for each bandpass.

(Stored in each detector header of telluric output frame)

QC THRUPUT, QC THRUPUT MEAN, QC THRUPUT SDV

This is equivalent to the zeropoint, but in a slightly different form. The throughput will be

calculated whenever the zeropoint is calculated. It will be given as the mean (and standard

deviation) of the throughput based on all standard stars observed in various IFUs for a single

pointing – as long as a magnitude and spectral type is given. The number of photons detected (i.e.

counts × gain) will be compared to the number of photons expected from the star, taking into

account standard atmospheric extinction. The ratio of these numbers is the throughput from the

top of the telescope to the detector, including the detector quantum efficiency.

(QC THROUGHPUT is stored in each detector header of telluric output frame,

QC THROUGHPUT MEAN and QC THROUGHPUT SDV are stored in the primary header of

telluric output frame)

QC SPAT RES

This is defined as the mean FWHM resolution of all standard stars observed in a single pointing.

Although the PSF may be slightly elliptical, the FWHM along the two axes are averaged to yield

a single measurement.

(Stored in each detector header of PSF output frame)

QC STD TRACE

This QC1 parameter has been introduced to verify the spectral curvature solution by checking

whether the trace of a standard star is straight in the reconstructed cube. Note that in the near

infrared, differential atmospheric refraction is small and will have little impact on the trace. This

parameter measures the standard deviation of the measurements of the positions of the standard

star in each spectral slice. This will depend on the bandpass used.

(Stored in each detector header of PSF output frame)

Data Reduction Library Design & Manual

43 of 184

Data Reduction Library Design & Manual

44 of 184

PART II: DRS RECIPE REFERENCE

6 Preliminaries

All calibration and science recipes receive raw or processed frames as input containing data

referring to a complete detector array. While processing, this format can change in the way that a

frame will refer to a single IFU (see Sec. 4.2.4 onwards). In this case the recipe iterates over all

frames of all IFUs in order to process all data supplied by the detectors. Detector frames will be

split up into IFU frames, when a cube has to be reconstructed or created. Cubes refer always to

IFUs. Reciprocally IFU frames can be combined to a detector frame again.

Data Types

All generated and saved image and cube frames are of type float. Vector frames and scalar values

are of type double.

Adressing of IFUs and detectors

When a specific IFU or detector has to be defined in a recipe, an integer has to be supplied to the

recipe. Numbering starts always at 1 and ends at 24 for IFUs and at 3 for detectors.

Invalid IFUs

Since not all IFUs need to be active when doing an exposure, some sections of a RAW frame can

contain invalid data. The inactive IFUs are marked in the primary header with ESO OCS ARMi

NOTUSED (i=1 to 24).

During reconstruction the detector frame is split up and rearranged into a cube. Invalid IFUs will

just contain the extension header and no data (NAXIS=0). The keywords specific to arms are

propagated into the respective extension header.

QC Parameters

The QC parameters generated by the recipes are listed in Appendix B.

6.1 Standard workflow

A standard workflow to setup a calibration pipeline would look like:

$ esorex kmos_dark dark.sof

$ esorex kmos_flat flat.sof

$ esorex kmos_wave_cal arc.sof

$ esorex kmos_illumination illumination.sof

$ esorex kmos_std_star std_star.sof

$ esorex kmos_sci_red sci_red.sof

Reconstructing a data cube from a detector image can already be performed after having executed

kmos_wave_cal:

$ esorex kmos_reconstruct reconstruct_science.sof

Data Reduction Library Design & Manual

45 of 184

6.2 Generating Test Data

Executing the built-in tests of the pipeline generates automatically valid and invalid test data for

the various recipes. Valid data has a prefix “v_” and invalid data has a prefix “i_” (stored in the

subfolders in kmosp/recipes/tests/test_data).

Test data is also generated for the calibration pipeline (kmosp/recipes/tests/test_data/pipeline). It

consists of simulated K-band data. The pipeline will also be executed during the tests and the

products are saved to disk (kmosp/recipes/tests).

To run the tests open a terminal and execute make check in kmosp/recipes.

6.3 Predefined wavelength ranges

By default the following wavelength ranges are used to reconstruct detector images into cubes:

H-band: 1.425 - 1.867 um

HK-band: 1.460 - 2.410 um

IZ-band: 0.780 - 1.090 um

K-band: 1.925 - 2.500 um

YJ-band: 1.000 - 1.359 um

These values can be changed using the parameters b_end and b_start in the recipes

kmos_reconstruct, kmos_illumination, kmos_std_star , kmos_sci_red.

6.4 Lookup table (LUT) for reconstruction

Once the calibration frames XCAL, YCAL and LCAL have been created with kmos_flat and

kmos_wave_cal, any detector image can be reconstructed. As long as the calibration frames

don’t change, every detector image will be reconstructed exactly the same way. To speed up the

interpolation during reconstruction, the generated LUT will be saved to disk by default. In each

subsequent reconstruction step this LUT can be reused and hasn’t to be recalculated therefore.

The LUT is saved as binary file and is not editable. It will neither be declared as ESO DFS

product since this is an intermediate output.

When a detector image to reconstruct contains only a few valid IFUs, the LUT is only calculated

and stored for these IFUs. In a later run the LUT can be updated when other IFUs are active.

A saved LUT can only be reused when following parameters match

 filters, gratings and rotation offset
Every LUT is specific to filters, gratings and rotation offset. Therefore the LUT gets the

same filename extension like other calibration products, e.g. LUT_HHH_HHH_0.fits

 reconstruction method, spatial and spectral ranges

These parameters are stored in the LUT and are checked before eventually applying it.

 timestamp

A timestamp is also added to the LUT to assert that the LUT is newer than the above-

mentioned calibration frames. If any of the provided calibration frames is newer than the

LUT, then the LUT will be recalculated.

The LUT will be erased, recalculated and saved again when any of these parameters don’t match.

Data Reduction Library Design & Manual

46 of 184

There are different modes to influence the behaviour of the usage of the LUT.

 NONE
The initial LUT is neither stored to disk nor in memory.

This method uses CPU resources only and is therefore the slowest method.

Any possibly existing LUT on disk will be ignored.

 MEMORY
The initial LUT isn’t stored to disk but is kept in memory as long a recipe is executed.

This method uses system memory resources.

Any possibly existing LUT on disk will be ignored.

 FILE
The initial LUT will be calculated and directly be saved to disk.

This method uses file system resources.

Any possibly existing LUT on disk will be examined for usability.

 BOTH
The initial LUT will be kept in memory as long a recipe is executed and saved to disk.

This method uses system memory and file system resources.

Any possibly existing LUT on disk will be examined for usability.

The default is LUT_MODE_FILE. The behavior can be changed in defining an environment

variable called KMCLIPM_PRIV_RECONSTRUCT_LUT_MODE with any of the the values

declared above.

Data Reduction Library Design & Manual

47 of 184

7 Recipes

The KMOS data processing recipes can be divided into following three categories:

 Calibration Recipes
Recipes, which directly produce either calibration frames needed for science reductions or

for QC1 parameters.

 Science Reduction Recipes
Recipes which perform science or acquisition reductions (which are largely built from the

tools described below)

 Common Recipes
Functionally simple recipes, which can be applied in a straightforward fashion. These

recipes are used internally as well for the calibration and science reduction recipes.

The interactions between the calibration and science reduction recipes are displayed as an

association map in Figure 22.

It is worth noting that only the high level functions are described here, and the low level such as

basic arithmetic and file manipulation functions, are implied.

In Section 7.1 and 7.2 the calibration and science processing recipes are ordered following the

workflow of the pipeline. In the following section the recipes are ordered alphabetically.

Reference Structure

For each recipe following information is provided:

 Functional Description

A short and more detailed description of the recipe is given.

 Flow Chart
A graphical flow chart and a corresponding description are provided. The stylistic

conventions used in the subsequent flowcharts are as follows:

o Inputs of single values like float, int etc. external to the recipe data flow are

indicated in the flowchart by right filled triangles ().

o Inputs of cubes, frames or vectors are indicated by arrows ().

o Output of quality control parameters is coloured blue.

o Data-cubes, -frames or –vectors are displayed with bold typeface.

o The data flow goes from top to bottom. The down arrows can be split by condition-

nal statements (diamond) or when one single output triggers several DRL func-

tions.

 Input Frames
The DO categories of the frames needed to run the recipe and the required KMOS Fits

Type.

 Fits Header Keywords
Keywords needed in the primary and subsequent headers of the input files.

 Configuration Parameters

Description of all possible parameters with applicable data formats and allowed values.

Where appropriate they are divided into basic and Advanced parameters.

 Output Frames

Created output files with their DO category and KMOS Fits Type.

 Examples
How one would call the recipe with Esorex. If input is a single fits-file with no category-

keyword, it can simply be appended to the recipe-name. If input consists of a file with

category-keyword or of multiple files, they have to be written in a so-called sof-file (set of

frames). These are pseudo code examples.

Data Reduction Library Design & Manual

48 of 184

Data Reduction Library Design & Manual

49 of 184

Figure 22: Association map for KMOS. The calibration and science recipes are listed, and the

interactions between them indicated by the filled circles.

Data Reduction Library Design & Manual

50 of 184

7.1 Calibration Recipes

7.1.1 kmos_dark:
Master Dark Frames

Recipe name used in recipe/function uses recipe/function

kmos_dark - kmclipm_combine_frames

Create master dark frame & bad pixel mask (for monitoring detector health) and derive mean dark

current.

7.1.1.1 Description

This recipe calculates the master dark frame.

It is recommended to provide three or more dark exposures to produce a reasonable master with

associated noise. See section 8.2 for information on combine less than three frames.

Basic parameters:
--pos_bad_pix_rej

--neg_bad_pix_rej

Bad pixels above and below defined positive/negative threshold levels will be flagged and output

to the BADPIX_DARK frame (which will go into the kmos_flat recipe). The number of bad

pixels is returned as a QC1 parameter. The two parameters can be used to change these

thresholds.

--cmethod

Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If

they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej

and
 val < mean - stdev * cneg_rej

where --cpos_rej, --cneg_rej and --citer are the corresponding configuration

parameters. In the first iteration median and percentile level are used (See Sec. 8.2)

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

 min_max
The specified number of minimum and maximum pixel values will be rejected.

--cmax and --cmin apply to this method.

--file_extension

Data Reduction Library Design & Manual

51 of 184

Set this parameter to TRUE if the EXPTIME keyword should be appended to the output

filenames.

Advanced parameters:
--cpos_rej

--cneg_rej

--citer

see --cmethod = ”ksigma”

--cmax

--cmin

see --cmethod = “min_max”

7.1.1.2 Flow Chart

Figure 23: Flow chart of the recipe kmos_dark

The processing steps are:

Data Reduction Library Design & Manual

52 of 184

1. From a series of dark exposures a dark frame (mean) and a noise map (std err) are

calculated using pixel rejection.

2. Then bad pixels above and below defined positive/negative threshold levels will be

flagged and output to the temporary bad pixel mask (which will go into the kmos_flat
recipe). The number of bad pixels is returned as QC1 parameter.

3. Bias, readnoise and the dark current quality parameters will be calculated (see section

5.1.1 for comprehensive explanations on QC1 parameters).

7.1.1.3 Input Frames

KMOS type DO category Amount Comments

RAW DARK ≥ 1 (≥ 3

recommended)

dark exposures

7.1.1.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments

NDIT int any

EXPTIME double any

Sub Headers

Keyword Type Value Comments

EXPTIME double any

7.1.1.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

pos_bad_pix_rej,

neg_bad_pix_rej

double pos_bad_pix_rej ≥ 0,

neg_bad_pix_rej ≥ 0

50.0

50.0

The positive and negative rejec-

tion threshold for bad pixels.

(optional)

cmethod string “ksigma”, “average”,

“min_max”, “sum”,

“median”

“ksigma” The averaging method to apply

(optional)

file_extension bool TRUE, FALSE FALSE (optional)

Advanced parameters

Name Type valid values Default Comments

cpos_rej

cneg_rej

double cpos_rej ≥ 0,

cneg_rej ≥ 0

3.0

3.0

The positive and negative rejec-

tion thresholds for bad pixels

(optional, applies only when

--cmethod = “ksigma”)

citer int citer ≥ 1 3 The number of iterations for kap-

pa-sigma-clipping.

(optional, applies only iwhen

--cmethod = “ksigma”)

cmax int cmax ≥ 0 1 The number of maximum and

Data Reduction Library Design & Manual

53 of 184

cmin cmin ≥ 0 1 minimum pixel values to clip

with min/max-clipping

(optional, applies only when

--cmethod = “min_max”)

7.1.1.6 Output Frames

KMOS type DO Category Comments

F2D MASTER_DARK Calculated master dark frames

(with included noise frames)

B2D BADPIXEL_DARK Associated badpixel frames

7.1.1.7 Examples

$ esorex kmos_dark –pos_bad_pix_rej=2.1 dark.sof

with dark.sof containing:

dark_1.fits DARK

dark_2.fits DARK

dark_3.fits DARK

Data Reduction Library Design & Manual

54 of 184

7.1.2 kmos_flat:
Master Flat Field

Recipe name used in recipe/function uses recipe/function

kmos_flat - kmclipm_combine_frames

Create master flatfield frame and badpixel map to be used during science reduction.

7.1.2.1 Description

This recipe creates the master flat field and calibration frames needed for spatial calibration for all

three detectors. It must be called after the kmos_dark-recipe, which generates a bad pixel mask

(badpixel_dark.fits). The bad pixel mask will be updated in this recipe (goes into

badpixel_flat.fits). As input at least 3 dark frames, 3 frames with the flat lamp on are

recommended. Additionally a badpixel mask from kmos_dark is required.

In order to correct instrument flexure, the flat lamp on frames can be taken at different rotator

angles and can be feed to the recipe in one go. For each rotator angle there will be 3 extensions,

one for each detector, for every rotator angle. It is recommended to take calibration exposures in

60 degree increments, resulting in a set of 6 rotator angles. It is important, that the same angles

are chosen for kmos_flat and kmos_wave_cal.

The badpixel mask contains 0 for bad pixels and 1 for good ones.

The structure of the resulting xcal and ycal frames is quite complex since the arrangement of the

IFUs isn't just linear on the detector. Basically the integer part of the calibration data shows the

offset of each pixels centre in mas (milli arcsec) from the field centre. The viewing of an IFU is

2800mas (14pix*0.2arcsec/pix). So the values in these two frames will vary between +/-1500

(One would expect 1400, but since the slitlets aren't expected to be exactly vertical, the values can

even go up to around 1500). Additionally in the calibration data in y-direction the decimal part of

the data designates the IFU to which the slitlet corresponds to (for each detector from 1 to 8).

Because of the irregular arrangement of the IFUs not all x-direction calibration data is found in

xcal and similarly not all y-direction calibration data is located in ycal. For certain IFUs they are

switched and/or flipped in x- or y-direction:

For IFUs 1,2,3,4,13,14,15,16: x- and y- data is switched

For IFUs 17,18,19,20: y-data is flipped

For IFUs 21,22,23,24: x-data is flipped

For IFUs 5,6,7,8,9,10,11,12: x- and y- data is switched and x- and y- data is flipped

Furthermore frames can be provided for several rotator angles. In this case the resulting

calibration frames for each detector are repeatedly saved as extension for every angle.

Advanced features:

To create the badpixel mask the edges of all slitlets are fitted to a polynomial. Since it can happen

that some of these fits (3 detectors * 8 IFUs * 14slitlets * 2 edges (left and right edge of slitlet)=

672 edges) fail, the fit parameters are themselves fitted again to detect any outliers. By default the

parameters of all left and all right edges are grouped individually and then fitted using chebyshev

polynomials. The advantage of a chebyshev polynomial is, that it consists in fact of a series of

orthogonal polynomials. This implies that the parameters of the polynomials are independent.

Data Reduction Library Design & Manual

55 of 184

This fact predestines the use of chebyshev polynomials for our case. So each individual parameter

can be examined independently. The reason why the left and right edges are fitted individually is

that there is a systematic pattern specific to these groups. The reason for this pattern is probably to

be found in the optical path the light is traversing.

The behaviour of this fitting step can be influenced via environment parameters:

 KF_ALLPARS (default: 1)

When set to 1 all coefficients of the polynomial of an edge are to be corrected, also when

just one of these coefficients is an outlier. When set to 0 only the outlier is to b e

corrected.

 KF_CH (default: 1)

When set to 1 chebyshev polynomials are used to fit the fitted parameters. When set to 0

normal polynomials are used.

 KF_SIDES (default: 2)

This variable can either be set to 1 or 2. When set to 2 the left and right edges are

examined individually. When set to 1 all edges are examined as one group.

 KF_FACTOR (default: 4)

This factor defines the threshold factor. All parameters deviating KF_FACTOR*stddev

are to be corrected.

Basic parameters:
--badpix_thresh

The threshold level to mark pixels as bad on the dark subtracted frames [%].

--surrounding_pixels

The amount of bad pixels to surround a specific pixel, to let it be marked bad as well.

--cmethod

Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If

they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej

and
 val < mean - stdev * cneg_rej

where --cpos_rej, --cneg_rej and --citer are the corresponding configuration

parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

 min_max
The specified number of minimum and maximum pixel values will be rejected.

--cmax and --cmin apply to this method.

Advanced parameters:

Data Reduction Library Design & Manual

56 of 184

--cpos_rej

--cneg_rej

--citer

see --cmethod = “ksigma”

--cmax

--cmin

see --cmethod = “min_max”

--suppress_extension

If set to TRUE, the arbitrary filename extensions are suppressed. If multiple products with the

same category are produced, they will be numered consecutively starting from 0

Data Reduction Library Design & Manual

57 of 184

7.1.2.2 Flow Chart

Figure 24: Flow chart of the recipe kmos_flat

Data Reduction Library Design & Manual

58 of 184

The processing steps are:

1. The number of saturated pixels (>50’000) in the raw lamp-on frames is counted.

2. The mean frame and associated noise map (std err) from the lamp-on frames are calculated

using pixel rejection.

3. Similarly, the mean frame and associated noise map from lamp-off frames will be

computed.

4. The two mean frames are subtracted. The noise frames are combined.

5. To flag bad pixels preliminarily, the subtracted data is sorted. The lower 5% and upper

10% are cut off and then the position with the steepest slope is searched. 10% of the value

at this position is taken as threshold level. Pixels below will be flagged as bad pixels.

Additionally all pixels surrounded by at least 6 bad pixels are also flagged as bad. This

bad pixel mask will be combined with the temporary bad pixel mask from kmos_dark

recipe resulting into a preliminary bad pixel mask. (Preliminary because the slitlets are to

wide at present, but the exact edges are calculated with the fitted edge information

afterwards)

6. In the middle of the lower half und upper half of the frame a line profile is taken and

analysed for eventually existing rotation, cut or missing slitlets. When the number of

slitlets present and their approximate position has been determined, along the y-axis every

9 pixels a gaussfit is done to get a better approximation of the edge. At a last step, a 3rd

order polynomial is fitted to the edge. Out of the parameters of the polynomial the QC

parameters QC GAP MEAN, QC GAP SDV, QC GAP MAXDEV, QC SLIT MEAN, QC

SLIT SDV, QC SLIT MAXDEV are calculated.

7. Now knowing the exact position and shape of the edge, the bad pixel mask is updated and

the spectral curvature calibration frames (LUTs), one in x- and one in y-direction, are

calculated. Furthermore an eventually existing spectral gradient will be normalised for

each slitlet separately. For this all values in the same row of a slitlet are averaged, then a

3rd order polynomial is fitted to the resulting data points. The polynomial is normalised

and the slitlet-data will be divided by it.

Now the data and noise frames are normalised as a whole to unity using the mean calculated

without bad pixels. Out of these operations we get the master flatfield frame, the noise map and

QC1 parameters indicating lamp efficiency and signal to noise.

7.1.2.3 Input Frames

KMOS type DO category Amount Comments

RAW FLAT_ON ≥ 1 (≥ 3

recommended)

Flatlamp-on frames, optimally at

least 3 for every rotator angle

RAW FLAT_OFF ≥ 1 (≥ 3

recommended)

Flatlamp-off frames

(dark exposures)

B2D BADPIXEL_DARK 1 badpixel frame (from

kmos_dark)

7.1.2.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments

DIT double any integration time (equals EXPTIME)

NDIT int 1

Data Reduction Library Design & Manual

59 of 184

Sub Headers

None

7.1.2.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

badpix_thresh int 100 ≥ badpix_thresh ≥ 0 35 in percent

surrounding_pixels int 8 ≥ surrounding_pixels ≥

0

5 The amount of bad pixels

to surround a specific

pixel, to let it be marked

bad as well

(optional)

cmethod string “ksigma”

“min_max”

“average”

“median”

“sum”

“ksigma” The averaging method to

apply

(optional)

Advanced parameters

Name Type valid values Default Comments

cpos_rej

cneg_rej

double cpos_rej ≥ 0,

cneg_rej ≥ 0

3.0

3.0

The positive and negative

rejection thresholds for

bad pixels

(optional, applies only

when --cmethod =

“ksigma”)

citer int citer ≥ 1 3 The number of iterations

for kappa-sigma-clipping.

(optional, applies only

when --cmethod =

“ksigma”)

cmax

cmin

int cmax ≥ 0

cmin ≥ 0

1

1

The number of maximum

and minimum pixel values

to clip with min/max-

clipping

(optional, applies only

ESO DET READ CURNAME string Double,

Fowler,

Nondest

detector readout mode

ESO INS LAMP1 ST bool FALSE Arc lamp must be off

ESO INS LAMP2 ST bool FALSE Arc lamp must be off

ESO INS LAMP3 ST bool TRUE FLAT_ON: Flat lamp must be on

FLAT_OFF: must be off (can be on if

ESO INS FILTx ID is ‘Block’)

ESO INS LAMP4 ST bool TRUE Either LAMP3 or LAMP4 must be on

(LAMP4 is a spare)

Data Reduction Library Design & Manual

60 of 184

when --cmethod =

“min_max”)

suppress_extension bool TRUE, FALSE FALSE

7.1.2.6 Output Frames

KMOS type DO Category Comments

F2D MASTER_FLAT Normalised flat field

(with included noise frames)

B2D BADPIXEL_FLAT Updated bad pixel mask

F2D XCAL Calibration frame 1 (spatial dimension)

F2D YCAL Calibration frame 2 (spatial dimension)

F2L FLAT_EDGE Intermediate product needed for

kmos_wave_cal and optionally for

kmos_illumination. It contains the parame-

ters of the fitted edges of all IFUs of all

detectors.

7.1.2.7 Examples

$ esorex kmos_flat flat.sof

with flat.sof containing:

flat_off_1.fits FLAT_OFF

flat_off_2.fits FLAT_OFF

flat_off_3.fits FLAT_OFF

flat_on_1_0deg.fits FLAT_ON

flat_on_2_0deg.fits FLAT_ON

flat_on_3_0deg.fits FLAT_ON

flat_on_1_60deg.fits FLAT_ON

flat_on_2_60deg.fits FLAT_ON

flat_on_3_60deg.fits FLAT_ON

flat_on_1_120deg.fits FLAT_ON

flat_on_2_120deg.fits FLAT_ON

flat_on_3_120deg.fits FLAT_ON

flat_on_1_180deg.fits FLAT_ON

flat_on_2_180deg.fits FLAT_ON

flat_on_3_180deg.fits FLAT_ON

flat_on_1_240deg.fits FLAT_ON

flat_on_2_240deg.fits FLAT_ON

flat_on_3_240deg.fits FLAT_ON

flat_on_1_300deg.fits FLAT_ON

flat_on_2_300deg.fits FLAT_ON

flat_on_3_300deg.fits FLAT_ON

badpixel_dark.fits BADPIXEL_DARK

Data Reduction Library Design & Manual

61 of 184

7.1.3 kmos_wave_cal:
Wavelength Calibration

Recipe name used in recipe/function uses recipe/function

kmos_wave_cal - -

Create a calibration frame encoding the spectral position (i.e. wavelength) of each pixel on the

detector.

7.1.3.1 Description

This recipe creates the wavelength calibration frame needed for all three detectors. It must be

called after the kmos_flat recipe, which generates the two spatial calibration frames needed in

this recipe. As input a lamp-on frame, a lamp-off frame, the flat badpixel frame, the spatial

calibration frames and the list with the reference arclines are required.

In order to correct instrument flexure, the flat lamp on frames can be taken at different rotator

angles and can be feed to the recipe in one go. For each rotator angle there will be 3 extensions,

one for each detector, for every rotator angle. It is recommended to take calibration exposures in

60 degree increments, resulting in a set of 6 rotator angles. It is important, that the same angles

are chosen for kmos_flat and kmos_wave_cal.

An additional output frame is the resampled image of the reconstructed arc frame. All slitlets of

all IFUs are aligned one next to the other. This frame serves for quality control. One can

immediately see if the calibration was successful.

The lists of reference arclines are supposed to contain the lines for both available calibration arc-

lamps, i.e. Argon and Neon. The list is supposed to be a F2L KMOS FITS file with three

columns:

1. Reference wavelength

2. Relative strength

3. String either containing “Ar” or “Ne”

The recipe extracts, based on the header keywords, either the applying argon and/or neon

emission lines. Below are the plots of the emission lines for both argon and neon. The marked

lines are the ones used for wavelength calibration.

Furthermore frames can be provided for several rotator angles. In this case the resulting

calibration frames for each detector are repeatedly saved as extension for every angle.

Basic parameters:
--order

The polynomial order to use for the fit of the wavelength solution. 0: (default) The appropriate

order is choosen automatically depending on the waveband. Otherwise an order of 6 is

recommended, except for IZ-band, there order 4 should be used.

Advanced parameters:
--b_samples

The number of samples in spectral direction for the resampled image. Ideally this number should

be about the same size as the detector.

Data Reduction Library Design & Manual

62 of 184

--b_start

--b_end

Used to define manually the start and end wavelength for the resampled image. By default the

internally defined values are used (see Section 6.3).

--suppress_extension

If set to TRUE, the arbitrary filename extensions are suppressed. If multiple products with the

same category are produced, they will be numered consecutively starting from 0

The lines used to determine the quality of wavelength calibration are as follows:

Band Argon Neon

H 1.67446 um 1.71666 um

HK 1.79196 um 1.80882 um

IZ 0.922703 um 0.85676 um

K 2.15401 um 2.25365 um

YJ 1.21430 um 1.17700 um

Figure 25: H-band argon and neon emission lines

Data Reduction Library Design & Manual

63 of 184

Figure 26 HK-band argon and neon emission lines

Figure 27 IZ-band argon and neon emission lines

Data Reduction Library Design & Manual

64 of 184

Figure 28 K-band argon and neon emission lines

Figure 29 YJ-band argon and neon emission lines

Data Reduction Library Design & Manual

65 of 184

7.1.3.2 Flow Chart

Figure 30: Flow chart of the recipe kmos_wave_cal

The processing steps are:

1. A raw lamp-on and a raw lamp-off frame taken with the internal arc lamp are subtracted.

2. The frame is split up into its slitlets (14 per IFU) using the flatfield badpixel mask. The

following processing steps are applied to every slitlet. Bad pixels are ignored.

Data Reduction Library Design & Manual

66 of 184

3. The  positions of the arc lines will be measured and matched to a list of nominal arclines

defined in a external file. This results in a first estimate where the line lie in the slitlet.

4. Then the exact positions of all lines across the slitlet width are fitted using a gauss fit.

5. A polynomial is fit to each line across the slitlet in order to extrapolate inexistent values

resulting from rotation of the slitlets.

6. A polynomial is fitted along the wavelength direction to get the wavelength calibration

data. The product of these operations so far is the 2D wavelength calibration frame (LUT).

7. As last step the provided arc frame will be reconstructed as cube and be decomposed into

its slitlets which are saved into a frame with one slitlet beside the other. This way the

quality of the wavelength calibration file can be determined quickly svisually.

All fits will be iterated twice, rejecting pixels which deviate by more than a few standard

deviations.

The quality of the wavelength calibration is assessed and recorded in several QC1 parameters.

7.1.3.3 Input Frames

KMOS type DO category Amount Comments

RAW ARC_ON ≥1 Arclamp-on exposure, exactly one

for every rotator angle

RAW ARC_OFF 1 Arclamp-off exposure

F2D XCAL 1 Calibration frame 1

F2D YCAL 1 Calibration frame 2

F1L ARC_LIST 1 List of reference arc lines, either

for Argon or Neon or both

combined. The first column has to

contain the wavelengths and the

second one the intensities

F2L FLAT_EDGE 1 Frame containing the fitted edges

of all IFUs.

F2L REF_LINES 1 Reference line table

F2L WAVE_BAND 1 Table with start-/end-values of

wavelengthrange

7.1.3.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments

MINDIT double ~2.5 Estimated value

NDIT int 1

EXPTIME double any

Sub Headers

Keyword Type Value

EXPTIME double any all frames

Data Reduction Library Design & Manual

67 of 184

7.1.3.5 Configuration Parameters

Basic parameters:

Name Type valid values Default Comments

order int order ≥ 0 0 The polynomial order to use for the fit

of the wavelength solution. 0: (default)

The appropriate order is choosen

automatically depending on the

waveband. Otherwise an order of 6 is

recommended, except for IZ-band, there

order 4 should be used.

Options for pipeline developers only:

Name Type valid values Default Comments

disp double disp > 0.0

-1.0 The expected spectral dispersion. By

default the correct value is gained via

the header keywords regarding filter

configuration. This parameter is for

testing the recipe with simulated data

only.

flip bool TRUE,

FALSE

TRUE For some test data sets the wavelength is

ascending from bottom to top, so this

parameter has to be set to FALSE

Advanced parameters

Name Type valid values Default Comments

b_samples int b_samples > 2 2048 Nr. of samples of

reconstructed data for the

wavelength

b_start

b_end

double b_start > 0.0

b_end > b_start

-1.0 Start and end wavelength.

The defaults of -1.0

instruct to use the

internally defined range

(see Section 6.3)

suppress_extension bool TRUE, FALSE FALSE

7.1.3.6 Output Frames

KMOS type DO Category Comments

F2D LCAL Calibration frame 3 (spectral dimension)

F2D DET_IMG_WAVE Resampled image of the reconstructed

arc frame. All slitlets of all IFUs are

aligned one next to the other.

Additional Output

All recipes doing reconstruction of cubes create a LUT which by default is saved to disk. For

further information see Sec. 6.4.

Data Reduction Library Design & Manual

68 of 184

7.1.3.7 Examples

$ esorex kmos_wave_cal arc.sof

with arc.sof containing:

arc_on.fits ARC_ON

arc_off.fits ARC_OFF

xcal_HHH.fits XCAL

ycal_HHH.fits YCAL

flat_edge_HHH.fits FLAT_EDGE

kmos_ar_ne_list_h.fits ARC_LIST

kmos_wave_ref_table.fits REF_LINES

kmos_wave_band.fits WAVE_BAND

Data Reduction Library Design & Manual

69 of 184

7.1.4 kmos_illumination:
Illumination Correction

Recipe name used in recipe/function uses recipe/function

kmos_illumination - kmo_make_image
kmos_reconstruct

Creates a calibration file to correct spatial non-uniformity of flatfield.

7.1.4.1 Description

This recipe creates the spatial non-uniformity calibration frame needed for all three detectors. It

can be called after the kmos_wave_cal-recipe, which generates the spectral calibration frame

needed in this recipe. As input at leaast a sky, a master dark, a master flat and the spatial and

spectral calibration frames are required. The created product, the illumination correction, can be

used as input for kmos_std_star and kmos_sci_red.

Basic parameters:
--imethod

The interpolation method used for reconstruction.

--range

The spectral range [um] to combine when collapsing the reconstructed cubes.

Advanced parameters:
--flux

Specify if flux conservation should be applied.

--add_all

By default the first FLAT_SKY frame is omitted, since in the KMOS_spec_cal_skyflat template

this is an acquisition frame to estimate the needed exposure time for the subsequent FLAT_SKY

frames. If anyway all frames should be considered, set this parameter to TRUE.

--neighborhoodRange

Defines the range to search for neighbors during reconstruction

--b_samples

The number of samples in spectral direction for the reconstructed cube. Ideally this number

should be greater than 2048, the detector size.

--b_start

--b_end

Used to define manually the start and end wavelength for the reconstructed cube. By default the

internally defined values are used (see Section 6.3).

--cmethod

Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If

Data Reduction Library Design & Manual

70 of 184

they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej

and
 val < mean - stdev * cneg_rej

where --cpos_rej, --cneg_rej and --citer are the corresponding configuration

parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

 min_max
The specified number of minimum and maximum pixel values will be rejected.

--cmax and --cmin apply to this method.

--cpos_rej

--cneg_rej

--citer

see --cmethod = “ksigma”

--cmax

--cmin

see --cmethod = “min_max”

--pix_scale

Change the pixel scale [arcsec]. Default of 0.2\" results into cubes of 14x14pix, a scale of 0.1

results into cubes of 28x28pix, etc.

--suppress_extension

If set to TRUE, the arbitrary filename extensions are suppressed. If multiple products with the

same category are produced, they will be numered consecutively starting from 0.

Data Reduction Library Design & Manual

71 of 184

7.1.4.2 Flow Chart

Figure 31: Flow chart of the recipe kmos_illumination

The processing steps are:

1. The sky frames are averaged using pixel rejection with a large sigma for clipping.

2. An appropriate dark frame will be subtracted. The result is divided by the master flat field.

3. The frame is split up into frames referring to single IFUs.

4. Now the cubes are reconstructed (one for each IFU) using a bad pixel mask (from

kmos_flat), a spectral curvature calibration frame (from kmos_flat) and a wavelength

calibration frame (from kmos_wave_cal) and subsequently collapsed to spatial images.

5. The images will be normalized as a group. (i.e. so that the mean of all IFUs on the same

detector is unity).

Furthermore several QC1 parameters are calculated, see section 5.1.4 for details.

Data Reduction Library Design & Manual

72 of 184

7.1.4.3 Input Frames

KMOS type DO category Amount Comments

F2D FLAT_SKY ≥ 1 Flat sky exposure

F2D MASTER_DARK 1 Master dark frame

F2D MASTER_FLAT 1 Master flat frame

F2D XCAL 1 Spatial calibration file

F2D YCAL 1 Spatial calibration file

F2D LCAL 1 Spectralcalibration file

F2L WAVE_BAND 1 Table with start-/end-values of

wavelengthrange

F2L FLAT_EDGE 0 or 1 Table with the fitted slitlet edges

from kmos_flat.
MASTER_FLAT will be shifted

to match FLAT_SKY frames.

7.1.4.4 Fits Header Keywords

Primary Header

None

Sub Headers

None

7.1.4.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

imethod string “NN”

“lwNN”

“swNN”

“MS”,

“CS”

“CS” Interpolation method for

reconstruction:

NN: Nearest Neighbor

lwNN: linear weighted NN

swNN: square weighted NN

MS: Modified Shepard’s

method

CS: Cubic spline

(optional)

range string “x1_start,x1_end;

x2_start,x2_end”

“” The spectral ranges in

microns to combine when

collapsing the reconstructed

cubes spectrally

Advanced parameters

Name Type valid values Default Comments

flux bool TRUE, FALSE FALSE Apply flux conservation

add_all bool TRUE, FALSE FALSE Considering 1st FLAT_SKY

or not

neighborhoodRange double ≥ 1 1.001 Defines the range to search

for neighbors during

Data Reduction Library Design & Manual

73 of 184

reconstruction

b_samples int b_samples > 2 2048 Nr. of samples of

reconstructed data for the

wavelength

b_start

b_end

double b_start > 0.0

b_end > b_start

-1.0 Start and end wavelength.

The defaults of -1.0 instruct

to use the internally defined

range (see Section 6.3)

cmethod string “ksigma”

“min_max”

“average”

“median”

“sum”

“ksigma” The averaging method to

apply

(optional)

cpos_rej

cneg_rej

double cpos_rej ≥ 0,

cneg_rej ≥ 0

3.0

3.0

The positive and negative

rejection thresholds for bad

pixels

(optional, applies only

when --cmethod =

“ksigma”)

citer int citer ≥ 1 3 The number of iterations for

kappa-sigma-clipping.

(optional, applies only

when --cmethod =

“ksigma”)

cmax

cmin

int cmax ≥ 0

cmin ≥ 0

1

1

The number of maximum

and minimum pixel values

to clip with min/max-

clipping

(optional, applies only

when --cmethod =

“min_max”)

pix_scale double TRUE, FALSE 0.2 The pixel scale: 0.2 arcsec

results in cubes of 14x14

pixels. 0.1 arcsec result in

cubes of 28x28 pixels

suppress_extension bool TRUE, FALSE FALSE

7.1.4.6 Output Frames

KMOS type DO Category Comments

F2I ILLUM_CORR The spatial non-uniformity calibration

frame

F2L SKYFLAT_EDGE The parameters of the fitted edges of all

IFUs of all detectors. From the

FLAT_SKY frames

Data Reduction Library Design & Manual

74 of 184

Additional Output

All recipes doing reconstruction of cubes create a LUT which by default is saved to disk. For

further information see Sec. 6.4.

7.1.4.7 Examples

$ esorex kmos_illumination illum.sof

with illum.sof containing:

sky1.fits FLAT_SKY

sky2.fits FLAT_SKY

sky3.fits FLAT_SKY

master_dark.fits MASTER_DARK

master_flat_HHH.fits MASTER_FLAT

xcal_HHH.fits XCAL

ycal_HHH.fits YCAL

lcal_HHH.fits LCAL

kmos_wave_band.fits WAVE_BAND

flat_edge_HHH.fits FLAT_EDGE

Data Reduction Library Design & Manual

75 of 184

7.1.5 kmo_illumination_flat:
Illumination Correction

Recipe name used in recipe/function uses recipe/function

kmo_illumination_flat - kmo_make_image
kmos_reconstruct

Alternative to kmos_illumination based on flatfield frames.

7.1.5.1 Description

This recipe creates the spatial non-uniformity calibration frame needed for all three detectors. It

can be called after the kmos_wave_cal-recipe, which generates the spectral calibration frame

needed in this recipe. As input at least a flatfield frame is required.

Contrary to kmos_illumination it doesn’t use flat sky frames but rather the flatfield frames from

the internal flat lamps. This recipe can be used if no acceptable flat sky frames are available.

The created product, the illumination correction, can be used as input for kmos_std_star and

kmos_sci_red.

Basic parameters:
--imethod

The interpolation method used for reconstruction.

Advanced parameters:
--flux

Specify if flux conservation should be applied.

--neighborhoodRange

Defines the range to search for neighbors during reconstruction

--b_samples

The number of samples in spectral direction for the reconstructed cube. Ideally this number

should be greater than 2048, the detector size.

--b_start

--b_end

Used to define manually the start and end wavelength for the reconstructed cube. By default the

internally defined values are used (see Section 6.3).

--cmethod

Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If

they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej

and
 val < mean - stdev * cneg_rej

where --cpos_rej, --cneg_rej and --citer are the corresponding configuration

parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

Data Reduction Library Design & Manual

76 of 184

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

 min_max
The specified number of minimum and maximum pixel values will be rejected.

--cmax and --cmin apply to this method.

--cpos_rej

--cneg_rej

--citer

see --cmethod = “ksigma”

--cmax

--cmin

see --cmethod = “min_max”

--pix_scale

Change the pixel scale [arcsec]. Default of 0.2\" results into cubes of 14x14pix, a scale of 0.1

results into cubes of 28x28pix, etc.

--suppress_extension

If set to TRUE, the arbitrary filename extensions are suppressed. If multiple products with the

same category are produced, they will be numered consecutively starting from 0.

Data Reduction Library Design & Manual

77 of 184

7.1.5.2 Flow Chart

Figure 32: Flow chart of the recipe kmos_illumination

The processing steps are:

1. The flat frames are averaged using pixel rejection with a large sigma for clipping.

2. The frame is split up into frames referring to single IFUs.

3. Now the cubes are reconstructed (one for each IFU) using a bad pixel mask (from

kmos_flat), a spectral curvature calibration frame (from kmos_flat) and a wavelength

calibration frame (from kmos_wave_cal) and subsequently collapsed to spatial images.

4. A running median window of size 7x7 is applied

5. The images will be normalized as a group. (i.e. so that the mean of all IFUs on the same

detector is unity).

Furthermore several QC1 parameters are calculated, see section 5.1.4 for details.

7.1.5.3 Input Frames

KMOS type DO category Amount Comments

Data Reduction Library Design & Manual

78 of 184

F2D FLAT_SKY_FLAT ≥ 1 Flatlamp-on exposures

F2D XCAL 1 Spatial calibration file

F2D YCAL 1 Spatial calibration file

F2D LCAL 1 Spectralcalibration file

F2L WAVE_BAND 1 Table with start-/end-values of

wavelengthrange

7.1.5.4 Fits Header Keywords

Primary Header

None

Sub Headers

None

7.1.5.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

imethod string “NN”

“lwNN”

“swNN”

“MS”,

“CS”

“CS” Interpolation method for

reconstruction:

NN: Nearest Neighbor

lwNN: linear weighted NN

swNN: square weighted NN

MS: Modified Shepard’s

method

CS: Cubic spline

(optional)

Advanced parameters

Name Type valid values Default Comments

flux bool TRUE, FALSE FALSE Apply flux conservation

neighborhoodRange double ≥ 1 1.001 Defines the range to search

for neighbors during

reconstruction

b_samples int b_samples > 2 2048 Nr. of samples of

reconstructed data for the

wavelength

b_start

b_end

double b_start > 0.0

b_end > b_start

-1.0 Start and end wavelength.

The defaults of -1.0 instruct

to use the internally defined

range (see Section 6.3)

cmethod string “ksigma”

“min_max”

“average”

“median”

“sum”

“ksigma” The averaging method to

apply

(optional)

cpos_rej double cpos_rej ≥ 0, 3.0 The positive and negative

Data Reduction Library Design & Manual

79 of 184

cneg_rej cneg_rej ≥ 0 3.0 rejection thresholds for bad

pixels

(optional, applies only

when --cmethod =

“ksigma”)

citer int citer ≥ 1 3 The number of iterations for

kappa-sigma-clipping.

(optional, applies only

when --cmethod =

“ksigma”)

cmax

cmin

int cmax ≥ 0

cmin ≥ 0

1

1

The number of maximum

and minimum pixel values

to clip with min/max-

clipping

(optional, applies only

when --cmethod =

“min_max”)

pix_scale double TRUE, FALSE 0.2 The pixel scale: 0.2 arcsec

results in cubes of 14x14

pixels. 0.1 arcsec result in

cubes of 28x28 pixels

suppress_extension bool TRUE, FALSE FALSE

7.1.5.6 Output Frames

KMOS type DO Category Comments

F2I ILLUM_CORR The spatial non-uniformity calibration

frame

Additional Output

All recipes doing reconstruction of cubes create a LUT which by default is saved to disk. For

further information see Sec. 6.4.

7.1.5.7 Examples

$ esorex kmo_illumination_flat illum_flat.sof

with illum_flat.sof containing:

flat1.fits FLAT_SKY_FLAT

flat2.fits FLAT_SKY_FLAT

flat3.fits FLAT_SKY_FLAT

xcal_HHH.fits XCAL

ycal_HHH.fits YCAL

lcal_HHH.fits LCAL

kmos_wave_band.fits WAVE_BAND

Data Reduction Library Design & Manual

80 of 184

7.1.6 kmo_std_star:
Telluric Standard Star

Recipe name used in recipe/function uses recipe/function

kmos_std_star - kmo_make_image
kmos_reconstruct_sci
kmos_extract_spec
kmo_fit_profile
kmo_arithmetic

Creates a spectrum for telluric correction and derives zeropoint for flux calibration. In addition,

this will estimate the spatial resolution (PSF).

7.1.6.1 Description

This recipe creates a telluric calibration frame and a PSF frame. It accepts an optional

illumination correction frame as input created with the kmos_illumination-recipe.

Since there won’t be enough standard stars to observe for all IFUs in one exposure, one has to do

several exposures in a way that there is at least one standard star and one sky exposure in each

IFU. A internal data organiser will analyse the provided exposures and select the appropriate

frames as follows:

1. For each IFU the first standard star in the list of provided exposures is taken. All

subsequent standard star exposures for this IFU will be ignored

2. A corresponding sky exposure will be chosen which will be as close in time to the

standard star exposure as possible.

3. For any IFUs not containing a standard star and a sky exposure an empty frame will be

returned.

NOISE_SPEC contains in any case the shot noise [sqrt(counts*gain)/gain]. If the exposures have

been taken with template KMOS_spec_cal_stdstarscipatt, then an additional noise component is

added in: All existing sky exposures for an IFU are subtracted pairwise, spectra are extracted and

the std deviation is calculated.

Basic parameters:
--startype

If this parameter is specified, the stored star types of the observed obejcts in the FITS headers are

overridden. This value applies to all objects examined in the input frames. Examples would be

“A3I”, “G3IV” or “K0I”. The first letter defines the star type, the second letter the spectral class

and the last letters the luminosity class.

--magnitude

If this parameter is specified, the stored magnitudes in the FITS headers are overridden. For HK

two magnitudes for each H and K have to be specified. All other gratings just use a single

magnitude. If two values are provided, they have to be separated with a comma.

--fmethod

The type of function that should be fitted spatially to the collapsed image. This fit is used to create

a mask to extract the spectrum of the object. Valid values are “gauss” and “moffat”.

Data Reduction Library Design & Manual

81 of 184

--imethod

The interpolation method used for reconstruction. As default ‘CS’ is selected. Note that no error

spectra will be generated for this interpolation method. Select a nearest neighbour method

otherwise.

--range

The spectral range [um] to combine when collapsing the reconstructed cubes.

--save_cubes

Set this parameter to TRUE in order to save the reconstructed cubes.

--no_noise

Applies only for data taken with template KMOS_spec_cal_stdstarscipatt:

Skip lengthy calculation of noise-spectra on all sky exposures (no NOISE_SPEC will be produ-

ced).

Advanced parameters:
--flux

Specify if flux conservation should be applied.

--neighborhoodRange

Defines the range to search for neighbors during reconstruction

--b_samples

The number of samples in spectral direction for the reconstructed cube. Ideally this number

should be greater than 2048, the detector size.

--b_start

--b_end

Used to define manually the start and end wavelength for the reconstructed cube. By default the

internally defined values are used (see Section 6.3).

--cmethod

Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If

they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej

and
 val < mean - stdev * cneg_rej

where --cpos_rej, --cneg_rej and --citer are the corresponding configuration

parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

Data Reduction Library Design & Manual

82 of 184

 sum
At each pixel position the sum is calculated.

 min_max
The specified number of minimum and maximum pixel values will be rejected.

--cmax and --cmin apply to this method.

--cpos_rej

--cneg_rej

--citer

see --cmethod = “ksigma”

--cmax

--cmin

see --cmethod = “min_max”

--xcal_interpolation

If TRUE interpolate the pixel position in the slitlet (xcal) using the two closest rotator angles in

the calibration file. Otherwise take the values of the closest rotator angle.

--suppress_extension

If set to TRUE, the arbitrary filename extensions are suppressed. If multiple products with the

same category are produced, they will be numered consecutively starting from 0

7.1.6.2 Flow Chart

The flowchart for this recipe is split up in two diagrams. To simplify the flowchart the internal

data organising workflow isn’t depicted. All steps apply to each active IFU individually. The

resulting PSF frames, telluric & error spectra of all processed IFUs are merged into the defined

output frames.

Data Reduction Library Design & Manual

83 of 184

Figure 33: Flow chart of the recipe kmos_std_star (Part 1)

Data Reduction Library Design & Manual

84 of 184

Figure 34: Flow chart of the recipe kmos_std_star (Part 2)

The processing steps are:

1. From one or more raw object and sky frames the IFUs containing observed standard stars

are extracted.

2. The signal frame and the noise frame are reconstructed as cubes using a bad pixel mask

(from kmos_flat), two spectral curvature calibration frames (from kmos_flat) and a

Data Reduction Library Design & Manual

85 of 184

wavelength calibration frame (from kmos_wave_cal). The corresponding IFU frames are

also extracted from these auxiliary inputs.

3. The reconstructed cube is divided spatially by the spatial illumination correction frame.

4. To the data cube for each spatial slice a 2D-profile is fitted to obtain the position of the

object. The RMS of these values is saved as header keyword QC STD TRACE.

5. The signal cube is collapsed to a spatial image. This results into an image of the PSF of

the IFU.

6. From the signal and the noise cubes the signal and error spectra are extracted. As a mask,

the profile fit of the PSF image is used. This intermediate spectrum is saved as

STAR_SPEC.

7. Two cases are distinguished in the further processing in function of the spectral type of the

standard star observed:

a. OBAF stars

I. The temporary signal spectrum is divided by a model atmospheric

transmission.

II. Fit a Lorentzian function to stellar absorption line(s) and subtract.

III. Multiply the model atmospheric transmission back in.

This applies only in K-band. For other bands a warning is emitted.

b. G stars

I. Convolve the solar spectrum to the correct spectral resolution and divide it

out of the temporary signal spectrum.

8. Divide the result by a curve corresponding to the effective temperature of the star.

9. Normalising the spectrum (and also the error spectrum) yield the telluric correction and

the final error spectrum.

10. By dividing the temporary spectrum by the telluric correction and by providing the

magnitude of the star and the gain of the detector (in fits header) two QC1 parameters can

be calculated: the zeropoint and the throughput (mean and standard deviation).

Above steps are repeated for all IFUs containing a standard star and a sky frame in the input

data.

7.1.6.3 Input Frames

KMOS type DO category Amount Comments

RAW STD ≥ 1 Flat sky exposure

F2D XCAL 1 Spatial calibration file

F2D YCAL 1 Spatial calibration file

F2D LCAL 1 Spectralcalibration file

F2D MASTER_FLAT 1 Master flat frame

F2L WAVE_BAND 1 Table with start-/end-values

of wavelengthrange

F2D ILLUM_CORR 0,1 Illumination correction

F1S SOLAR_SPEC 0,1 Solar spectrum (only for G

stars)

F1S ATMOS_MODEL 0,1 Atmospheric transmission

model (only for OBAF stars

in K-band)

F2L SPEC_TYPE_LOOKUP 0,1 Look up table of effective

stellar temperatures

Data Reduction Library Design & Manual

86 of 184

7.1.6.4 Fits Header Keywords

Primary Header

None

Sub Headers

None

7.1.6.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

startype string Star type:

O, B, A, F, G, K

Spectral class:

1 to 9 (K: only 0)

Luminosity class:

I to V (e.G. “G4VI”)

“” The spectral type of the star

(optional)

magnitude string A single or two

comma separated float

values

“” The magnitude of the star

(optional)

fmethod string “gauss” or ”moffat” “gauss” The 2D function to fit to the

collapsed cube (optional)

imethod string “NN”

“lwNN”

“swNN”

“MS”

“CS”

“CS” Interpolation method for

reconstruction:

NN: Nearest Neighbor

lwNN: linear weighted NN

swNN: square weighted NN

MS: Modified Shepard’s

method

CS: Cubic spline

(optional)

range string “x1_start,x1_end;

x2_start,x2_end”

“” The spectral ranges in

microns to combine when

collapsing the reconstructed

cubes spectrally (optional)

save_cubes bool TRUE, FALSE FALSE Save intermediate

reconstructed cubes

(optional)

no_noise bool TRUE, FALSE FALSE Skip noise-calculation on

sky-frames (optional)

Advanced parameters

Name Type valid values Default Comments

flux bool TRUE, FALSE FALSE Apply flux conservation

(optional)

neighborhoodRange double ≥ 1 1.001 Defines the range to search

for neighbors during

Data Reduction Library Design & Manual

87 of 184

reconstruction (optional)

b_samples int b_samples > 2 2048 Nr. of samples of

reconstructed data for the

wavelength

b_start

b_end

double b_start > 0.0

b_end > b_start

-1.0 Start and end wavelength.

The defaults of -1.0 instruct

to use the internally defined

range (see Section 6.3)

cmethod string “ksigma”

“min_max”

“average”

“median”

“sum”

“ksigma” The averaging method to

apply

(optional)

cpos_rej

cneg_rej

double cpos_rej ≥ 0,

cneg_rej ≥ 0

3.0

3.0

The positive and negative

rejection thresholds for bad

pixels

(optional, applies only

when --cmethod =

“ksigma”)

citer int citer ≥ 1 3 The number of iterations for

kappa-sigma-clipping.

(optional, applies only

when --cmethod =

“ksigma”)

cmax

cmin

int cmax ≥ 0

cmin ≥ 0

1

1

The number of maximum

and minimum pixel values

to clip with min/max-

clipping

(optional, applies only

when --cmethod =

“min_max”)

xcal_interpolation bool TRUE, FALSE TRUE (optional)

suppress_extension bool TRUE, FALSE FALSE (optional)

7.1.6.6 Output Frames

KMOS type DO Category Comments

F1I TELLURIC The normalised telluric spectrum

[ADU/DIT]

F1I STAR_SPEC The extracted star spectrum [ADU/DIT]

F2I STD_IMAGE The standard star PSF

F2I STD_MASK The generated mask used to extract the

star spectrum

F1I NOISE_SPEC The shot noise: sqrt(counts*gain)/gain

Only for data taken with template

KMOS_spec_cal_stdstarscipatt:

Add in noise estimate based on the sky

Data Reduction Library Design & Manual

88 of 184

exposures present in all exposures: Skies

are subtracted pairwise and reconstructed

for every IFU over all exposures. Then the

spectra are extracted and for every

wavelength point the stddev is calculated

and saved)

Additional Output

All recipes doing reconstruction of cubes create a LUT which by default is saved to disk. For

further information see Sec. 6.4.

7.1.6.7 Examples

$ esorex kmos_std_star std.sof

with std.sof containing:

obj1.fits STD

obj2.fits STD

obj13fits STD

sky1.fits STD

sky2.fits STD

xcal_HHH.fits XCAL

ycal_HHH.fits YCAL

lcal_HHH.fits LCAL

master_flat_HHH.fits MASTER_FLAT

illum_corr_HHH.fits ILLUM_CORR

kmos_wave_band.fits WAVE_BAND

kmos_solar_h_2400.fits SOLAR_SPEC

kmos_atmos_k.fits ATMOS_MODEL

kmos_spec_type.fits SPEC_TYPE_LOOKUP

Data Reduction Library Design & Manual

89 of 184

7.2 Science Reduction Recipes

In this section two recipes are described which do in fact the same thing: reconstructing the data

and combining the corresponding cubes. The way they do it differs significantly.

kmos_sci_red implements the straight approach, which is as well the standard one. First all the

data frames are reconstructed and saved to disk. Then all data cubes are shifted and combined in a

second step. In this recipe the data will be interpolated twice, during reconstruction and shifting.

Automatic object-sky association

In a series of science exposures the IFUs can be allocated to objects and skies arbitrarily. The

recipes therefore analize for every IFU its contents and which sky will be subtracted from which

object. If several skies are available, the one closest in time to the object will be picked. If there is

no sky available, there won’t be any sky subtraction applied. The association table is displayed in

the recipe output (see as well the SPARK instructional guide) and stored to disk by default.

The generated obj_sky_table.txt can be edited to choose for example the sky from another

exposure. In this case the ID for the sky frame can be altered.

If e.g. an object should be subtracted from another object, the second object could be marked as

‘S’ and the ID be set accordingly.

If for any reason no sky at all is available for a specific IFU one can as well indicate to use the sky

from another IFU. Therefore the IFU ID is appended to the frame ID, separated by a slash. In this

case residues are expected due to the different signatures of the IFUs.

For a more detailed examples see the SPARK instructional guide.

7.2.1 kmos_sci_red:
Processing for Science Data

Recipe name used in recipe/function uses recipe/function

kmos_sci_red - kmo_noise_map
kmos_reconstruct
kmo_arithmetic
kmo_combine
kmo_shift

Reconstruct obj/sky-pairs individually and combine themn afterwards.

7.2.1.1 Description

Ideally at least two data frames have to be provided since we need for each IFU pointing to an

object as well a sky frame for the same IFU.

If an OH spectrum is given in the SOF file the lambda axis will be corrected using the OH lines as

reference.

Every IFU containing an object will be reconstructed and divided by telluric and illumination

correction, if provided. By default these intermediate cubes are saved to disk. Frames just

containing skies won’t produce an output here, so the number of output frames can be smaller

than the number of input frames.

Then the reconstructed objects with the same object name are combined. These outputs are also

saved to disk, the number of created files depends on the number of reconstructed objects of

different name. If the user just wants to combine a certain object, the parameters --name or --

Data Reduction Library Design & Manual

90 of 184

ifus can be used. When the ZPOINT is available in the provided TELLURIC frame header, the

reconstructed and combined cubes will be converted in physical units.

The reconstructed cubes and the combined cubes can be collapsed and the collapsed image stored

as an additional product if requested with –collapse_combined and –collapse_reconstructed.

For exposures taken with the templates KMOS_spec_obs_mapping8 and

KMOS_spec_obs_mapping24 the recipe behaves a bit different: All active IFUs will be

combined, regardless of the object names.

Basic parameters:
--imethod

The interpolation method used for reconstruction.

--smethod

The interpolation method used for shifting.

--name

--ifus

Since an object can be present only once per exposure and since it can be located in different IFUs

for the existing exposures, there are two modes to identify the objects:

 Combine by object names (default)

In this case the object name must be provided via the --name parameter. The object

name will be searched for in all primary headers of all provided frames in the keyword

ESO OCS ARMx NAME.

 Combine by index (advanced)

In this case the --ifus parameter must be provided. The parameter must have the same

number of entries as frames are provided, e.g. \"3;1;24\" for 3 exposures. The index

doesn't reference the extension in the frame but the real index of the IFU as defined in the

EXTNAME keyword (e.g. 'IFU.3.DATA').

--collapse_reconstructed

--collapse_combined

The cubes are collapsed in a single image.

Advanced parameters:
--flux

Specify if flux conservation should be applied.

--background

Specify if background subtraction should be applied.

--suppress_extension

If set to TRUE, the arbitrary filename extensions are suppressed. If multiple products with the

same category are produced, they will be numered consecutively starting from 0

--sky_tweak

Data Reduction Library Design & Manual

91 of 184

If set to TRUE sky substraction is not done by subtracting the corresponding detector images but

subtracting a modified sky cube from the object cube. It is not allowed that --sky_tweak and -

-no_subtract both are TRUE.

--save_interims

Save interim object and sky cubes. Can only be used together with --sky_tweak

--tbsub

If set to TRUE subtract the thermal background from the cube resulting from sky tweaking.

Default value is TRUE.

--obj_sky_table

The automatic obj-sky-associations can be modified by indicating a file with the desired associat-

ions. Therefore the file written to disk by default (without setting this option) can be edited ma-

nually. The formatting must absolutely be retained, just the type codes ('O' and 'S') and the asso-

ciated frame indices should be altered.

--velocity_offset

Specify velocity offset correction in km/s for lambda scale.

Advanced reconstruction parameters:
--neighborhoodRange

Defines the range to search for neighbors during reconstruction

--b_samples

The number of samples in spectral direction for the reconstructed cube. Ideally this number

should be greater than 2048, the detector size.

--b_start

--b_end

Used to define manually the start and end wavelength for the reconstructed cube. By default the

internally defined values are used (see Section 6.3).

--fast_mode

If set to TRUE, the reconstructed cubes will be collapsed (using median) and only then be shifted

and combined.

--pix_scale

Change the pixel scale [arcsec]. Default of 0.2\" results into cubes of 14x14pix, a scale of 0.1

results into cubes of 28x28pix, etc.

--no_subtract

If set to TRUE, the found objects and references won’t be sky subtracted. Additionally all IFUs

will be reconstructed, even the ones containing skies. This option sets the parameter

no_combine to TRUE automatically.

--xcal_interpolation

Data Reduction Library Design & Manual

92 of 184

If TRUE interpolate the pixel position in the slitlet (xcal) using the two closest rotator angles in

the calibration file. Otherwise take the values of the closest rotator angle.

--extrapolate

By default no extrapolation is applied. This means that the intermediate

reconstructed cubes will shrink at most one pixel, which is ok for templates

like KMOS_spec_obs_nodtosky or KMOS_spec_obs_freedither. When the cubes will be

arranged as a map, a grid is likely to occur between the IFUs. Therefore extra-

polation during the shifting process can be switched on in order to get IFUs of

original size. For frames taken with mapping templates, extrapolation is

switched on automatically.

Advanced combining parameters:
--edge_nan

Set borders of two sides of the cubes to NaN before combining them. This minimises unwanted

border effects when dithering.

--no_combine

If set to TRUE, the reconstructed cubes will not be combined.

--method

There are following sources to get the shift parameters from:

 header (default)

The shifts are calculated according to the WCS information stored in the header of every

IFU. The output frame will get larger, except the object is at the exact same position for all

exposures. The size of the exposures can differ, but the orientation must be the same for

all exposures.

 none

The cubes are directly recombined, not shifting at all. The ouput frame will have the same

dimensions as the input cubes.

If the size differs a warning will be emitted and the cubes will be aligned to the lower left

corner. If the orientation differs a warning will be emitted, but the cubes are combined

anyway.

 center

The shifts are calculated using a centering algorithm. The cube will be collapsed and a 2D

profile will be fitted to it to identify the centre. With the parameter --fmethod the

function to fit can be provided. The size of the exposures can differ, but the orientation

must be the same for all exposures.

 user

Read the shifts from a user specified file. The path of the file must be provided using the --

filename parameter. For every exposure (except the first one) two shift values are

expected per line, they have to be separated with simple spaces. The values indicate pixel

shifts and are referenced to the first frame. The 1st value is the shift in x-direction to the

left, the 2nd the shift in y-direction upwards. The size of the exposures can differ, but the

orientation must be the same for all exposures.

--fmethod

see --method = “center”

Data Reduction Library Design & Manual

93 of 184

The type of function that should be fitted spatially to the collapsed image. This fit is used to create

a mask to extract the spectrum of the object. Valid values are “gauss” and “moffat”.

--filename

see --method = “user”

--cmethod

Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If

they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej

and
 val < mean - stdev * cneg_rej

where --cpos_rej, --cneg_rej and --citer are the corresponding configuration

parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

min_max
The specified number of minimum and maximum pixel values will be rejected.

--cmax and --cmin apply to this method.

--cpos_rej

--cneg_rej

--citer

see --cmethod = ”ksigma”

--cmax

--cmin

see --cmethod = “min_max”

7.2.1.2 Flow Chart

To simplify the flowchart the internal data organising workflow isn’t depicted. All steps apply

individually to each active IFU containing an object and a sky exposure.

The reduced data and noise cube is stored in a similar manner as the input frames.

Data Reduction Library Design & Manual

94 of 184

Figure 35: Flow chart of the recipe kmos_sci_red

The processing steps are:

1. The raw object is sky subtracted and reconstructed into a cube following the workflow

explained in section 8.3.

2. The resulting data and noise cubes are divided by the telluric spectrum each.

3. Both data and noise cubes are divided spatially by the illumination correction.

4. The cubes are converted in physical units when possible.

5. Above steps are repeated for each IFU containing an object.

The zeropoint is written as the QC parameter QC.ZPOINT and is defined so that

mag = qc.zpoint – 2.5log10(ADU/sec)

where mag is the magnitude of a source that has a mean count rate of ADU/sec per spectral pixel.

You can then convert the magnitude to a flux density in ERG/sec/cm2/A. Putting these steps

together you have

flux density = cts/sec × F0 × 10^[-0.4 × qc.zpoint] / 10.

Data Reduction Library Design & Manual

95 of 184

where F0 is the zero magnitude flux density taken from the table below in whichever units are

preferred.

The QC CUBE_UNIT contains the unit of the output cube, indicating whether the conversion has

been made or not.

KMOS

band

2MASS

band

Band pass for

calibration
Zero magnitude flux density

K K 2.028 –2.290 μm 4.283×10-10 W/m2/µm 4.65×109 ph/s/m2/µm

HK H & K
1.5365 – 1.7875 μm +

2.028 - 2.290 μm

1.133×10-9 W/m2/µm &

4.283×10-10 W/m2/µm

9.47×109 ph/s/m2/µm &

4.65×109 ph/s/m2/µm

H H 1.5365 – 1.7875 μm 1.133×10-9 W/m2/µm 9.47×109 ph/s/m2/µm

YJ J 1.154 – 1.316 μm 3.129×10-9 W/m2/µm 1.944×109 ph/s/m2/µm

IZ — 0.985 – 1.000 μm 7.63×10-9 W/m2/µm 3.81×1010 ph/s/m2/µm

When applying advanced OH handling techniques, the reconstruction step in Figure 35 gets a bit

more complicated (see Figure 36). There are two corrections available. The first takes a reference

OH spectrum as input and matches the reconstructed OH lines with the reference lines. The

second removes thermal background and compensates vibrational variations (the same

functionality can be used stand-alone with recipe kmo_sky_tweak, see section 7.3.12).

Data Reduction Library Design & Manual

96 of 184

 Figure 36 Flowchart of the two advanced OH handling techniques

Data Reduction Library Design & Manual

97 of 184

7.2.1.3 Input Frames

KMOS type DO category Amount Comments

RAW SCIENCE ≥1 The science frames

F2D XCAL 1 Calibration frame 1

(from kmos_flat)

F2D YCAL 1 Calibration frame 2

(from kmos_flat)

F2D LCAL 1 Calibration frame

(from kmos_wave_cal)

F2L WAVE_BAND 1 Table with start-/end-values

of wavelengthrange

F2D MASTER_FLAT 0,1 (from kmos_flat)

F2I ILLUM_CORR 0,1 (from kmos_illumination)

F1I TELLURIC 0,1 (from kmos_std_star)

F1S OH_SPEC 0,1 OH reference spectrum

7.2.1.4 Fits Header Keywords

Primary Header

None

Sub Headers

None

7.2.1.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

imethod string “NN”

“lwNN”

“swNN”

“MS”

“CS”

“CS” Interpolation method:

NN: Nearest Neighbor

lwNN: linear weighted NN

swNN: square weighted NN

CM: Modified Shephard

CS: cubic spline

(optional)

smethod string “NN”

“CS”

“CS” Interpolation method:

NN: Nearest Neighbor

CS: cubic spline

(optional)

name string any “” Name of the object to

combine as defined in the

keyword

ESO OCS ARMi NAME

(if this parameter is set, the

--ifus parameter can’t be

set)

ifus string "ifu1;ifu2;..." “” The indices of the IFUs to

combine. The number of

Data Reduction Library Design & Manual

98 of 184

entries has to match the

number of input frames

(if this parameter is set, the

--name parameter can’t be

set

collapse_reconstructed bool TRUE, FALSE FALSE Create the collapsed

reconstructed cubes

collapse_combined bool TRUE, FALSE FALSE Create the collapsed

combined cubes

Advanced parameters

Name Type valid values Default Comments

flux bool TRUE, FALSE FALSE Apply flux conservation

background bool TRUE, FALSE FALSE

suppress_extension bool TRUE, FALSE FALSE

sky_tweak bool TRUE, FALSE FALSE Use modified sky cube for

sky subtraction

save_interims bool TRUE, FALSE FALSE Save intermediate

reconstructed data

tbsub bool TRUE, FALSE TRUE Subtract thermal background

from input cube

obj_sky_table string any “” (optional) If the obj-sky-

association should be altered

velocity_offset double any 0.0 Add a velocity offset to the

lambda scale. A value of 0.0

does nothing. Values are

expected to be small.

neighborhoodRange double ≥ 1 1.001 Defines the range to search

for neighbors

b_samples int b_samples > 2 2048 Nr. of samples of

reconstructed data for the

wavelength

b_start

b_end

double b_start > 0.0

b_end > b_start

-1.0 Start and end wavelength.

The defaults of -1.0 instruct

to use the internally defined

range (see Section 6.3)

fast_mode bool TRUE, FALSE FALSE TRUE if cubes should be

collapsed before combining

pix_scale double TRUE, FALSE 0.2 The pixel scale: 0.2 arcsec

results in cubes of 14x14

pixels. 0.1 arcsec result in

cubes of 28x28 pixels

no_subtract bool TRUE, FALSE FALSE Don’t subtract cubes

xcal_interpolation bool TRUE, FALSE TRUE (optional)

extrapolate bool TRUE, FALSE FALSE FALSE: shifted IFU will be

filled with NaNs at the

borders

Data Reduction Library Design & Manual

99 of 184

TRUE: shifted IFU will be

extrapolated at the borders

 (optional, applies only when

smethod=CS and doing sub

pixel shifts)

edge_nan bool TRUE, FALSE FALSE Set two sides of the cubes to

NaN

no_combine bool TRUE, FALSE FALSE Don’t combine cubes

method string “none”

“header”

“center”

“user”

“header” The shifting method

fmethod string “gauss” or ”moffat” “gauss” The 2D function to fit to the

collapsed cube

filename string any “” The path to the file with the

shift vectors.

(applies only to

--method = "user")

cmethod string “ksigma”

“min_max”

“average”

“median”

“sum”

“ksigma” The averaging method to

apply

(optional)

cpos_rej

cneg_rej

double cpos_rej ≥ 0,

cneg_rej ≥ 0

3.0

3.0

The positive and negative

rejection thresholds for bad

pixels

(optional, applies only when -

-cmethod = “ksigma”)

citer int citer ≥ 1 3 The number of iterations for

kappa-sigma-clipping.

(optional, applies only when -

-cmethod = “ksigma”)

cmax

cmin

int cmax ≥ 0

cmin ≥ 0

1

1

The number of maximum and

minimum pixel values to clip

with min/max-clipping

(optional, applies only when -

-cmethod = “min_max”)

7.2.1.6 Output Frames

KMOS type DO Category Comments

F3I SCI_COMBINED Combined cubes with noise

F3I SCI_RECONSTRUCTED Reconstructed cubes

F2I EXP_MASK Exposure time frame, every spaxel

indicates how many input frames are

taken into account when combining

F3I SCI_INTERIM_OBJECT (optional) Intermediate reconstructed

object cubes used for sky tweaking, no

Data Reduction Library Design & Manual

100 of 184

noise (set --sky_tweak and –

save_interims)

F3I SCI_INTERIM_SKY (optional) Intermediate reconstructed

sky cubes used for sky tweaking, no

noise (set --sky_tweak and –

save_interims)

 SCI_COMBINED_COLL (optional) Collapsed combined cubes

(set –collapse_combined)

 SCI_RECONSTRUCTED_COLL (optional) Collapsed reconstructed cubes

(set –collapse_reconstructed)

7.2.1.7 Examples

$ esorex kmos_sci_red reduce.sof

with reduce.sof containing:

science 1.fits SCIENCE

science 2.fits SCIENCE

science 3.fits SCIENCE

xcal_HHH.fits XCAL

ycal_HHH.fits YCAL

lcal_HHH.fits LCAL

kmos_wave_band.fits WAVE_BAND

master_flat_HHH.fits MASTER_FLAT

illum_corr_HHH.fits ILLUM_CORR

telluric_HHH.fits TELLURIC

kmos_oh_spec_h.fits OH_SPEC

7.3 Common Recipes

7.3.1 kmo_arithmetic:
Basic Arithmetic

Recipe name used in recipe/function uses recipe/function

kmo_arithmetic kmos_std_star
kmos_sci_red
kmo_rtd_image
kmo_bkg_sub
kmo_sky_tweak

-

Perform basic arithmetic on cubes.

7.3.1.1 Description

With this recipe simple arithmetic operations, like addition, subtraction, multiplication, divison

and raising to a power can be performed.

Since FITS files formatted as F1I, F2I and F3I can contain data (and eventually noise) of either

just one IFU or of all 24 IFUs, kmo_arithmetic behaves differently in these cases.

Data Reduction Library Design & Manual

101 of 184

When the number of IFUs is the same for both operands, the first IFU of the first operand is

processed with the first IFU of the second operand.

When the second operand has only one IFU while the first operand has more IFUs, then the all the

IFUs of the first operand are processed individually which the IFU of the second operand.

If an operand contains noise and the other doesn't, the noise will not be processed.

Noise is only propagated if both operand contain noise extensions. If the second operator is a

scalar noise is also propagated, of course.

If two cubes are given as operands, they will be combined according to the given operator.If a

cube is given as first operand and an image as second, then it operates on each slice of the cube;

similarly if a spectrum is given as the second operand, it operates on each spectrum of the cube;

and a number as the second operand operates on each pixel of the cube.

Basic parameters:
--operator

Any of the following operations to perform: “+”, “-“, “*” or “/” (also “^” when the 2nd operator is

a scalar)

--scalar

To be provided if a frame should be processed together with a scalar

--file_extension

Define a string to append to the product filename ARITHMETIC in order to get an unique

filename

7.3.1.2 Flow Chart

Figure 37: Flow chart of the recipe kmo_arithmetic

The processing steps are:

1. Two operands are combined according to the arithmetic function given (+, -, /, *).

2. The first operand is always a 3D fits frame, the second operand can have different

dimensions:

a. 3D: The cubes are combined normally as described above.

b. 2D: The image operates on each spatial slice of the first cube.

Data Reduction Library Design & Manual

102 of 184

c. 1D: The spectrum operates on each spectrum of the first cube.

d. scalar: The number operates on each pixel in the first cube.

3. Optionally noise maps can be provided for each operand. If done so, they will be

combined according to the operation applied to the data (see also section 2.2.2).

7.3.1.3 Input Frames

KMOS type DO category Amount Comments

F3I, F2I, F1I, F2D or

RAW

none or any 1 data frame,

with or without noise

F3I, F2I, F1I, F2D or

RAW

none or any 0, 1 data frame,

with or without noise

(optional)

This recipe also accepts also a path to a FITS file instead of a sof-file when calculating with a

scalar.

7.3.1.4 Fits Header Keywords

None specific

7.3.1.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

operator string “+”, “-“, “*”, “/”, “^” “” (mandatory)

scalar double any -DBL_MAX (mandatory, if only one file

is supplied)

file_extension string any “” (optional)

7.3.1.6 Output Frames

KMOS type DO Category Comments

F3I or

F2I or

F1I or

F2D

ARITHMETIC 1st operator is F3I and 2nd one is either F3I,

F2I, F1I or scalar

1st operator is F2I and 2nd one is either F2I,

F1I or scalar

1st operator is F1I and 2nd one is either F1I

or scalar

1st operator is F2D and 2nd one is either

F2D or scalar

or

1st operator is RAW and 2nd one is either

RAW or scalar

7.3.1.7 Examples

$ esorex kmo_arithmetic --operator="*" --scalar=9.7 F3I.fits

Data Reduction Library Design & Manual

103 of 184

$ esorex kmo_arithmetic --operator="^" --scalar=9.7 F2D.fits

$ esorex kmo_arithmetic --operator="+" F3I_1.fits F3I_2.fits

$ esorex kmo_arithmetic --operator="/" --ifu=4 F3I_F2I.sof

with F3I_F2I.sof containing:

F3I.fits

F2I.fits

Data Reduction Library Design & Manual

104 of 184

7.3.2 kmo_combine:
Combining Cubes

Recipe name used in recipe/function uses recipe/function

kmo_combine kmos_sci_red kmo_make_image
kmo_fit_profile
kmo_shift
kmclipm_combine_frames

Combine cubes spatially.

7.3.2.1 Description

This recipe shifts several exposures of an object and combines them. The different methods to

match the exposures are described below (--method parameter). The output cube is larger than

the input cubes, according to the shifts to be applied. Additionally a border of NaN values is

added. The WCS is the same as for the first exposure.

For each spatial/spectral pixel a new value will be calculated (according the --cmethod

parameter) and written into the output cube.

Only exposures with equal orientation regarding the WCS can be combined (except –-

method=”none”), north must point to the same direction. It is recommended to apply any

rotation possibly after combining.

The behavior of the selection of IFUs to combine differs for some templates and can be controlled

with the parameters --name and --ifus.

If the input data cubes stem from templates KMOS_spec_obs_mapping8 or

KMOS_spec_obs_mapping24 all extensions from all input frames are combined into a single

map by default (like in recipe kmos_sci_red). If just the area of a specific IFU should be

combined, the parameter --ifus can be specified, or more easily --name.

If the input data cubes stem from other templates like e.g. KMOS_spec_obs_freedither all

extensions of all input frames are combined into several output frames by default. The input IFUs

are grouped according their targeted object name stored in the keywords ESO OCS ARMx

NAME. If just a specific object should be combined, its name can be specified with parameter --

name. If arbitrary IFUs shoukd be comined, one can specify these with the parameter --ifus.

The default mapping mode is done via the --name parameter, where the name of the object has

to be provided. The recipe searches in all input data cubes IFUs pointing to that object.

Basic parameters:
--name

--ifus

Since an object can be present only once per exposure and since it can be located in different IFUs

for the existing exposures, there are two modes to identify the objects:

 Combine by object names (default)

In this case the object name must be provided via the --name parameter. The object

name will be searched for in all primary headers of all provided frames in the keyword

ESO OCS ARMx NAME.

Data Reduction Library Design & Manual

105 of 184

 Combine by index (advanced)

In this case the --ifus parameter must be provided. The parameter must have the same

number of entries as frames are provided, e.g. \"3;1;24\" for 3 exposures. The index

doesn't reference the extension in the frame but the real index of the IFU as defined in the

EXTNAME keyword (e.g. 'IFU.3.DATA').

--method

There are following sources to get the shift parameters from:

 none (default)

The cubes are directly recombined, not shifting at all. The ouput frame will have the same

dimensions as the input cubes.

If the size differs a warning will be emitted and the cubes will be aligned to the lower left

corner. If the orientation differs a warning will be emitted, but the cubes are combined

anyway.

 header

The shifts are calculated according to the WCS information stored in the header of every

IFU. The output frame will get larger, except the object is at the exact same position for all

exposures. The size of the exposures can differ, but the orientation must be the same for

all exposures.

 center

The shifts are calculated using a centering algorithm. The cube will be collapsed and a 2D

profile will be fitted to it to identify the centre. With the parameter --fmethod the

function to fit can be provided. The size of the exposures can differ, but the orientation

must be the same for all exposures.

 user

Read the shifts from a user specified file. The path of the file must be provided using the --

filename parameter. For every exposure (except the first one) two shift values are

expected per line, they have to be separated with simple spaces. The values indicate pixel

shifts and are referenced to the first frame. The 1st value is the shift in x-direction to the

left, the 2nd the shift in y-direction upwards. The size of the exposures can differ, but the

orientation must be the same for all exposures.

--cmethod

Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If

they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej

and
 val < mean - stdev * cneg_rej

where --cpos_rej, --cneg_rej and --citer are the corresponding configuration

parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

Data Reduction Library Design & Manual

106 of 184

 min_max
The specified number of minimum and maximum pixel values will be rejected.

--cmax and --cmin apply to this method.

Advanced parameters:
--edge_nan

Set borders of two sides of the cubes to NaN before combining them. This minimises unwanted

border effects when dithering

--fmethod

see --method = “center”

The type of function that should be fitted spatially to the collapsed image. This fit is used to create

a mask to extract the spectrum of the object. Valid values are “gauss” and “moffat”.

--filename

see --method = “user”

--cpos_rej

--cneg_rej

--citer

see --cmethod = ”ksigma”

--cmax

--cmin

see --cmethod = “min_max”

--flux

Specify if flux conservation should be applied

--suppress_extension

If set to TRUE, the arbitrary filename extensions are suppressed. If multiple products with the

same category are produced, they will be numered consecutively starting from 0

Data Reduction Library Design & Manual

107 of 184

7.3.2.2 Flow Chart

Figure 38: Flow chart of the recipe kmo_combine

The processing steps are:

1. The actions taken depend on the shifting method:

Data Reduction Library Design & Manual

108 of 184

a. “none”: Since no shifting is wanted the data and noise is directly propagated.

b. “header”: The shift information is extracted from the fits file headers of the data

cubes. All shifts are relative to the first cube in the list.

c. “center”: The shifts are calculated using a centering algorithm. First the cubes are

collapsed spatially, then a profile will be fit to find the centre of the object.

d. “user”: The user provides a file with stored shift information, relative to the first

cube in the list.

2. The actual shift is executed now.

The data cubes and corresponding noise maps are combined using rejection.

7.3.2.3 Input Frames

KMOS type DO category Amount Comments

F31 any ≥ 1 any F3I data frames, the DO

category is propagated to the

output

7.3.2.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments

MINDIT double ~2.5 Estimated value

NDIT Int 1

EXPTIME double any

Sub Headers

Keyword Type Value Comments

CRPIX1, CRPIX2,

CRPIX3

double any all frames

CRVAL1, CRVAL2,

CRVAL3

double any all frames

CDELT1, CDELT2,

CDELT3

double any all frames

CD1_1, CD1_2,

CD2_1 CD2_2

double any all frames

7.3.2.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

name string any “” Name of the object to

combine as defined in the

keyword

ESO OCS ARMi NAME

(if this parameter is set,

the --ifus parameter can’t

be set)

ifus string "ifu1;ifu2;..." “” The indices of the IFUs to

Data Reduction Library Design & Manual

109 of 184

combine. The number of

entries has to match the

number of input frames

(if this parameter is set,

the --name parameter

can’t be set

method string “none”

“header”

“center”

“user”

“none” The shifting method

cmethod string “ksigma”

“min_max”

“average”

“median”

“sum”

“ksigma” The averaging method to

apply

(optional)

Advanced parameters

Name Type valid values Default Comments

edge_nan bool TRUE, FALSE FALSE

fmethod string “gauss” or ”moffat” “gauss” The 2D function to fit to

the collapsed cube

filename string any “” The path to the file with

the shift vectors.

(applies only to

--method = "user")

cpos_rej

cneg_rej

double cpos_rej ≥ 0,

cneg_rej ≥ 0

3.0

3.0

The positive and negative

rejection thresholds for

bad pixels

(optional, applies only

when --cmethod =

“ksigma”)

citer int citer ≥ 1 3 The number of iterations

for kappa-sigma-clipping.

(optional, applies only

when --cmethod =

“ksigma”)

cmax

cmin

int cmax ≥ 0

cmin ≥ 0

1

1

The number of maximum

and minimum pixel values

to clip with min/max-

clipping

(optional, applies only

when --cmethod =

“min_max”)

flux bool TRUE, FALSE FALSE

suppress_extension bool TRUE, FALSE FALSE

Data Reduction Library Design & Manual

110 of 184

7.3.2.6 Output Frames

KMOS type DO Category Comments

F3I COMBINE_<ESO PRO CATG>_<name> or

COMBINE_<ESO PRO CATG>_<ifu> or

COMBINE_<ESO PRO CATG>_mapping

The keyword “ESO PRO CATG”

is appended

F2I EXP_MASK Exposure time frame, every

spaxel indicates how many input

frames are taken into account

when combining

7.3.2.7 Examples

$ esorex kmo_combine –name=”NGC_150” combine.sof

with combine.sof containing:

fits1_NGC_150_in_ifu_2.fits

fits2_NGC_150_in_ifu_17.fits

fits3_NGC_150_in_ifu_9.fits

Data Reduction Library Design & Manual

111 of 184

7.3.3 kmo_copy:
Copy Cube Sections

Recipe name used in recipe/function uses recipe/function

kmo_copy kmo_extract_pv -

Copy a section of a cube to another cube, image or spectrum.

7.3.3.1 Description

With this recipe a specified region of an IFU-based cube (F3I), image (F2I) or vector (F1I) can be

copied to a new FITS file. One can copy just a plane out of a cube (any orientation) or a vector

out of an image etc. By default the operation applies to all IFUs. The input data can contain noise

frames which is then copied in the same manner as the input data.

It is also possible to extract a specific IFU out of a KMOS FITS structure with 24 IFU extensions

or 48 extensions if noise is present (see example in 7.3.3.7).

Basic parameters:
--ifu

Use this parameter to apply the operation to a specific IFU.

--x

--y

--z

These are the start values in each dimension. The first pixel is adressed with 1.

--xsize

--ysize

--zsize

These are the extents in each dimension to copy.

--autocrop

If set to TRUE all borders containing NaN values are cropped. Vectors will be shortened, images

and cubes can get smaller. In this special case following parameters can be omitted: --x,--y,

--z, --xsize, --ysize and --zsize.

Data Reduction Library Design & Manual

112 of 184

7.3.3.2 Flow Chart

Figure 39: Flow chart of the recipe kmo_copy

The specified range (in all dimensions) of the input data is copied and returned. If the specified

ranges in one or two dimensions are reduced to a single value, then an image or a vector will be

returned, respectively.

7.3.3.3 Input Frames

KMOS type DO category Amount Comments

F3I or

F2I or

F1I

none or any 1 data frame, with or without

noise

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.3.4 Fits Header Keywords

None specific

7.3.3.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

ifu int 1  ifu  NEXTEND -1 optional

If ifu is specified, the recipe

operates only on the

specified IFU.

x, y, z int 1  x  NAXIS1

1  y  NAXIS2

1  z  NAXIS3

1 (mandatory if autocrop isn’t

set)

xsize,

ysize,

zsize

int 1 < xsize  NAXIS1-x

1 < ysize  NAXIS2-y

1 < zsize  NAXIS3-z

1 (optional)

If one or more of these are

omitted, a plane, a vector or

a scalar is extracted. A

scalar is returned in a vector

of size 1.

Data Reduction Library Design & Manual

113 of 184

autocrop bool TRUE, FALSE FALSE optional

If set to TRUE, x, y, z, xsize,

ysize and zsize are ignored.

7.3.3.6 Output Frames

KMOS type DO Category Comments

F3I COPY for F3I as input and

x, y, z, xsize, ysize, zsize defined

KMOS type DO Category Comments

F2I COPY for F3I as input and

x, y, z, xsize, ysize defined or

x, y, z, xsize, zsize defined or

x, y, z, ysize, zsize defined

for F2I as input and

x, y, xsize, ysize defined

KMOS type DO Category Comments

F1I COPY for F3I as input and

x, y, z, xsize defined or

x, y, z, ysize defined or

x, y, z, zsize defined or

x, y, z defined (vector of size 1)

for F2I as input and

x, y, xsize defined or

x, y, ysize defined

for F1I as input and

x, xsize defined or

x defined (vector of size 1)

7.3.3.7 Examples

extract cube:
$ esorex kmo_copy --x=3 --y=2 --z=1 --xsize=2 --ysize=3

 --zsize=6 F3I.fits

extract plane:
$ esorex kmo_copy --x=3 --y=2 --z=1 --xsize=2 --ysize=3 F3I.fits

extract vector just of IFU 4:
$ esorex kmo_copy --x=3 --y=2 --z=1 --ysize=3 –ifu=4 F3I.fits

extract whole IFU 4:
$ esorex kmo_copy --x=1 --y=1 --z=1 --xsize=<NAXIS1>

--ysize=<NAXIS2> --zsize=<NAXIS3> -–ifu=4 F3I.fits

Data Reduction Library Design & Manual

114 of 184

extract scalar:
$ esorex kmo_copy --x=3 --y=2 --z=1 F3I.fits

autocrop:
$ esorex kmo_copy --autocrop=TRUE --ifu=8 F3I.fits

Data Reduction Library Design & Manual

115 of 184

7.3.4 kmos_extract_spec:
Extracting Spectra

Recipe name used in recipe/function uses recipe/function

kmos_extract_spec kmos_std_star
kmo_sky_tweak

kmo_make_image
kmo_fit_profile

Extract a spectrum from a cube.

7.3.4.1 Description

This recipe extracts a spectrum from a datacube. The datacube must be in F3I KMOS FITS

format (either with or without noise). The output will be a similarly formatted F1I KMOS FITS

file.

Basic parameters:
--mask_method

There are several ways to define the region to consider for spectrum calculation:

 integrated (default)

A circular mask with defined centre and radius is created (--centre and --radius

have to be defined). This mask is applied to all extensions.

 mask

An arbitrary mask can be provided (for example the mask created by kmo_sky_mask can

be used). The mask must be in F2I KMOS FITS format, mustn't contain noise and must

have as many extensions as the input cube. The mask can be binary as well as it can

contain float values, so a weighted mask is also possible. (0: pixels is ignored, 1: pixel is

included) The mask must be of the same size that the input datacube.

 optimal
The mask is created automatically by fitting a normalised profile (using kmo_fit_profile)

to the image of the datacube (using kmo_make_image the datacube is summed up in

spectral direction according to the specified --cmethod). This profile is then used as

mask input. When --save_mask is set to true the mask is saved on disk. The remaining

parameters not described here apply to the fitting of the profile.

If the spectra of several objects in a IFU should be extracted, --mask_method="mask" is

recommended. With several calls to kmos_extract_spec using different masks all spectra can be

extracted.

Advanced parameters:
--centre

--radius

see --mask_method = “integrated”

--save_mask

see --mask_method = “optimal”

--cmethod

Applies only if –mask_method = “integral”

Data Reduction Library Design & Manual

116 of 184

Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If

they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej

and
 val < mean - stdev * cneg_rej

where --cpos_rej, --cneg_rej and --citer are the corresponding configuration

parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

 min_max
The specified number of minimum and maximum pixel values will be rejected.

--cmax and --cmin apply to this method.

--cpos_rej

--cneg_rej

--citer

see --cmethod = ”ksigma”

--cmax

--cmin

see --cmethod = “min_max”

Data Reduction Library Design & Manual

117 of 184

7.3.4.2 Flow Chart

Figure 40: Flow chart of the recipe kmos_extract_spec

The processing steps are:

1. A mask is generated (or taken as input) where sky is 0.0 and object is 1.0:

a. “optimal” method

I. The data cube is collapsed using kmo_make_image.

II. From the resulting image the signal to noise, based on a Gaussian fit using

kmo_fit_profile, is estimated.

III. The fit will be scaled in a way that the maximum value equals one. The

result is a mask with float values.

b. “integrated” method

I. A binary mask with specified centre and radius is defined.

c. “mask” method

I. The binary input mask is taken.

Data Reduction Library Design & Manual

118 of 184

2. All unmasked pixels in each spatial slice are summed and weighted all along the spectral

axis.

3. An optional noise map is masked the same way as the input data and combined as

described in Sect. 2.2.2.

4. If there are several objects in a single cube, their spectra can be extracted separately using

different masks.

7.3.4.3 Input Frames

KMOS type DO category Amount Comments

F3I none or any 1 cube with or without noise

F2I none or any 0 or

1

(optional, applies only when

--mask_method =”mask”)

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.4.4 Fits Header Keywords

None specific

7.3.4.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

mask_method string “optimal”

“integrated”

“mask”

“integrated” (optional)

Advanced parameters

Name Type valid values Default Comments

centre double[2] [0  x  NAXIS1,

0  y  NAXIS2]

[7.5,7.5] The centre of the circular mask

[pixel]

(mandatory, if --mask_method =

 ”integrated”)

radius double radius ≥ 0 3.0 The radius of the circular mask

[pixel]

(mandatory, if --mask_method =

”integrated”)

save_mask bool true

false

false True if the calculated mask

should be saved.

(optional, applies only when

--mask_method = “optimal”)

cmethod string “ksigma”

“min_max”

“average”

“median”

“sum”

“ksigma” The averaging method to apply

(optional)

cpos_rej

cneg_rej

double cpos_rej ≥ 0,

cneg_rej ≥ 0

3.0

3.0

The positive and negative rejec-

tion thresholds for bad pixels

Data Reduction Library Design & Manual

119 of 184

(optional, applies only when

--cmethod = “ksigma”)

citer int citer ≥ 1 3 The number of iterations for

kappa-sigma-clipping.

(optional, applies only when

--cmethod = “ksigma”)

cmax

cmin

int cmax ≥ 0

cmin ≥ 0

1

1

The number of maximum and

minimum pixel values to clip

with min/max-clipping

(optional, applies only when

--cmethod = “min_max”)

7.3.4.6 Output Frames

KMOS type DO Category Comments

F1I EXTRACT_SPEC Extracted spectrum

F2I EXTRACT_SPEC_MASK The calculated mask

(optional, if --mask_method="optimal"

and --save_mask=true)

7.3.4.7 Examples

$ esorex kmos_extract_spec –-mask_method=”integrated”

 --centre=”3.0:4.5” –-radius=4 cube.fits

$ esorex kmos_extract_spec –-mask_method=”optimal” cube.fits

$ esorex kmos_extract_spec –-mask_method=”mask” extract.sof

with extract.sof containing:

F3I.fits DATA

F2I.fits MASK

Data Reduction Library Design & Manual

120 of 184

7.3.5 kmo_fit_profile:
Fitting Spectral and Spatial Profiles

Recipe name used in recipe/function uses recipe/function

kmo_fit_profile kmos_extract_spec
kmos_std_star
kmo_rtd_image
kmo_combine
kmo_extract_moments

-

Fit spectral line profiles as well as spatial profiles with a simple function - for example to measure

resolution or find the centre of a source.

7.3.5.1 Description

This recipe creates either spectral or spatial profiles of sources using different functions to fit.

Spectral profiles can be created for F1I frames (if WCS is defined in the input frame, the output

parameters are in respect to the defined WCS).

Spatial profiles can be created for F2I frames (any WCS information is ignored here).

If the frames contain no noise information, constant noise is assumed for the fitting procedure.

Basic parameters:
--method

F1I frames can be fitted using either "gauss", "moffat" or "lorentz" function.

F2I frames can be fitted using either "gauss" or "moffat" function.

Advanced parameters:
--range

For F1I frames the spectral range can be defined. With available WCS information the range can

be provided in units (e.g. “1.2;1.5”), otherwise in pixels (e.g. “112;224).

For F2I frames the spatial range can be defined as follow: “x1,x2;y1,y2”

7.3.5.2 Flow Chart

Figure 41: Flow chart of the recipe kmo_fit_profile

The processing steps are:

Data Reduction Library Design & Manual

121 of 184

1. The region to fit is defined by the spectral (1D) or spatial (2D) interval provided. In this

interval, the peak is identified.

2. Then a function is fitted to the interval according to a defined profile (Gaussian, Moffat,

Lorentzian). Output parameters are the position (either lambda-position or pixel number

depending if WCS data is provided in the headers of the input data frames) of the

maximum pixel, the position of the centroid and the parameters of the function fit.

7.3.5.3 Input Frames

KMOS type DO category Amount Comments

F1I or

F2I

none or any 1 data frame, with or without

noise

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.5.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments

MINDIT double ~2.5 Estimated value

NDIT Int 1

EXPTIME double any

Sub Headers

Keyword Type Value Comments

CRPIX1 double any (optional for F1I frames)

CRVAL1 double any (optional for F1I frames)

CDELT1 double any (optional for F1I frames)

7.3.5.5 Configuration Parameters

Name Type valid values Default Comments

method string “gauss”,

“moffat”,

“lorentz”

“gauss” (optional,

“lorentz” applies only to

F1I frames)

range string “x1,x2” (for F1I)

or

“x1,x2; y1,y2” (for F2I)

“” F1I frames with WCS:

values are in microns

F1I frames without WCS:

values denote pixel positions

(zero based).

F2I frames:

values denote pixel positions

(base 1 for images, FITS

convention)

(optional,

default is the whole range)

7.3.5.6 Output Frames

KMOS type DO Category Comments

Data Reduction Library Design & Manual

122 of 184

F1I or

F2I

FIT_PROFILE Fitted 1D-profile or

Fitted 2D-profile

(in both cases without noise)

7.3.5.7 Examples

$ esorex kmo_fit_profile f1i_with_noise.fits

Data Reduction Library Design & Manual

123 of 184

7.3.6 kmo_make_image:
Making Images

Recipe name used in recipe/function uses recipe/function

kmo_make_image kmos_std_star
kmos_illumination
kmo_rtd_image
kmos_extract_spec
kmo_combine

-

Collapse a cube to create a spatial image.

7.3.6.1 Description

This recipe collapses a cube along the spectral axis using rejection. By default all spectral slices

are averaged.

Errors are propagated for the same spectral ranges as for the input data if a noise map is provided.

Basic parameters:
--range

The spectral range can be delimited to one or several sub-ranges like “1.8,1.9” or “1.8,1.9;

2.0,2.11”

--cmethod

Following methods of collapsing a cube are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If

they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej

and
 val < mean - stdev * cneg_rej

where --cpos_rej, --cneg_rej and --citer are the corresponding configuration

parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

 min_max
The specified number of minimum and maximum pixel values will be rejected.

--cmax and --cmin apply to this method.

Advanced parameters:
--threshold

Optionally an OH spectrum can be provided. In this case a threshold can be defined. The

wavelengths of values above the threshold level in the OH spectrum are omitted in the input

frame. This parameter can be combined with the --range parameter. Negative threshold values

are ignored.

Data Reduction Library Design & Manual

124 of 184

Own spectra can be converted into the required F1S KMOS FITS format for the OH spectrum

using kmo_fits_stack.

--cpos_rej

--cneg_rej

--citer

see --cmethod = ”ksigma”

--cmax

--cmin

see --cmethod = “min_max”

7.3.6.2 Flow Chart

Figure 42: Flow chart of the recipe kmo_make_image

The processing steps are:

1. If a OH line spectrum is provided, the spectral slices which are to be combined are

identified according to the threshold level and the wavelength ranges applied to the

spectrum (i.e. if the wavelength of the spectral slice lies in between a predefined range or

above the threshold level in the OH line spectrum, it is omitted).

2. The identified spectral slices are averaged to create a spatial image (Either applying a

median or averaging using rejection or min_max rejecting a predefined number of max-

and min-values).

3. Optionally a noise map matching the data cube can be provided, it will be combined along

the same spectral ranges as defined above (see also section 2.2.2) and output as a 2d noise

map.

7.3.6.3 Input Frames

KMOS type DO category Amount Comments

F3I none or any 1 data frame, with or without

Data Reduction Library Design & Manual

125 of 184

noise

F1S none or any 0 or

1

the OH line spectrum. Own

spectra can be converted to

F1S using kmo_fits_stacker

(optional)

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.6.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments

MINDIT double ~2.5 Estimated value

NDIT int 1

EXPTIME double any

Sub Headers

Keyword Type Value Comments

CRPIX3 double any

CRVAL3 double any

CDELT3 double any

7.3.6.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

range string “start1,end1;start2,end2

;…”

“” The spectral ranges to

combine

(optional, applies only if a

OH-spectrum is provided)

threshold double any,

if threshold < 0 then no

thresholding is applied

0.1 The OH threshold level

(optional, applies only if a

OH-spectrum is provided)

cmethod string “ksigma”

“min_max”

“average”

“median”

“sum”

“ksigma” The averaging method to

apply

(optional)

cpos_rej

cneg_rej

double cpos_rej ≥ 0,

cneg_rej ≥ 0

3.0

3.0

The positive and negative

rejection thresholds for bad

pixels

(optional, applies only

when --cmethod =

“ksigma”)

citer int citer ≥ 1 3 The number of iterations for

kappa-sigma-clipping.

(optional, applies only

when --cmethod =

Data Reduction Library Design & Manual

126 of 184

“ksigma”)

cmax

cmin

int cmax ≥ 0

cmin ≥ 0

1

1

The number of maximum

and minimum pixel values

to clip with min/max-

clipping

(optional, applies only

when --cmethod =

“min_max”)

7.3.6.6 Output Frames

KMOS type DO Category Comments

F2I MAKE_IMAGE Collapsed data cubes

7.3.6.7 Examples

$ esorex kmo_make_image data.fits

$ esorex kmo_make_image data_noise.fits

$ esorex kmo_make_image --method=”median” data_noise.fits

$ esorex kmo_make_image --method=”average” --pos_rej_thresh=2.2

 --neg_rej_thresh=1.7 --iterations=2

 data_noise.fits

$ esorex kmo_make_image --method=”min_max” --nr_max=20 --nrmin=10

 data_noise.fits

$ esorex kmo_make_image F3I_ohspec.sof

with F3I_ohspec.sof containing:

data.fits DATA

oh_spec.fits OH_LIST

$ esorex kmo_make_image --range=”1.8,1.9;2.0,2.1” F3I_ohspec.sof

with F3I_ohspec.sof containing:

data.fits DATA

oh_spec.fits OH_LIST

Data Reduction Library Design & Manual

127 of 184

7.3.7 kmo_noise_map:
Noise Estimation

Recipe name used in recipe/function uses recipe/function

kmo_noise_map kmos_std_star
kmos_sci_red

-

Generate a noise map from a raw frame.

7.3.7.1 Description

The noise in each pixel of the input data is estimated using gain and readnoise. The readnoise is

expected to be in the primary header (ESO DET CHIP RON), the gain (ESO DET CHIP GAIN)

has to be in each of the subsequent headers of each detector frame. The output is the initial noise

map of the data frame.

7.3.7.2 Flow Chart

Figure 43: Flow chart of the recipe kmo_noise_map

The noise in each pixel of the input data is estimated according to the method described in Sect.

2.2.1. The output is the initial noise map of the data frame.

7.3.7.3 Input Frames

KMOS type DO category Amount Comments

RAW none or any 1 raw data frame

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.7.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments

MINDIT double ~2.5 Estimated value

NDIT Int 1

EXPTIME double any

Sub Headers

Keyword Type Value Comments

ESO DET CHIP GAIN double any

Data Reduction Library Design & Manual

128 of 184

ESO DET CHIP RON double any

7.3.7.5 Configuration Parameters

None

7.3.7.6 Output Frames

KMOS type DO Category Comments

F2D NOISE_MAP Initial noise map

7.3.7.7 Examples

$ esorex kmo_noise_map RAW.fits

Data Reduction Library Design & Manual

129 of 184

7.3.8 kmos_reconstruct:
Reconstructing a Cube

Recipe name used in recipe/function uses recipe/function

kmos_reconstruct kmos_std_star
kmos_illumination
kmos_sci_red
kmo_rtd_image

-

Performs the cube reconstruction using different interpolation methods.

7.3.8.1 Description

Data with or without noise is reconstructed into a cube using the calibration frames XCAL,

YCAL and LCAL. XCAL and YCAL are generated using recipe kmos_flat, LCAL is generated

using recipe kmos_wave_cal.
The input data can contain noise extensions and will be reconstructed into additional extensions.

Basic parameters:
--imethod

The interpolation method used for reconstruction.

--detectorimage

Specify if a resampled image of the input frame should be generated. Therefore all slitlets of all

IFUs are aligned one next to the other. This frame serves for quality control. One can immediately

see if the reconstruction was successful.

--file_extension

Set to TRUE if OBS_ID (from input frame header) should be appended to the output frame.

Advanced parameters:
--flux

Specify if flux conservation should be applied.

--neighborhoodRange

Defines the range to search for neighbors during reconstruction

--b_samples

The number of samples in spectral direction for the reconstructed cube. Ideally this number

should be greater than 2048, the detector size.

--b_start

--b_end

Used to define manually the start and end wavelength for the reconstructed cube. By default the

internally defined values are used (see Section 6.3).

--pix_scale

Change the pixel scale [arcsec]. Default of 0.2\" results into cubes of 14x14pix, a scale of 0.1\"

results into cubes of 28x28pix, etc.

Data Reduction Library Design & Manual

130 of 184

--xcal_interpolation

If TRUE interpolate the pixel position in the slitlet (xcal) using the two closest rotator angles in

the calibration file. Otherwise take the values of the closest rotator angle.

7.3.8.2 Flow Chart

Figure 44: Flow chart of the recipe kmos_reconstruct

The processing steps are:

1. First the LUT for correcting spectral curvature and wavelength position is calculated and

saved to disk or just loaded from disk (see Sec. 6.2)

2. Then the data cube and the optional noise map are interpolated according the LUT.

Additionally the interpolation scheme can be chosen and if flux conservation should be

applied.

3. If desired the reconstructed cube can also be saved as resampled image, meaning that the

reconstructed cube is decomposed into its slitlets which are saved into a frame with one

slitlet beside the other. This way the quality of reconstruction can be determined quicklys

visually.

7.3.8.3 Input Frames

KMOS type DO category Amount Comments

RAW or

F2D

DARK or

FLAT_ON or

ARC_ON or

OBJECT or

STD or

SCIENCE

1 data frame,

with or without noise

F2D XCAL 1 Calibration frame 1

Data Reduction Library Design & Manual

131 of 184

(from kmos_flat)

F2D YCAL 1 Calibration frame 2

(from kmos_flat)

F2D LCAL 1 Calibration frame 3

(from kmos_wave_cal)

F2L WAVE_BAND 1 Table with start-/end-values

of wavelengthrange

F1S OH_SPEC 0,1 OH reference spectrum

7.3.8.4 Fits Header Keywords

Primary Header

None

Sub Headers

None

7.3.8.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

imethod string “NN”

“lwNN”

“swNN”

“MS”

“CS”

“CS” Interpolation method:

NN: Nearest Neighbor

lwNN: linear weighted NN

swNN: square weighted NN

MS: Modified Shepard’s

method

CS: Cubic spline

(optional)

detectorimage bool TRUE, FALSE FALSE TRUE if resampled detector

image should be created,

FALSE otherise

file_extension bool TRUE, FALSE FALSE TRUE if OBS_ID keyword

should be appended to output

frames, FALSE otherwise

Advanced parameters

Name Type valid values Default Comments

flux bool TRUE, FALSE FALSE Apply flux conservation

neighborhoodRange double ≥ 1 1.001 Defines the range to search

for neighbors

b_samples int b_samples > 2 2048 Nr. of samples of

reconstructed data for the

wavelength

b_start

b_end

double b_start > 0.0

b_end > b_start

-1.0 Start and end wavelength.

The defaults of -1.0 instruct

to use the internally defined

range (see Section 6.3)

Data Reduction Library Design & Manual

132 of 184

pix_scale double TRUE, FALSE 0.2 The pixel scale: 0.2 arcsec

results in cubes of 14x14

pixels. 0.1 arcsec result in

cubes of 28x28 pixels

xcal_interpolation bool TRUE, FALSE TRUE

7.3.8.6 Output Frames

KMOS type DO Category Comments

F3I CUBE_DARK or

CUBE_FLAT or

CUBE_ARC or

CUBE_OBJECT_SCIENCE or

CUBE_SKY_SCIENCE

Reconstructed cube with or without

noise

F2D DET_IMG_REC if parameter –detimg has been set to

TRUE

Additional Output

All recipes doing reconstruction of cubes create a LUT which by default is saved to disk. For

further information see Sec. 6.4.

7.3.8.7 Examples

$ esorex kmos_reconstruct reconstruct.sof

with reconstruct.sof containing:

object_science.fits OBJECT_SCIENCE

xcal_YJYJYJ.fits XCAL

ycal_YJYJYJ.fits YCAL

lcal_YJYJYJ.fits LCAL

kmos_wave_band.fits WAVE_BAND

Data Reduction Library Design & Manual

133 of 184

7.3.9 kmo_rotate:
Rotating a Cube

Recipe name used in recipe/function uses recipe/function

kmo_rotate kmo_extract_pv -

Rotate a cube spatially.

7.3.9.1 Description

This recipe rotates a cube spatially (CCW). If the rotation angle isn’t a multiple of 90 degrees, the

output cube will be interpolated and get larger accordingly.

By default all IFUs will be rotated.

Basic parameters:
--rotations

This parameter must be supplied. It contains the amount of rotation to apply. The unit is in

degrees. If it contains one value (e.g. “3.5”) all IFUs are rotated by the same amount. If 24 values

are supplied each IFU is rotated individually (e.g. “2.3;15.7;…;-3.3”).

--imethod

The interpolation method to apply when rotating an angle not being a multiple of 90. There are

two methods available:

 BCS: Bicubic spline

 NN: Nearest Neighbor (currently disabled)

--ifu

If a single IFU should be rotated, it can be defined using the --ifu parameter (--rotations

parameter contains only one value).

Advanced parameters:
--flux

Specify if flux conservation should be applied.

--extrapolate

By default the output frame grows when rotating an angle not being a multiple of 90. In this case

none of the input data is lost. When it is desired to keep the same size as the input frame this

parameter can be set to TRUE and the data will be clipped.

Data Reduction Library Design & Manual

134 of 184

7.3.9.2 Flow Chart

Figure 45: Flow chart of the recipe kmo_rotate

The processing steps are:

1. First the LUT representing the spatial rotation is calculated.

2. Then the data cube and the optional noise map are interpolated according the LUT.

Additionally the interpolation scheme can be chosen and if flux conservation should be

applied.

7.3.9.3 Input Frames

KMOS type DO category Amount Comments

F3I none or any 1 data frame,

with or without noise

This recipe also accepts also a path to a FITS file instead of a sof-fil

7.3.9.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments

MINDIT double ~2.5 Estimated value

NDIT Int 1

EXPTIME double any

Sub Headers

Keyword Type Value Comments

CRPIX1, CRPIX2 double any

CRVAL1, CRVAL2 double any

CDELT1, CDELT2 double any

CD-Matrix double any

Data Reduction Library Design & Manual

135 of 184

7.3.9.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

rotations string string with 1 or 24 elements

[degrees]

e.g. “2.3;15.7;…;-3.3”

“” The rotations for all

specified IFUs

(mandatory)

imethod string “BCS”

“NN”

“BCS” Interpolation method:

BCS: Bicubic spline

NN: Nearest Neighbor

(optional, applies only

when rotation angle

isn’t a multiple of 90

degrees)

ifu int 24 ≥ ifu ≥ 0 0 The ifu to rotate.

0 rotates all ifus the

same amount

(optional)

Advanced parameters

Name Type valid values Default Comments

flux bool TRUE, FALSE FALSE Apply flux

conservation

extrapolate bool TRUE, FALSE FALSE FALSE: Output frame

will be larger than the

input

TRUE: Output and

input frame have the

same size, data will be

clipped

(optional, applies only

when rotation angle

isn’t a multiple of 90

degrees

7.3.9.6 Output Frames

KMOS type DO Category Comments

F3I ROTATE Rotated cube

7.3.9.7 Examples

$ esorex kmo_rotate –-ifu=8 –-rotations=”93.87” data.fits

$ esorex kmo_rotate –rotations=”1.1;3.8;-4.5;……;18,9” data.fits

Data Reduction Library Design & Manual

136 of 184

7.3.10 kmo_shift:
Translating a Cube

Recipe name used in recipe/function uses recipe/function

kmo_shift kmo_extract_pv
kmo_combine

-

Shift a cube spatially.

7.3.10.1 Description

This recipe shifts a cube spatially. A positive x-shift shifts the data to the left, a positive y-shift

shifts upwards, where a shift of one pixel equals 0.2 arcsec. The output will still have the same

dimensions, but the borders will be filled with NaNs accordingly.

To adjust only the WCS without moving the data the --wcs-only parameter has to be set to

TRUE. The WCS is updated in the same way as if the data would have moved as well. This

means that the point at (x,y) has the same coordinates as the point (x+1,y+1) after updating the

WCS (the WCS moved in the opposite direction).

Basic parameters:
--shifts

This parameter must be supplied. It contains the amount of shift to apply. The unit is in arcsec. If

the --shifts parameter contains only two values (x,y), all IFUs will be shifted by the same

amount. If it contains 48 values (x1,y1;x2,y2;...;x24,y24), the IFUs are shifted individually.

--imethod

The interpolation method to apply when the shift value isn’t a multiple of the pixel scale. There

are two methods available:

 BCS: Bicubic spline

 NN: Nearest Neighbor

--ifu

If a single IFU should be shifted, it can be defined using the --ifu parameter (--shifts

parameter contains only two values).

Advanced parameters:
--flux

Specify if flux conservation should be applied when applying a subpixel shift.

--extrapolate

By default no extrapolation is applied. At the borders NaN values are introduced. When choosing

“BCS” as interpolation method and applying a sub-pixel shift, extrapolation can be switched on.

--wcs-only

By default data and WCS are shifted in sync. If this parameter is set to TRUE only the WCS is

updated (i.e. if someone thinks that the IFU isn’t pointing exactly to the correct coordinates).

Data Reduction Library Design & Manual

137 of 184

7.3.10.2 Flow Chart

Figure 46: Flow chart of the recipe kmo_shift

The processing steps are:

1. First the LUT representing the shift is calculated.

2. Then the data cube and the optional noise map are interpolated according the LUT.

Additionally the interpolation scheme can be chosen and if flux conservation should be

applied.

7.3.10.3 Input Frames

KMOS type DO category Amount Comments

F3I none or any 1 data frame,

with or without noise

This recipe also accepts also a path to a FITS file instead of a sof-fil

7.3.10.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments

MINDIT double ~2.5 Estimated value

NDIT Int 1

EXPTIME double any

Sub Headers

Keyword Type Value Comments

CRPIX1, CRPIX2 double any

CRVAL1, CRVAL2 double any

CDELT1, CDELT2 double any

CD-Matrix double any

Data Reduction Library Design & Manual

138 of 184

7.3.10.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

shifts string string with 2 or 48 elements

[arcsec]

e.g. [x1, y1; x2, y2;…]

“” The shifts for each spatial

dimension for all specified

IFUs (mandatory)

imethod string “BCS”

“NN”

“BCS” Interpolation method:

BCS: Bicubic spline

NN: Nearest Neighbor

(optional, applies only

when the shift isn’t a

multiple of the pixel scale)

ifu int 24 ≥ ifu ≥ 0 0 The ifu to shift.

0 shifts all ifus the same

amount

(optional)

Advanced parameters

Name Type valid values Default Comments

flux bool TRUE, FALSE FALSE Apply flux conservation

(optional)

extrapolate bool TRUE, FALSE FALSE FALSE: shifted IFU will

be filled with NaNs at the

borders

TRUE: shifted IFU will

be extrapolated at the

borders

 (optional, applies only

when method=BCS and

doing sub pixel shifts)

wcs-only bool TRUE, FALSE FALSE FALSE: data and WCS

are shifted together

TRUE: only the WCS is

shifted

7.3.10.6 Output Frames

KMOS type DO Category Comments

F3I SHIFT Shifted cube

7.3.10.7 Examples

$ esorex kmo_shift –-ifu=8 –-shifts=”0.2,0.11” data.fits

$ esorex kmo_shift –shifts=”0.4,0.2;-0.01,-0.09;……;0.1;0.1” data.fits

Data Reduction Library Design & Manual

139 of 184

7.3.11 kmo_sky_mask:
Creating a Mask of Sky Pixels

Recipe name used in recipe/function uses recipe/function

kmo_sky_mask kmo_sky_tweak kmo_stats

Create a mask of spatial pixels that indicates which pixels can be considered as sky.

7.3.11.1 Description

This recipes calculates masks of the skies surrounding the objects in the different IFUs of a

reconstructed F3I frame. In the resulting mask pixels belonging to objects have value 1 and sky

pixels have value 0.

The noise and the background level of the input data cube are estimated using the mode calculated

in kmo_stats. If the results aren't satisfactory, try changing --cpos_rej and --cneg_rej.

Then pixels are flagged in the data cube which have a value less than the mode plus twice the

noise (val < mode + 2*sigma). For each spatial pixel the fraction of flagged pixels in its spectral

channel is determined.

Spatial pixels are selected where the fraction of flagged spectral pixels is greater than 0.95

(corresponding to the 2*sigma above).

The input cube can contain noise extensions, but they will be ignored. The output doesn’t contain

noise extensions.

Basic parameters:
--fraction

The fraction of pixels that have to be greater than the threshold can be defined with this parameter

(value must be between 0 and 1).

--range

If required, a limited wavelength range can be defined (e.g. “1.8,2.1).

Advanced parameters:
--cpos_rej

--cpos_rej

--citer

An iterative sigma clipping is applied in order to calculate the mode (using kmo_stats). For each

position all pixels in the spectrum are examined. If they deviate significantly, they will be rejected

according to the conditions:
 val > mean + stdev * cpos_rej

and
 val < mean - stdev * cneg_rej

In the first iteration median and percentile level are used.

Data Reduction Library Design & Manual

140 of 184

7.3.11.2 Flow Chart

Figure 47: Flow chart of the recipe kmo_sky_mask

The processing steps are:

1. The noise and the background level (mode) of the input data cube are estimated. Note that

although the noise varies with wavelength, a single estimate of the noise is sufficient for

the purpose here.

2. Flag pixels in the data cube which have a value less than the mode plus twice the noise

(val < mode + 2σ)

3. For each spatial pixel the fraction of flagged pixels in its spectral channels is determined.

If required, a limited wavelength range can be provided for this step.

4. Spatial pixels are selected where the fraction of flagged spectral pixels is greater than 0.95

(corresponding to the 2σ above)

Data Reduction Library Design & Manual

141 of 184

5. If less than a specified percentage of spatial pixels are included, then increase the selection

to include this many.

Create a mask indicating ‘sky’ pixels (sky = 0, object = 1).

7.3.11.3 Input Frames

KMOS type DO category Amount Comments

F3I none or any 1 one reconstructed frame

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.11.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments

MINDIT double ~2.5 Estimated value

NDIT Int 1

EXPTIME double any

Sub Headers

Keyword Type Value Comments

CRPIX3 double any

CRVAL3 double any

CDELT3 double any

7.3.11.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

fraction double 1.0 ≥ fraction ≥ 0.0 0.95 Minimum fraction of

spatial pixels to select

as sky

(optional)

range string “start,end” “” Min & max spectral

range to use in sky

pixel determination

(microns)

(optional)

Advanced parameters

Name Type valid values Default Comments

cpos_rej

cneg_rej

double cpos_rej ≥ 0,

cneg_rej ≥ 0

3.0

3.0

The positive and

negative rejection

thresholds for bad

pixels

(optional)

citer int citer ≥ 1 3 The number of

iterations for kappa-

Data Reduction Library Design & Manual

142 of 184

sigma-clipping.

(optional)

7.3.11.6 Output Frames

KMOS type DO Category Comments

F2I SKY_MASK The sky mask frame

7.3.11.7 Examples

$ esorex kmo_sky_image f3i.fits

$ esorex kmo_sky_image –fraction=0.6 f3i.fits

$ esorex kmo_sky_image --ranges=”1.8,1.9” f3i.fits

Data Reduction Library Design & Manual

143 of 184

7.3.12 kmo_sky_tweak:
Second Order Sky Subtraction

Recipe name used in recipe/function uses recipe/function

kmo_sky_tweak kmos_sci_red kmo_arithmetic
kmos_extract_spec
kmo_sky_mask
kmo_shift
kmo_fit_profile

Removal of OH sky lines.

7.3.12.1 Description

The recipe, as implemented, is divided into 2 main processing steps: removal of thermal

background (Figure 48) and compensation of vibrational variations (Figure 49).

7.3.12.2 Flow Chart

Figure 48: Flow chart of the recipe kmo_sky_tweak (Part 1)

The processing steps of Figure 48 are:

Data Reduction Library Design & Manual

144 of 184

1. Identify spaxels with least flux in object cube (kmo_sky_mask).

2. Sum spectra from these spaxels in both object and sky cubes separately.

3. Fit a blackbody function to the underlying continuum in the sky spectrum (the thermal

background).

4. The fitted function is subtracted from both the original object and sky cubes and from the

extracted object and sky spectra.

5. The spectra with removed thermal background are compared with regard to offsets in

bright OH lines. The sky cube (with removed thermal background) is shifted accordingly.

Note that for KMOS, the default is for spectral flexure to already be corrected. However

there may be some situations where this is not so, in which case this step is carried out

here.

6. Again the spectrum of the processed object and sky cubes are extracted using the same

mask as in step 1.

Data Reduction Library Design & Manual

145 of 184

Figure 49: Flow chart of the recipe kmo_sky_tweak (Part 2)

The processing steps of Figure 49 are:

1. To correct vibrational variations, the spectra are divided into segments along the

wavelength axis. For each segment the spectral vectors of bright OH lines are extracted.

2. The sky spectrum is scaled to match the object spectrum in each spectral segment.

3. The scalings of each spectral segment are combined to a single scaling function which is

applied to the sky spectrum.

4. To correct rotational variations, steps 7 to 9 are repeated.

5. The two scaling functions are multiplied.

6. The resulting scaling function is multiplied with the compensated sky cube which in turn

is subtracted from the compensated object cube.

7.3.12.3 Input Frames

KMOS type DO category Amount Comments

F3I CUBE_OBJECT ≥1 object cubes

F3I CUBE_SKY 1 sky cubes

7.3.12.4 Fits Header Keywords

Primary Header

None

Sub Headers

None

7.3.12.5 Configuration Parameters

None

7.3.12.6 Output Frames

KMOS type DO Category Comments

F3I OBJECT_S Sky-corrected object cubes

7.3.12.7 Examples

$ esorex kmo_sky_tweak tweak.sof

with reduce.sof containing:

objects1.fits CUBE_OBJECT

objects2.fits CUBE_OBJECT

sky.fits CUBE_SKY

Data Reduction Library Design & Manual

146 of 184

kmo_stats:
Basic Statistics

Recipe name used in recipe/function uses recipe/function

kmo_stats kmo_bkg_sub
kmo_sky_tweak
kmo_sky_mask

-

Perform basic statistics on a KMOS-conform fits-file.

7.3.12.8 Description

This recipe performs basic statistics on KMOS-conform data-frames of type F2D, F1I, F2I and

F3I either with or without noise and RAW. Optionally a 2D mask can be provided to define a

region on which the statistics should be calculated on (mask 0: exclude pixel, mask 1: include

pixel). A mask can’t be provided for statistics on F1I frames.

The output is stored in a vector of length 11. The vector represents following values:

1. Number of pixels

2. Number of finite pixels

3. Mean

4. Standard Deviation

5. Mean with iterative rejection (i.e. mean & sigma are calculated iteratively, each time

rejecting pixels more than +/-N sigma from the mean)

6. Standard Deviation with iterative rejection

7. Median

8. Mode (i.e. the peak in a histogram of pixel values)

9. Noise (a robust estimate given by the standard deviation from the negative side of the

histogram of pixel values)

10. Minimum

11. Maximum

The same numerical operations are applied to the noise as with the data itself.

Basic parameters:
--ext

These parameters specify with extensions to process. The value 0, which is default, calulates all

extensions.

Advanced parameters:
--cpos_rej

--cpos_rej

--citer

An iterative sigma clipping is applied in order to calculate the mode. For each position all pixels

in the spectrum are examined. If they deviate significantly, they will be rejected according to the

conditions:
 val > mean + stdev * cpos_rej

and
 val < mean - stdev * cneg_rej

In the first iteration median and percentile level are used.

Data Reduction Library Design & Manual

147 of 184

7.3.12.9 Flow Chart

Figure 50: Flow chart of the recipe kmo_ stats

The input data and an optional mask (2D) are taken as inputs and a vector of length 11 is returned

as output.

7.3.12.10 Input Frames

KMOS type DO category Amount Comments

F3I,

F2I,

F1I,

F2D,

B2D,

RAW

none or any 1 one frame,

with or without noise

F2I,

F2D,

B2D,

RAW

none or any 0 or 1 mask (optional)

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.12.11 Fits Header Keywords

None

7.3.12.12 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

ext int ext ≥ 0 0 Specifies which

extensions to calculate. 0

calculates them all

 (optional)

Advanced parameters

Name Type valid values Default Comments

cpos_rej

cneg_rej

double cpos_rej ≥ 0,

cneg_rej ≥ 0

3.0

3.0

The positive and negative

rejection thresholds for

Data Reduction Library Design & Manual

148 of 184

bad pixels (optional)

citer int citer ≥ 1 3 The number of iterations

for kappa-sigma-clipping.

(optional)

ifu int ifu ≥ 0 0 Specifies which

extensions to calculate. 0

calculates them all

(optional, applies only for

F1I, F2I and F3I frames)

det int det ≥ 0 0 Specifies which

extensions to calculate. 0

calculates them all

(optional, applies only for

F2D and RAW frames)

7.3.12.13 Output Frames

KMOS type DO Category Comments

F1I STATS The calculated statistics parameters

7.3.12.14 Examples

$ esorex kmo_stats F3I.fits

with stats.sof containing:

F3I.fits DATA

$ esorex kmo_stats –ifu=1 stats.sof

with stats.sof containing:

F3I.fits DATA

F2I.fits MASK

Data Reduction Library Design & Manual

149 of 184

7.3.13 kmo_fits_strip:
Stripping FITS files

Recipe name used in recipe/function uses recipe/function

kmo_fits_strip - -

Strip noise, rotator and/or empty extensions from a processed KMOS fits frame.

7.3.13.1 Description

With this recipe KMOS fits frames can be stripped in following way:

Basic parameters:

--noise

All noise extensions will be removed. Only the data extensions remain.

--angle

Applies only to calibration products from kmos_flat and kmos_wave_cal.

All extensions matching provided angle are kept, the others are removed.

Supply a single integer value.

--empty

All empty extensions will be removed.

--extension

Supply a comma-separated string with integer values indicating the extensions to keep. The other

extensions are removed (any data or noise information is disregarded, the values are interpreted

absolutely)

The parameters --noise, --angle and --empty can be combined.

When --extension is specified, all other parameters are ignored.

When no parameter is provided, no output will be generated.

7.3.13.2 Flow Chart

Figure 51: Flow chart of the recipe kmo_ fits_strip

7.3.13.3 Input Frames

KMOS type DO category Amount Comments

Data Reduction Library Design & Manual

150 of 184

F3I,

F2I,

F1I,

F2D

none or any 1 one frame,

with or without noise

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.13.4 Fits Header Keywords

None

7.3.13.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

noise bool TRUE, FALSE FALSE If set to TRUE, all noise

extensions are stripped

 (optional)

angle int angle >=0 and angle <

360

-1 Aplies to calibration

frames with several rotatr

angles included. If set to a

valid value only the

specified rotator angle is

kept, the others are

removed

empty bool TRUE, FALSE FALSE If set to TRUE, all empty

extensions are stripped

(optional)

extension string e.g. “1,4,6” “” IFU IDs provided mustn’t

be bigger than the actual

number of extensions

(optional)

7.3.13.6 Output Frames

KMOS type DO Category Comments

F3I,

F2I,

F1I,

F2D

STRIP The stripped frame

7.3.13.7 Examples

$ esorex kmo_fits_strip --noise F3I_data_noise.fits

$ esorex kmo_fits_strip --empty F3I_data_empty.fits

$ esorex kmo_fits_strip --angle=120 xcal_HHH.fits

Data Reduction Library Design & Manual

151 of 184

7.4 Development Recipes

The recipes in this section are intended for use for the pipeline developers. They can be used to

setup test cases with individual FITS files. The most interesting recipe for pipeline users might be

kmo_fits_check. It can be used to display information on a KMOS FITS file.

7.4.1 kmo_fits_check:
Check FITS files

Recipe name used in recipe/function uses recipe/function

kmo_fits_check - -

Check contents of a KMOS fits-file.

7.4.1.1 Description

Recipe to print information on FITS files, contained data/noise values or header keywords of all

extensions of a fits file, preferably a KMOS fits-file (RAW, F1I, F2I, F3I, F2D etc.). This recipe

is intended for debugging purposes only.

By default a short summary is printed.

The following data types of keywords are recognized: bool, char, double, float, int, long, string

As input one fits-file is accepted, no output frame is generated.

Basic parameters:
--h

With this parameter just the header keywords are printed:

–1 prints the primary header and the headers of all the extensions

0 prints just the primary header

1 prints the header of the first extension etc.

--d

With this parameter just the data (or depending on the extension: noise) is printed:

–1 prints the primary header and the headers of all the extensions

0 prints data of the primary header which is empty for KMOS FITS frames

1 prints the data/noise of the first extension etc.

This parameter should only be used with very small datasets, otherwise the screen will be flooded

with numbers.

7.4.1.2 Flow Chart

None

7.4.1.3 Input Frames

KMOS type DO category Amount Comments

any none or any 1 any FITS file (also non-

KMOS frames)

This recipe also accepts also a path to a FITS file instead of a sof-file.

Data Reduction Library Design & Manual

152 of 184

7.4.1.4 Fits Header Keywords

None specific

7.4.1.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

h int -1  h -2 (optional)

d int -1  d -2 (optional)

The defaults of –2 for h and d lead to printing the short summary. This value can’t be provided

manually.

7.4.1.6 Output Frames

None

7.4.1.7 Examples

print summary:
$ esorex kmo_fits_check test.fits

print all headers:
$ esorex kmo_fits_check --h=-1 test.fits

print primary header:
$ esorex kmo_fits_check --h=0 test.fits

print primary data extension (which should always be empty for KMOS FITS files):
$ esorex kmo_fits_check --d=0 test.fits

print 5th data extension:
$ esorex kmo_fits_check --d=5 test.fits

Data Reduction Library Design & Manual

153 of 184

7.4.2 kmo_fits_stack:
Creating a KMOS-conform FITS file manually

Recipe name used in recipe/function uses recipe/function

kmo_fits_stack - -

Creates KMOS conform fits-files.

7.4.2.1 Description

FITS files to be processed by the KMOS pipeline have to meet certain conditions. This recipe is

intended to provide to the user a simple way to test the pipeline with own data, which wasn't

produced by KMOS itself.

The input set of frame is checked for integrity (do all the frames have the same size, do they

correspond to the desired output type, is there the correct number of files). Then an empty main

header is written with desired keywords. A keyword consists of the name, data type and value.

Additional keywords can be added either to the empty primary header or to all sub headers.

Basic parameters:
--category

Set to TRUE if DFS header keywords should be generated. In this case the --subkey

parameter is ignored and “kmos_” is added as prefix to created filenames.

--type

Depending on the type of the FITS file to create different combinations of frames have to be

provided:

 RAW
exactly 3 files tagged as DATA

 F2D
exactly 3 files tagged as DATA or

exactly 6 files tagged alternating as DATA and NOISE (beginning with DATA)

 B2D
exactly 3 files tagged as BADPIX

 F1I, F2I, F3I
as many DATA frames as wanted (at least one) or

as many DATA and NOISE frames as wanted (at least one of each, the number of

DATA frames has to match the one of NOISE frames)

 F1S
exactly 1 file tagged as DATA

 F1L
exactly 1 file tagged as DATA (either plain text or binary fits table)

 F2L
exactly 1 file tagged as DATA (either plain text or binary fits table)

--mainkey

--subkey

Data Reduction Library Design & Manual

154 of 184

Additional keywords can be added either to the empty primary header or to all sub headers.

Provided keywords must have following form: "keyword;type;value;keyword;type;value" (no

spaces inbetween!)

Allowed values for type are: string, int, float, double, bool

--valid

With the –valid parameter one can specifiy which values should be handled as invalid by the

pipeline. The keyword ESO OCS ARMi NOTUSED will be set accordingly.

7.4.2.2 Flow Chart

None

7.4.2.3 Input Frames

KMOS type DO category Amount Comments

none STACK_DATA ≥1 data frames

KMOS type DO category Amount Comments

none STACK_DATA ≥1 data frames

none STACK_NOISE ≥1 noise frames

(same number as data

frames)

KMOS type DO category Amount Comments

none STACK_BADPIX 3 badpixel frames

7.4.2.4 Fits Header Keywords

The keywords already present in the provided input FITS files are copied to the output KMOS

FITS files. Additional keywords can be added using the --mainkey and --subkey

parameters. The keywords provided with mainkey go into the empty primary header, the subkey

keywords go into ALL subsequent extensions.

The mainkey and subkey parameters consist of one or several triples. A triple has following order:

keyword, type and value. The strings mustn’t contain any spaces, the entries have to be separated

by a semicolon (;) since entries also can contain commas. Triples are also separated by

semicolons.

Example:

mainkey = “DIT;double;1.0;EXPTIME;double; 519.9;WEATHER;string;very_sunny”

subkey = “CHIP1;bool;1.0;”

Valid types are: string, int, float, double and bool.

7.4.2.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments

Data Reduction Library Design & Manual

155 of 184

type string “RAW”, “F2D”, “B2D”,

“F3I”, “F2I”, “F1I”,

“F1S”, “F1L”, “F2L”

“” (mandatory)

filename string Any “fits_stacker” suffix “.fits” will be

added

(optional)

mainkey string “keyword;type;value” “” (optional)

subkey string “keyword;type;value” “” (optional)

valid string empty string or

string with 24 elements

(either ones or zeros), e.g.

[1;0;1;1;1;0;0;0;…;1]

“” (optional)

7.4.2.6 Output Frames

KMOS type DO Category Comments

RAW, F2D,

B2D, F3I, F2I,

F1I, F1S, F1L or

F2L

FITS_STACKER Stacked KMOS FITS file

7.4.2.7 Examples

$ esorex kmo_fits_stack --type=”RAW” --filename=”my_raw” raw.sof

with raw.sof containing:

data1.fits STACK_DATA

data2.fits STACK_DATA

data3.fits STACK_DATA

$ esorex kmo_fits_stack --type=”F2D” --filename=”my_f2d”

 --mainkey=”EXPTIME;double;3.0” f2d.sof

with f2d.sof containing:

data1.fits STACK_DATA

data2.fits STACK_DATA

data3.fits STACK_DATA

$ esorex kmo_fits_stack --type=”F1I” --filename=”my_f1i” f1i.sof

with f1i.sof containing:

data_vector1.fits STACK_DATA

noise_vector1.fits STACK_NOISE

data_vector2.fits STACK_DATA

noise_vector2.fits STACK_NOISE

$ esorex kmo_fits_stack --type=”B2D” --filename=”my_badpix” badpix.sof

with badpix.sof containing:

Data Reduction Library Design & Manual

156 of 184

badpix1.fits STACK_BADPIX

badpix2.fits STACK_BADPIX

badpix3.fits STACK_BADPIX

$ esorex kmo_fits_stack --type=”F1S” --filename=”my_f1s” f1s.sof

with f1s.sof containing:

data_vector.fits STACK_DATA

$ esorex kmo_fits_stack --type=”F1L” --filename=”my_f1l” f1l.sof

with f1l.sof containing:

two_columns_ascii.txt STACK_DATA

$ esorex kmo_fits_stack --type=”F2L” --filename=”my_f2l” f2l.sof

with f2l.sof containing:

three_columns_ascii.txt STACK_DATA

Data Reduction Library Design & Manual

157 of 184

8 Data Reduction Library Functions

All recipes described in Section 7 are implemented as functions with similar names inside the

library. Their descriptions have not been repeated here. By implementing them as functions

allows one to create an appropriate simple wrapper so that they can be used either as recipe

plugins or for use within KMCLIPM, without having to repeat the functional part of the code.

In addition, there are a few extra functions, which are defined as such because they are used

repeatedly in various recipes or fulfil another special task. These are the functions described

explicitly in this chapter.

8.1 Acquisition Reduction for RTD

Recipe name used in recipe/function uses recipe/function

kmclipm_rtd_image - kmo_make_image
kmo_fit_profile
kmos_reconstruct

kmclipm_rtd_image is intended to be used only by the Instrument Control Software (ICS).

In order to use it the function
kmclipm_set_cal_path(const char *path, int test_mode)

has to be called once, defining the path where the xcal-, ycal- and lcal-calibration files are stored

and whether we are in test mode (default: test_mode = FALSE) or not.

The calibration files are generated using the recipes kmos_flat and kmos_wave_cal (see Sec.

7.1.2 and 7.1.3) and have manually to be copied to the specified directory in order to use the real

time display (RTD) in ICS.

To create the necessary raw frames for the above mentionned recipes, the templates

KMOS_spec_cal_calunit and
KMOS_spec_cal_wave

have to be executed. There the number of rotator offsets has to be specified (for the moment

beeing 6 offsets are recommended). So we get for 5 bands and 6 angles and 3 different calibration

files a total of 90 calibration files.

The naming of the calibration files follows this convention:

e.g. xcal_xxx_yyy_z.fits

x: grating for every detector

y: filter for every detector

z: rotator angle

8.1.1 Description

In general, only a few bright stars are observed with a few IFUs (with short DIT). The other IFUs

point to faint objects that will not necessarily be visible with the short DIT used for acquisition.

Thus a vector is provided indicating the IFUs, which are to be processed. However, in some cases,

the calculations and image reconstruction will be performed for all IFUs (initial tests, calibrations,

etc).

Data Reduction Library Design & Manual

158 of 184

8.1.2 Flow Chart

Figure 52: Flow chart of the recipe kmo_rtd_image

The processing steps are:

1. From the raw object frame and the master dark (or a specified sky frame) the desired IFU

frame is extracted.

2. The two IFU frames are subtracted.

3. The resulting frame is reconstructed into a cube using the bad pixel mask, the spectral

curvature calibration frame and the wavelength calibration frame.

4. The cube is collapsed along the spectral axis within specified wavelength range. If

required wavelengths across OH sky emission lines are omitted.

5. If automatic centres are required, they will be extracted now. The resulting x- & y-values

are stored in a vector.

6. The steps above are repeated for each IFU to process.

Data Reduction Library Design & Manual

159 of 184

7. The resulting images are merged into a single combined image.

Data Reduction Library Design & Manual

160 of 184

8.2 Combine frames using pixel rejection

Recipe name used in recipe/function uses recipe/function

kmclipm_combine_frames kmos_dark
kmos_flat
kmos_illumination

-

Combines data frames with or without noise and either (re)calculates or propagates noise.

8.2.1 Description

This function is always used when several input frames have to be combined into one. For each

pixel position the pixel values at this position of every frame are put into a vector. This vector is

to be averaged according one of the following methods available:

 Kappa-sigma clipping

Any value of the vector which deviates significantly will be rejected. This method is

iterative.

(value > mean +  * pos_rejection_threshold or

value < mean -  * neg_rejection_threshold)

In the first iteration median and percentile level are used.

 Min-max clipping

The specified number of minimum and maximum values of the vector will be rejected.

This method is applied once.

 Average

The average of all values of the vector is calculated.

 Median

The median of all values of the vector is calculated.

 Sum

The sum of all values of the vector is calculated.

The above mentionned methods act all the same regardless the number of input data frames. For

reasonable noise estimations it is recommended to provide at least three or more frames. If less

than three frames are provided the noise estimation is performed as depicted in Table 1 below.

Data Reduction Library Design & Manual

161 of 184

8.2.2 Flow Chart

Figure 53: Flow chart for kmclipm_combine_frames

Data Reduction Library Design & Manual

162 of 184

The processing steps are:

1. Depending on the method chosen the frames will be combined differently:

a. Kappa-sigma clipping

i. Two thresholds are calculated

ii. All pixels above or below the thresholds are rejected

iii. These steps are repeated as many times as desired

b. Min-max clipping

i. The desired number of minimum and maximum values is clipped

c. Average

i. For all pixel positions the average of the values is calculated

d. Median

i. For all pixel positions the median of the values is calculated

e. Sum

i. For all pixel positions the sum of the values is calculated

 ≥3 frames 2 frames 1 frame

avgdata = combine(datain) avgdata = combine (datain) avgdata = datain

with

noisein

for ‘median’ method:

avgnoise =
stdevmedian(data in)

n

for all other methods:

avgnoise =

for ‘sum’ method:

avgnoise =
noisein1

2 +noisein2

2

2

for all other methods:

avgnoise =
1

2

noisein1
2 +noisein2

2

2

avgnoise = noisein

avgdata = combine (datain) avgdata = combine (datain) avgdata = datain

w/o

noisein avgnoise = avgnoise =
avgnoise = stdev(datain)

Table 1 The function combine() stands for kmclipm_combine_frames() and handles the input data

as described above. n is the number of input frames.

stdev(data in)

n

stdev(data in)

n

datain1 - datain2

2

Data Reduction Library Design & Manual

163 of 184

8.3 Scientific reconstruction of a data cube

Recipe name used in recipe/function uses recipe/function

kmo_reconstruct_sci kmos_std_star
kmos_sci_red

kmo_noise_map
kmos_reconstruct

Reconstructing cubes using noise estimation and master flat frame.

8.3.1 Description

This function reconstructs a data cube in a scientific manner, taking into account a sky or dark

frame and a flat frame, as opposed to kmos_reconstruct which just stacks up the slitlets to form

a data cube. The function gets the whole frames as input and extracts the part with the desired IFU

and returns the reconstructed cube with noise. The flow chart doesn’t show the splitting of the

frames into IFU frames.

This function is used in the higher level recipe kmos_sci_red.

8.3.2 Flow Chart

Figure 54: Flow chart for kmo_reconstruct_sci

The processing steps are:

1. The data frame and the sky (or dark) frame are subtracted and divided by the master flat

field.

2. The noise of the data frame and the sky (or dark) frame are generated using

kmo_noise_map.

3. The noise of the three frames (the noise of the master flat frame has already been

calculated in kmos_flat) is combined according the operations performed in step 1.

Data Reduction Library Design & Manual

164 of 184

4. The resulting 2D data and noise frame are reconstructed into a cube using the three

calibration frames

Data Reduction Library Design & Manual

165 of 184

PART III: DRS MAINTAINANCE & DEVELOPMENT

In this section different aspects regarding the creation of new calibration data and the

maintainance of the KMOS DRS pipeline for further development are described.

9 Updating the Calibration Data

After instrument maintainance or after a warming up/cooling down-cycle the instrument, the arms

and spectrographs are expected to have different characteristics than before. In this case it is

strongly recommended to renew the calibration files. Manipulation of the arms particularly affects

all spatial calibration files (BADPIXEL_DARK, BADPIXEL_FLAT, FLAT_EDGE,

ILLUM_CORR, MASTER_DARK, MASTER_FLAT, TELLURIC, XCAL, YCAL),

manipulation of the spectrographs affects all spectral calibrations (WAVE_BAND, REF_LINES,

LCAL, ILLUM_CORR, TELLURIC).

Besides this the spatial and spectral calibration frames are expected to be stable in time. So we

recommend to renew these files every few months to a year (exact intervals have to be defined

during operation) in normal operating conditions.

9.1 Standard Data Handling at the VLT

As depicted in Figure 55, the standard workflow for obtaining exposures follows the solid blue

arrows from top to bottom. The user triggers any template on the IWS which in succession

generates arbitrary exposures. These are sent to the PWS where they are automatically archived

and processed by the DO and the DRS. The raw frames and the products are copied to the OWS

as well mirrored to ESO Garching.

The PWS acts as a sort of master in this scenario on which the other workstations depend on. It is

asserted that the raw frames, products and calibration data are kept synchronized on the OWS. In

fact all steps described above are standard ones and apply to all instruments at the VLT.

Following the standard way at ESO, the QC department creates new calibration files and will

copy them to the PWS.

Due to the huge amount of calibration data, ESO at Paranal will create new calibration data

from KMOS on its own to avoid the lengthy data transfer from Garching to Paranal.

Regarding KMOS an additional step has to be performed:

A subset of the Calib DB on the PWS has to be kept synchronized on the IWS (dashed

orange arrow). The ESO DHA has to assert this.

Data Reduction Library Design & Manual

166 of 184

IWS calib (subset of

Calib DB, see section

Error! Reference

source not found.)

Calib DB (whole set of

calibration data, see

section 9.2)

IWS: Instrument Workstation Karma: OB Preparation Tool

PWS: Pipeline Workstation RTD: Real Time Display

 (or Online Workstation) DO: Data Organiser

OWS: Offline Workstation DRS: Data Reduction Software


eve

ry

obs

erv

ati

on

wit

h

K

M

OS

every

few

month

s or

after

instru

ment

maint

ainanc

e 

PWS

DO

DRS

Calib DB

IWS calib
(subset)

IWS

RTD
IWS calib

(subset)

OWS

Calib DB

IWS calib
(subset)

User

tem

plat

e

raw

raw

products

raw

products

DRS

Data Reduction Library Design & Manual

167 of 184

Figure 55 Standard data flow at the VLT

9.2 Alphabetical listing of all calibration files

There are 5 bands (H, HK, IZ, K, YJ). For each band there are 6 rotator angles (0, 60, 120, 180,

240, 360 degrees). Therefore the band-specific calibrations will amount to 15 files.1

The “Calib DB” depicted in Figure 55 consists of the frames listed below:

PRO CATG size # comments__________________

ARC_LIST 8.5 KB 5 Arcline lists

ATMOS_MODEL 35 KB 5 Atmospheric models

BADPIXEL_DARK 48 MB 1 Badpixel frame

BADPIXEL_FLAT 289 MB 5 Badpixel frame after flat-fielding

FLAT_EDGE 1.5 MB 5 Table with edge fitting parameters

LCAL 289 MB 5 Spectral calibration file

MASTER_DARK 97 MB 1 Master dark frame

MASTER_FLAT 577 MB 5 Master flat frames

OH_SPEC 300 KB 5

REF_LINES 8.5 KB 1 Table with arcline fitting parameters

SOLAR_SPEC 50 KB 5 Solar spectra

SPEC_TYPE_LOOKUP 8.5 KB 1 Spectral lookup table

XCAL 289 MB 5 Spatial calibration file No. 1

YCAL 289 MB 5 Spatial calibration file No. 2

WAVE_BAND 8.5 KB 1 Fits table with start-/end-values of wavebands

__

Σ 8.8 GB 55 files

9.2.1 Subset of calibration files needed for Karma and
RTD (kmclipm)

The “IWS calib (subset)” consists of a subset of above frames:

PRO CATG size # comments__________________

LCAL 289 MB 5 Important: on IWS the original

XCAL 289 MB 5 filenames have to be used and

YCAL 289 MB 5 not the archived filenames (e.g.

WAVE_BAND 8.5 KB 1 lcal_HHH_HHH.fits and

 kmos_wave_band.fits)

__

1 The filter resp. grating setting can be extracted from following keywords (It is guaranted by the ICS that these

keywords always contain the same value):
ESO INS FILT1 ID ESO INS GRAT1 ID

ESO INS FILT2 ID ESO INS GRAT2 ID

ESO INS FILT3 ID ESO INS GRAT3 ID

The rotator angle can be extracted from:

ESO OCS NAANGLEx

Data Reduction Library Design & Manual

168 of 184

Σ 4.3 GB 16 files

Data Reduction Library Design & Manual

169 of 184

9.3 Calibration Schedule

9.3.1 Every few months to a year or after instrument maintainance

BADPIXEL_DARK MASTER_DARK XCAL

BADPIXEL_FLAT MASTER_FLAT YCAL

FLAT_EDGE TELLURIC LCAL

ILLUM_CORR

These calibration frames can be produced using the KMOS data reduction pipeline. As input data

new calibration exposures have to be produced using the following ICS templates with default

settings (the templates switch the filters and gratings automatically where appropriate):

Template ID DO category Associated recipe DO category

KMOS_spec_cal_dark2 DARK kmos_dark
MASTER_DARK

BADPIXEL_DARK

KMOS_spec_cal_unit3
FLAT_ON

FLAT_OFF
kmos_flat

MASTER_FLAT

BADPIXEL_FLAT

XCAL

YCAL

FLAT_EDGE

KMOS_spec_cal_wave3
ARC_ON

ARC_OFF
kmos_wave_cal

LCAL

DET_IMAGE_WAVE

To check the quality of the calibration frames the QC parameters can be checked and compared to

former values, best to be stored in an external database. Additionally a quick visual check consists

of looking at the generated DET_IMG_WAVE frames from kmos_wave_cal-recipe. Obvious

errors in the wavelength calibration are easy to identify.

The estimated execution time for the first three templates involved in this procedure is about 3.5

hours. About the same time is needed to execute the associated pipeline recipes.

9.3.2 After instrument maintainance

9.3.2.1 WAVE_BAND

This file (and as well the ones described in section 9.3.3) can be updated using the DRS pipeline

and a text file containing the actual values. In order to assert that all relevant keywords are set

correctly a script called calib_creator.sh is provided in kmosp/catalogs. The

according call looks like this:

$ calib_creator.sh WAVE_BAND ref/wave_band.txt

2 single execution at any rotator angle
3 multiple executions at following rotator angles: 0, 60, 120, 180, 240, 300 degrees

Data Reduction Library Design & Manual

170 of 184

The sample script create_all.sh shows the rather self explaining usage. All needed

reference files are located in the directory kmosp/catalogs/ref. The text files there can

either be edited manually with a text editor or easily be re-created using the ESO tool dtfits:

$ dtfits –s ‘ ‘ kmos-calib/kmos_wave_band.fits > ref/wave_band.txt

The newly created static calibration frame must be commited to the SVN repository kmos-

calib, as well the updated reference file in directory kmosp/catalogs/ref must be

commited into the SVN repository kmosp.

The exact command issued by calib_creator.sh to create a WAVE_BAND frame is:
$ esorex kmo_fits_stack \

 --type=”F2L” \

 --filename=”kmos_wave_band” \

 --mainkey=”ESO PRO CATG;string;WAVE_BAND” \

 --valid=”none” \

 --input=”ref/wave_band.txt”

9.3.2.2 REF_LINES

Introduction

The KMOS spectral calibration recipe uses a two step approach to fit the calibration lamp images

to the spectral line lists. In the first step it tries to fit a few selected well isolated (reference) lines.

Using the position of these lines a first attempt to fit the position of the lines versus their

wavelength is done. For the rest of the lines this estimate is used to detect them in a much smaller

search range.

An IDL tool is available to create and maintain a table of reference lines for each band each table

holding the lines for the three detectors.

Prerequisites

Trace files:

The IDL tool to generate the reference table needs some data input files which hold the trace over

the detector for each slitlet of each IFU in lambda direction. These data files are created using the

KMOS pipeline running the KMOS_WAVE_CAL recipe. To trigger the creation of the data files

the environment variable KMO_WAVE_CAL_DATA_PREFIX must be set. The string you

choose will prefix all data files. The file name will be completed by the recipe with band ID, IFU

and slitlet number. It is a good choice to start the KMO_WAVE_CAL_DATA_PREFIX with a

“.” character to hide the trace data files in standard directory views.

The trace data files will be created in the current working directory.

When no reference table calibration file exists yet or it is too bad to process all slitlets it is

necessary to use a different line estimation method in the KMOS_WAVE_CAL recipe. Again an

environment variable is used, KMO_WAVE_LINE_ESTIMATE. Setting it to value of “0” shall

result in a stable run of the KMOS_WAVE_CAL recipe to generate the trace data files.

Don't forget to remove the environment variables after the trace data files are generated.

Examples:

 bash shell:

Data Reduction Library Design & Manual

171 of 184

 $ export KMO_WAVE_CAL_DATA_PREFIX=.wave_cal_data

 $ export KMO_WAVE_LINE_ESTIMATE=0

 $ esorex kmos_wave_cal wavecal.sof

 $ unset KMO_WAVE_CAL_DATA_PREFIX

 $ unset KMO_WAVE_LINE_ESTIMATE

 csh shell:
 $ setenv KMO_WAVE_CAL_DATA_PREFIX .wave_cal_data

 $ setenv KMO_WAVE_LINE_ESTIMATE 0

 $ esorex kmos_wave_cal wavecal.sof

 $ unsetenv KMO_WAVE_CAL_DATA_PREFIX

 $ unsetenv KMO_WAVE_LINE_ESTIMATE

Line lists:

The IDL tool to generate the reference table needs the same line list files as used by the

KMOS_WAVE_CAL recipe of the pipeline. The combined AR and NE line list files are

expected to have the file naming convention:
 kmos_ar_ne_list_%s.fits

with %s being the lower case band name (h, k, hk, yj or iz).

Usage of the IDL tool

The IDL tool to generate the reference table is distributed as compressed TAR file. Create a new

empty directory, use it as working directory and untar the TAR file:
 $ mkdir <dirName>

 $ cd <dirName>

 $ tar -cxf <tarfile>

There are several ways to start the IDL tool

1. $ idl main.pro

Use this way if your IDL installation allows the call of IDL batch file as argument. In this

case you can edit main.pro to setup your default values for the arguments.

2. $ idl -idl_startup main.pro
This way should work with any IDL installation. Again you can edit main.pro to setup

your default values for the arguments.

3. $ idl -vm=kmo_wave_calib.sav

This way should work with any IDL installation. All required arguments must be specified

in the command line.

4. $ idl -vm=installationDir/kmo_wave_calib.sav
This way should work with any IDL installation. This way your working directory can be

different. All required arguments must be specified in the command line.

Following arguments are required by the IDL tool:

 cal_dir Specifies the directory where the line list calibration files will be found

 data_dir Specifies the directory where the trace data file will be found.

 prefix Specifies the name prefix of the trace data files.

 table Specifies the name (including the directory path) of the reference lines table

Following arguments are optional:

 table Specifies a FITS table with a set of reference line to start with. The default

 is an empty table.

 pattern Specifies file pattern for line list FITS tables. The pattern must contain at

Data Reduction Library Design & Manual

172 of 184

 least one “%s” placeholder for the band name. The default is the pattern
 kmos_ar_ne_list_%s.fits

Default values for your installation can be fixed in the file main.pro.

Examples:
 $ idl main.pro -args –table=../ref_lines.fits

 The other argument values are defined in main.pro.

 $ idl -idl_startup main.pro -args -table=../ref_lines.fits \

 --prefix=test

The other argument values are defined in main.pro.

 $ idl -vm=kmo_wave_calib.sav -args –table=../ref_lines.fits \

 --prefix=.wave_cal_data \

 -cal_dir=../calFiles \

 -data_dir=../data

9.3.3 Rarely or almost never to renew

9.3.3.1 ARC_LIST, ATMOS_MODEL, OH_SPEC, SOLAR_SPEC,
SPEC_TYPE_LOOKUP

These are calibration files can be produced using the KMOS data reduction pipeline. The

procedure is the same as described in section 9.3.2 for WAVE_BAND.

$ calib_creator.sh SPEC_TYPE_LOOKUP ref/spec_type.txt

Additional parameters as filter or star temperature have to be provided for following calibration

files:
$ calib_creator.sh ARC_LIST ref/ar_ne_list_iz.txt IZ

$ calib_creator.sh ATMOS_MODEL ref/atmos_yj.txt YJ

$ calib_creator.sh OH_SPEC ref/ohspec_H.fits H

$ calib_creator.sh SOLAR_SPEC ref/solar_h_2400.fits H 2400

(in the last example the temparature is just needed to create the correct output filename)

9.4 How to create XCAL, YCAL and LCAL

To create proper XCAL, YCAL and LCAL frames at the standard 6 rotator angles of 0°, 60°,

120°, 180°, 240° and 300° following templates have to be executed: KMOS_spec_cal_dark,

KMOS_spec_cal_calunitflat and KMOS_spec_cal_wave. Best practice is to run these

templates in a single OB with their default values.

Furthermore the following static calibration frames of type ARC_LIST, REF_LINES and

WAVE_BAND are needed. They can be found in the SVN repository kmos-calib or in the

pipeline deliverable.
 kmos_ar_ne_list_h.fits

 kmos_ar_ne_list_hk.fits

 kmos_ar_ne_list_k.fits

 kmos_ar_ne_list_iz.fits

Data Reduction Library Design & Manual

173 of 184

 kmos_ar_ne_list_yj.fits

 kmos_wave_band.fits

 kmos_wave_ref_table.fits

The following workflow creates all needed calibration frames for the RTD, for the pipeline

workstation and for anyone using the KMOS DRS pipeline. The needed bash-script

easySPARK_calibration.sh can either be found in the SVN repository

kmosp/tools/easySPARK or in the bin folder of the installed pipeline (e.g. using the

distributed kmos-kit). easySPARK_calibration.sh makes calls to

easySPARK_dark.sh , easySPARK_flat and easySPARK_wave_cal.sh . Therefore

it is best if these scripts are available in the PATH environment variable.

 Update the environment variable PATH to the directory containing the above mentioned

scripts:

o $ export PATH=<script_installation_path>:$PATH (for bash)

or

o > setenv PATH <script_installation_path>:$PATH (for tcsh)

 Set the environment variable KMOS_CALIB to the directory containing the above

mentioned static calibration frames:

o $ export KMOS_CALIB=<...>/kmos_calib (for bash)

or

o > setenv KMOS_CALIB <...>/kmos_calib (for tcsh)

 Change into directory where you want to create the calibration frames

 Execute the script. As argument a single file (path and name) is required. All associated

exposures are retrieved via the OBS.START and TPL.START keyword, which is

identical for all exposures generated in a single template. It is expected that the raw data

frames are stored in directories with the same data format like on the pipeline workstation

in Paranal (e.g. 2013-03-20), the script searches for frames automatically one day back

and forth to be sure to find all frames belonging to the same OB:
o $ easySPARK_calibration.sh \

 /data-ut1/2013-03-20/KMOS_SPEC_CAL080_0068.fits

 When the associated frames have been collected, they will be printed to the terminal

window to be cross-checked again. Hit return to continue with Yes.

o kmos_dark: at least 3 frames recommended

o kmos_flat: at least 21 frames recommended for 6 rotator angles (3 off-frames, 6

times 3 on-frames)

o kmos_wave_cal: at least 7 frames expected for 6 rotator angles (1 off-frame, 6

times 1 on-frame)

 You will be asked if a new directory should be created. Hit return to continue with Yes.

 First the dark recipe will be executed, then the flat recipes and then wave calibration.

Hints:

 In case the KMOS_spec_cal_dark has been executed multiple times, the user can choose

which frames to use.

 If more than 5 TPL.START IDs are present in the same OB for

KMOS_spec_cal_calunitflat and KMOS_spec_cal_wave, the script exits with an

error. In this case the frames have to be reduced individually.

Data Reduction Library Design & Manual

174 of 184

 Take care that no old XCAL, YCAL or LCAL files are to be found in KMOS_CALIB. For

example if an easySPARK-script doesn’t find such in the directory where it has been

started, it will query as well KMOS_CALIB. So it could happen that non matching XCAL,

YCAL and LCAL are processed together.

 In order to obtain help on a specific script, just execute the script without an argument. If

just the sof-files should be created without running ESOREX, simply provide sof as an

additional parameter.

 easySPARK_calibration.sh can be decomposed into following sub scripts, e.g. if

the templates accidentially haven’t been run in the same OB:
o easySPARK_dark.sh
o easySPARK_flat.sh
o easySPARK_wave_cal.sh

Data Reduction Library Design & Manual

175 of 184

10 Updating the DRS version number

When updating the version number of the KMOS DRS it has always to be remembered that the

project kmclipm is included in kmosp, but acts as well as standalone library in the RTD.

Therefore some steps have to be completed for kmosp as well for kmclipm:

 Update all repositories (svn update)
o kmosp

o kmosm

o kmosc

o kmos-calib

o Eventually pipetools

 Perform unit tests: run make check in
o kmosp/kmos
o kmosp/recipes

o kmosp/kmclipm

 Update the version number

o kmosp/configure.ac (in AC_INIT())

o kmosc/gasgano/KMOS.prefs (in RECIPE_SET)

 If this user manuals get a new version number it has to be changed as well in

kmosm/Makefile under USERMANUAL_VERSION, COOKBOOK_VERSION and

REFLEXTUTORIAL_VERSION

 Add short comment in
o kmosp/ChangeLog

 Commit changes to repository (svn commit)

 Prepare to tag all repositories in copying the working trunk to branches. The tag itself is

set by ESO.
svn copy –m”MESSAGE”

http://svnhq2.ehq.eso.org/p2/trunk/Pipelines/kmos

http://svnhq2.ehq.eso.org/p2/branches/Pipelines/kmos/kmosp_v

1_2_7_20131115

Data Reduction Library Design & Manual

176 of 184

11 Environment variables

Here all environment variables influencing the behaviour of the pipeline are described.

11.1 Variables influencing fitting of slitlet edges

KF_ALLPARS (default if not set: 1)

Used in kmos_flat recipe.

When set to 1 all coefficients of the polynomial of an edge are to be corrected, also when just one

of these coefficients is an outlier. When set to 0 only the outlier is to b e corrected.

KF_CH (default if not set: 1)

Used in kmos_flat recipe.

When set to 1 chebyshev polynomials are used to fit the fitted parameters. When set to 0 normal

polynomials are used.

KF_SIDES (default if not set: 2)

Used in kmos_flat recipe.

This variable can either be set to 1 or 2. When set to 2 the left and right edges are examined

individually. When set to 1 all edges are examined as one group.

KF_FACTOR (default if not set: 4)

Used in kmos_flat recipe.

This factor defines the threshold factor. All parameters deviating KF_FACTOR*stddev are to be

corrected.

11.2 Variables influencing wavelength calibration

KMO_WAVE_LINE_ESTIMATE (default if not set: 2)

Used in kmos_wave_cal recipe.

This environment variable controls which method is used to match the detected lines with the line

lists (find line positions together with their wavelength). It is of integer type with following

values:

 “0”: Fit the lines using the CPL routine cpl_ppm_match_positions(). This is a

stable method although very likely the match is bad at least for a few IFUs.

 “1”: Fit the lines using the routine irplib_wlxcorr_best_poly() from the

CRIRES pipeline which tries a kind of cross correlation between the detected lines and the

line list. This method needs a first guess for the polynomial coefficients which will be read

from a file kmo_wave_guess_polynom_table.fits stored in the local working directory.

This file can be created by setting the KMO_WAVE_LINE_ESTIMATE environment

variable to 16 and then execute the kmos_wave_cal recipe.

 “2”: Fit the lines by first match a set of reference lines, then fit a third order polynomial to

search for the positions of the other lines. This method needs a set of reference lines which

is stored in a special calibration file. See section 9.3.2.1 how to create/edit this calibration

file.

Data Reduction Library Design & Manual

177 of 184

 “16”: By setting the fifth bit of KMO_WAVE_LINE_ESTIMATE (adding the value 16)

the first guess table for the polynomial coefficients will be updated after the line positions

are detected using the CPL routine cpl_ppm_match_positions().

 “x”: By setting the sixth bit of KMO_WAVE_LINE_ESTIMATE (adding the value 32)

 the first guess table for the polynomial coefficients will be updated after all fit

coefficients are fitted again across the detector. As this fitting across the detector is

currently switched off this will not work.

The default value is “2”. The method “0” is used to create the reference line table. Method “1” is

not recommended.

KMO_WAVE_CAL_DATA_PREFIX

Used in kmos_wave_cal recipe.

If this environment variable is set, special FITS files will be created to support the editing of the

reference lines calibration file. The value of this environment variable will be used as prefix for

those files. As there will be generated more than 2000 files this prefix usually starts with a “.”

character to hide them from file listings. The final file name will be:

{PREFIX}_{BAND}_ifu_{IFUNUMBER}_slitlet_{SLITLETNUMBER}.fits

LC_ALLPARS

LC_CH

LC_SIDES

LC_FACTOR

These variables control the fitting of the polynomial coefficients found for the spectral calibration

over the spatial detector axis. As this functionality is currently turned off all LC_* variables

are ignored.

11.3 Variables influencing reconstruction

KMO_WAVE_RECONSTRUCT_METHOD (default if not set: “lwNN”)

Used in kmos_wave_cal recipe.

Specifies the reconstruction method for creating the reconstructed detector image. Following

values are allowed:

 NN nearest neighbor

 lwNN linear weighted nearest neighbor (default)

 swNN square weighted nearest neighbor

 MS Modified Shephards method

 CS cubic spline



KMCLIPM_PRIV_RECONSTRUCT_LUT_MODE (default if not set: FILE)

Influences the handling of the LUT. There are four modes. They are explained in detail in section

6.4.

 NONE

 MEMORY

 FILE

 BOTH

Data Reduction Library Design & Manual

178 of 184

11.4 Variables influencing RTD reconstruction

RTD_CHECK_FOR_SATURATION

If defined the detector image given to reconstruction will be checked for saturated pixels.

Saturated pixels will be added to the bad pixel mask.

KMO_RECONSTRUCT_BADPIXEL_VALUE

If this variable is not set bad pixel will be ignored. If it is set all bad pixels will be set to this value

before reconstruction.

RTD_RECONSTRUCT_METHOD (default if not set: NN)

If this variable is not set RTD reconstruction will use simple nearest neighbor reconstruction. It

can be set to:

 NN nearest neighbor (default)

 LWNN linear weighted nearest neighbor

 SWNN square weighted nearest neighbor

 MS Modified Shephards method

 CS cubic spline

11.5 Variables influencing the debugging

KMO_TEST_VERBOSE (default if not set: no error messages shown)

Switches on and off error-messages for the unit tests globally. It is only seen if a test fails or not.

Either et this variable or look at the generated log files for debugging the unit tests.

KMCLIPM_ DEBUG (default if not set: no fit-parameters displayed or stored)

Prints gauss-fit parameters to the console and saves them as well in a file at

KMCLIPM_DEBUG/tmp/kmclipm_fitpar.txt

This variable is somehow obsolete, since now all fit aprameters are returned from

kmclipm_rtd_image() anyway. This way the ICS software has full control over the decision how

to handle a reconstructed and collapsed cube.

Data Reduction Library Design & Manual

179 of 184

Appendix A Data Processing Tables

Recipe Template Classification Keywords Calibration Database Data Products QC1 Parameters

kmos_dark KMOS_spec_cal_dark DO cat = DARK

DPR.TYPE = DARK

DPR.CATG = CALIB

DPR.TECH = IMAGE

- Master Dark frame

 Preliminary Bad pixel mask
 Dark Current

 Read noise

 Mean Bias

 Mean Read Noise
 Number of bad pixels

 Mean Dark Current

Processing: iterative mean of frames; identify bad pixels

FITS keywords: DIT, MINDIT

kmos_flat KMOS_spec_cal_calunit DO cat = FLAT_ON

DPR.TYPE = FLAT,LAMP

DPR.CATG = CALIB

DPR.TECH = SPECTRUM

DO cat = FLAT_OFF

DPR.TYPE = FLAT,OFF

DPR.CATG = CALIB

DPR.TECH = IMAGE

Preliminary Bad pixel mask
 (from kmos_dark)

 Master Flat
 Spectral Curvature Calibration frames

 Final Bad pixel mask

 Mean shift of slitlet edges
 RMS shift of slitlet edges

 Lamp efficiency

 Number of saturated pixels in flatfield
 Mean S/N in flatfield

 Mean change in 0th order coefficients

 RMS change in 0th order coefficients
 Mean change in 1st order Y coefficients

 RMS change in 1st order Y coefficients

Processing: subtract mean of on & off frames; identify pixels that are bad or not illuminated; fit functions to spectral traces; generate frame where the pixel value corresponds to the spatial position (in
arcsec) of that pixel

FITS keywords: INS.FILTi.NAME, INS.LAMP3.ST, INS.LAMP4.ST

kmos_illumination KMOS_spec_cal_skyflat DO cat = FLAT_SKY

DPR.TYPE = FLAT,SKY

DPR.CATG = CALIB

DPR.TECH = IFU

Final Bad pixel mask
Master Flat frame

Spectral Curvature Calibration frame

Wavelength Calibration frame

 Illumination Correction frame Spatial uniformity of flatfield
 Max deviation of an IFU

 identification of that IFU

 Max non-uniformity within an IFU
 identification of that IFU

Processing: average frames; reconstruct cubes; collapse to images; normalise

FITS keywords: INS.FILTi.NAME

kmos_wave_cal KMOS_spec_cal_wave DO cat = ARC_ON

DPR.TYPE = WAVE,LAMP

DPR.CATG = CALIB

DPR.TECH = SPECTRUM

DO cat = ARC_OFF

DPR.TYPE = WAVE,OFF

DPR.CATG = CALIB

DPR.TECH = IMAGE

Final Bad pixel mask

Arc line wavelength table

 Wavelength Calibration frame Arc lamp efficiency

 Number of saturated pixels in arc frame

 Spectral Resolution
 Mean change in 0th order coefficients

 RMS change in 0th order coefficients

 Mean change in 1st order Y coefficients
 RMS change in 1st order Y coefficients

Processing: subtract on & off frames; fit functions to arc line traces; generate frame where the pixel value corresponds to the wavelength (in microns) of that pixel

FITS keywords: INS.FILTi.NAME, INS.LAMP1.ST, INS.LAMP2.ST

Data Reduction Library Design & Manual

180 of 184

Recipe Template Classification Keywords Calibration Database Data Products QC1 Parameters

kmos_std_star KMOS_spec_cal_std DO cat = STD

DPR.TYPE =

 OBJECT,SKY,STD,FLUX

DPR.CATG = CALIB

DPR.TECH = IFU

Final Bad pixel mask

Master flat frame

Wavelength Calibration frame
Spectral Curvature Calibration frame

Illumination Correction Frame

Model Atmospheric Transmission Spectrum
Solar Spectrum

Spectral Type Lookup Table

 Telluric Correction Spectrum

 Images of the stars

 (for seeing measurement)
 Flux Calibration

 (if star magnitude given)

 Mean Zeropoint

 Mean & Std Dev Throughput

 Mean Spatial Resolution
 Straightness of corrected trace

Processing: subtract object & sky frames; reconstruct cube; extract spectrum; correct stellar imprint; calculate flux calibration

FITS keywords: INS.FILTi.NAME, OCS.ARMi.TYPE

kmos_sci_red KMOS_spec_obs_nodtosky
KMOS_spec_obs_stare
KMOS_spec_obs_mapping

DO cat = SCIENCE

DPR.TYPE = OBJECT,SKY

DPR.CATG = SCIENCE

DPR.TECH = IFU

Final Bad pixel mask

Master flat frame
Wavelength Calibration frame

Spectral Curvature Calibration frame

Illumination Correction Frame
Telluric Correction Spectrum

Reduced Science Cube none

Processing: subtract object & sky frames; reconstruct cube; divide out telluric imprint; calibrate flux

FITS keywords: INS.FILTi.NAME, OCS.ARMi.ALPHA, OCS.ARMi.DELTA, OCS.ARMi.TYPE, OCS.ARMi.NAME

kmo_rtd_image triggered by CLIP N/A Final Bad pixel mask
Master Dark frame

Wavelength Calibration frame

Spectral Curvature Calibration frame
OH line wavelength table

Reconstructed images
 (to display on RTD)

none

Processing: subtract object & sky/dark frames; reconstruct cube; excise regions near OH lines; collapse spectral axis to create image

FITS keywords: N/A

Data Reduction Library Design & Manual

181 of 184

Appendix B The KMOS data interface dictionary

The column dependency indicates that the QC parameter will be different for (i.e. depends on) each detector (‘D’), each IFU (‘I’) and/or each

bandpass (‘B’) respectively.

Table of (possibly) generated keywords by the calibration recipes of the DRS:

name header unit data

type

depen-

dency

description

HIERARCH ESO PRO ARMx NOTUSED primary - string I This keyword is only present when a recipe wasn’t able to process a specific IFU

([] IFU set inactive by <recipe_name>)

HIERARCH ESO PRO BOUND IFUi_L primary pix int I This keyword contains the left bound of the area on the detector containing IFU

i. This keyword is generated in kmos_flat and stored in the xcal-frame for

every active IFU. This information is reused when reconstructing.

HIERARCH ESO PRO BOUND IFUi_R primary pix int I This keyword contains the right bound of the area on the detector containing IFU

i. See also comment above.

HIERARCH ESO PRO ROT NAANGLE extension deg double D This keyword is set by kmos_flat and kmos_wave_cal to indicate which

extension belongs to which rotator angle.

Table of generated QC keywords by the calibration recipes (see section 5.1 for more detailed information):

name header unit data

type

depen-

dency

description

kmos_dark

HIERARCH ESO QC DARK extension adu double D mean value of Master Dark

HIERARCH ESO QC DARK MEDIAN extension adu double D median value of Master Dark

HIERARCH ESO QC RON extension adu double D mean value of noise of Master Dark

HIERARCH ESO QC RON MEDIAN extension adu double D median value of noise of Master Dark

HIERARCH ESO QC DARKCUR extension e-/s double D iterative mean dark current in Master Dark divided by gain

HIERARCH ESO QC BADPIX NCOUNTS extension - int D number of bad pixels in Master Dark

Data Reduction Library Design & Manual

182 of 184

kmos_flat

HIERARCH ESO QC FLAT EFF extension e-/s double DB relative brightness of flatfield lamp

HIERARCH ESO QC FLAT SAT NCOUNTS extension - int DB number of saturated pixels in Master Flat

HIERARCH ESO QC FLAT SN extension - double DB signal-to-noise in Master Flat

HIERARCH ESO QC GAP MEAN extension pix double DB mean gap width between slitlets

HIERARCH ESO QC GAP SDV extension pix double DB standard deviation of gap width between slitlets

HIERARCH ESO QC GAP MAXDEV extension pix double DB maximum deviation of gap width between slitlets

HIERARCH ESO QC SLIT MEAN extension pix double DB mean slitlet width

HIERARCH ESO QC SLIT SDV extension pix double DB standard deviation of slitlet width

HIERARCH ESO QC SLIT MAXDEV extension pix double DB maximum deviation of slitlet width

HIERARCH ESO QC BADPIX NCOUNTS extension - int D number of bad pixels in Master Flat

kmos_wave_cal

HIERARCH ESO QC ARC AR EFF extension e-/s double B relative brightness of argon arclamp

HIERARCH ESO QC ARC NE EFF extension e-/s double B relative brightness of neon arclamp

HIERARCH ESO QC ARC SAT NCOUNTS extension - int B number of saturated pixels in arc frame

HIERARCH ESO QC ARC AR POS MEAN extension km/s double DB mean of all Argon reference line position offsets (measured vs. expected)

HIERARCH ESO QC ARC AR POS MAXDIFF extension km/s double DB maximum offset of measured vs. expected Argon reference line position

HIERARCH ESO QC ARC AR POS MAXDIFF ID extension - int DB identification of the IFU which has the maximum offset

HIERARCH ESO QC ARC AR POS STDEV extension km/s double DB mean standard deviation of position offset for Argon reference line

HIERARCH ESO QC ARC AR POS 95%ILE extension km/s double DB mean 95%ile of position offset for Argon reference line

HIERARCH ESO QC ARC AR FWHM MEAN extension km/s double DB mean of FWHM for Argon reference line

HIERARCH ESO QC ARC AR FWHM STDEV extension km/s double DB mean stdev of FWHM for Argon reference line

HIERARCH ESO QC ARC AR FWHM 95%ILE extension km/s double DB mean 95%ile of FWHM for Argon reference line

HIERARCH ESO QC ARC NE POS MEAN extension km/s double DB mean of all Neon reference line position offsets (measured vs. expected)

HIERARCH ESO QC ARC NE POS MAXDIFF extension km/s double DB maximum offset of measured vs. expected Neon reference line position

HIERARCH ESO QC ARC NE POS MAXDIFF ID extension - int DB identification of the IFU which has the maximum offset

HIERARCH ESO QC ARC NE POS STDEV extension km/s double DB mean standard deviation of position offset for Neon reference line

HIERARCH ESO QC ARC NE POS 95%ILE extension km/s double DB mean 95%ile of position offset for Neon reference line

HIERARCH ESO QC ARC NE FWHM MEAN extension km/s double DB mean of FWHM for Neon reference line

HIERARCH ESO QC ARC NE FWHM STDEV extension km/s double DB mean stdev of FWHM for Neon reference line

HIERARCH ESO QC ARC NE FWHM 95%ILE extension km/s double DB mean 95%ile of FWHM for Neon reference line

kmos_illumination

HIERARCH ESO QC SPAT UNIF primary adu double B uniformity across all illumination corrections

HIERARCH ESO QC SPAT MAX DEV ID primary - int B identification of the IFU whose illumination correction deviates most from unity

Data Reduction Library Design & Manual

183 of 184

HIERARCH ESO QC SPAT MAX DEV primary adu double B value of this deviation

HIERARCH ESO QC SPAT MAX NONUNIF ID primary - int B identification of the IFU which has the most non-uniform illumination correction

HIERARCH ESO QC SPAT MAX NONUNIF primary adu double B standard deviation of the illumination correction for this IFU

kmos_std_star

HIERARCH ESO QC ZPOINT extension mag double DB zeropoint (magnitude) [stored in extension headers of telluric]

HIERARCH ESO QC THRUPUT extension - double DB throughput of KMOS (i.e. ratio of number of photons detected to number

expected from the standard star) [stored in extension headers of telluric]

HIERARCH ESO QC THRUPUT MEAN primary - double B mean of throughput of all detectors [stored in primary header of telluric]

HIERARCH ESO QC THRUPUT SDV primary - double B standard deviation of throughput of all detectors [stored in primary header of

telluric]

HIERARCH ESO QC SPAT RES extension - double DB spatial resolution (FWHM) [stored in extension headers of std_image]

HIERARCH ESO QC STD TRACE extension pix double DB a measure of how straight the corrected trace of a star is (i.e. how well the

spectral curvature has been corrected) [stored in extension headers of std_image]

HIERARCH ESO QC NR STD STARS primary - int I the number of standard stars in a standard star exposure [stored in primary

headers of all output frames]

HIERARCH ESO QC SNR extension - double B the signal to noise ratio [stored in extension headers of noise_spec]

Table of generated keywords by kmo_fit_profile (see section 7.3.5 for more detailed information):

name header unit data

type

depen-

dency

description

HIERARCH ESO PRO FIT MAX PIX extension pix double I Position of the maximum (1D fit)

HIERARCH ESO PRO FIT MAX PIX X extension pix double I Position of the maximum in x (2D fit)

HIERARCH ESO PRO FIT MAX PIX Y extension pix double I Position of the maximum in y (2D fit)

HIERARCH ESO PRO FIT CENTROID extension pix double I Position of the centroid (1D fit)

HIERARCH ESO PRO FIT CENTROID X extension pix double I Position of the centroid in x (2D fit)

HIERARCH ESO PRO FIT CENTROID Y extension pix double I Position of the centroid in y (2D fit)

HIERARCH ESO PRO FIT RADIUS X extension pix double I Radius in x of fitted 2D profile

HIERARCH ESO PRO FIT RADIUS Y extension pix double I Radius in y of fitted 2D profile

HIERARCH ESO PRO FIT OFFSET extension adu double I Background/offset

HIERARCH ESO PRO FIT INTENS extension adu double I Intensity of the function

HIERARCH ESO PRO FIT SIGMA extension pix double I Sigma of the gauss function

HIERARCH ESO PRO FIT ALPHA extension - double I Alpha of fitted Moffat function

Data Reduction Library Design & Manual

184 of 184

HIERARCH ESO PRO FIT BETA extension - double I Beta of fitted Moffat function

HIERARCH ESO PRO FIT SCALE extension adu double I Scale of fitted Lorentz function

HIERARCH ESO PRO FIT ROT extension deg double I Rotation angle (clockwise)

HIERARCH ESO PRO FIT ERR CENTROID extension pix double I Error in position of the centroid (1D fit)

HIERARCH ESO PRO FIT ERR CENTROID X extension pix double I Error in position of the centroid in x (2D fit)

HIERARCH ESO PRO FIT ERR CENTROID Y extension pix double I Error in position of the centroid in y (2D fit)

HIERARCH ESO PRO FIT ERR RADIUS X extension pix double I Error in radius in x of fitted 2D profile

HIERARCH ESO PRO FIT ERR RADIUS Y extension pix double I Error in radius in y of fitted 2D profile

HIERARCH ESO PRO FIT ERR OFFSET extension adu double I Error in background/offset

HIERARCH ESO PRO FIT ERR ROT extension deg double I Error in rotation angle (clockwise)

HIERARCH ESO PRO FIT ERR INTENS extension adu double I Error in intensity of the function

HIERARCH ESO PRO FIT ERR SIGMA extension pix double I Error in sigma of the gauss function

HIERARCH ESO PRO FIT ERR ALPHA extension - double I Error in alpha of fitted Moffat function

HIERARCH ESO PRO FIT ERR BETA extension - double I Error in beta of fitted Moffat function

HIERARCH ESO PRO FIT ERR SCALE extension adu double I Error in scale of fitted Lorentz function

HIERARCH ESO PRO FIT RED CHISQ extension - double I Reduced chi square error of the fit

___oooOOOooo___

