Protocol Reader 1.0 User's Guide

The Protocol-Reader Manual

(version 1.0)

10" April 2007

Version

History

Introduction

Objectives of this
Manual

Operation system
Support

About this
Document

Protocol Reader 1.0 User's Guide

Preface

The manual is written to support Protocol Reader Version 1.0.0
Copyright© 2006-2008 james.shen

Here describe the history of the software version:

Version Date Comments

0.9a 2006.12.20 Internal Test Version

1.0 2007.2.28 Software Releasad (Beta Vesion)
2007.4.10 Document Released

Protocol Reader is a powerful protocol-analyser tool for parsing and displaying
received binary messages. With an easy-to-use interface and highly advanced
decoding engine, it can be used to support all levels of protocols such as IP based
protocols (TCP, UDP, etc), Telcomunication protocols(MTP3,ISUP, TUP, etc) and
user-defined packets.

Unlike other protocol anayzer tool, we provide advanced features to meet future
needs. Instead of waiting long time for a new protocol decoder to be released,
you can easily write a script to support new protocols in aincredible short time
by yourself.

This manual describes all the basics and features that Protocol Reader provides,
you'll get an understanding of what Protocol Reader is, what its features are, and
how to use it.

This manual is part of documents to improve the usability of Protocol Reader.

Windows X P/2000/NT/ME/98/95

We hope you will find it useful, and look forward to your comments and valueble
feedback.

1

2

Protocol Reader 1.0 User's Guide

OVERVIEW ..ottt s 5
11 INTRODUCTION «.covtrietreesaeeseesseeseesseessees e sssees st es bbb bbb 5
12 WHO WILL BENEFIT FROM THIS SOFTWARE .0t etrtseuisessressessssssssssssssessssessssesssssssssessssesssssssessssessssesssssssssssnsns 6
13 DEVELOPMENT AND MAINTENANCE ...c.vuuceuerseseesessessessessessessesssessessssssssessssssssesssssssssassssssessasssessassssssesssenes 6

QUICK ST ART ..ottt 7
2.1 INSTALLATION ..vtuverseeseessseseessseeseessesssessssssseessessseessesssessssssessssssesssesssesssesssessssssesssessessssssesssssssesssessessssssncs 7
22 USER INTERFACE .cuvucruersesessessessssssesseessessess s st ss s ssess s sttt sesssssssssnes 8
2.3 USING PROTOCOL READERvutieiiiinisinessinsssssssssssss s sttt sttt sssssssssssssssssessssessssesssessssesns 12

2.3.1 Use as an independant protoCol @NAIYZETc.vvveeerinrreinsnsissssesssssesssssssessesssssssssssssens 12

2.3.2 Communicate with Other @pPlICALION ..o s 13

2.3.3 DEMONSITALION.vverervececise sttt bbbttt 15

SCRIPT DEVELOPING GUIDEcoutiiieniiiteireieseisieseee st s sssssse st st sssssssesssssnes 17
3.1 TUTORIAL OF SYNTAX c.vvueuesessssssssssssssssssssssssessssesssessssessesessessssssssessssessssessssessasassesassessssessssessssessssessesssss 17

311 BASIC AA LYPES ..vurerreeerererrire sttt 17

312 Complicated data tyPe: SITUCIUIE. ...t ssssessns 18

3.13 BaSIC SYNtAX COMPONENESo.curierieriereieeeseeseessesessses s bbbt sb bbbt 20

3.14 Enhanced SyntaX COMPONENLSccvrrreerrenrereiessnesessessesssssssssessssssssssssssssssssssssssessssssessesssssssses 26

3.15 Architecture of @ tyPICAI SCIPL......c.vvrierrerireiierei bbb 26

3.16 System reserved CoNStS and FUNCHIONS ..o s 30
32 DEVELOPING PROTOCOL SCRIPToutuueicesersessssessssssssessesssesssssssssesssss s st sssssssssssssssssssssssssssssessssssssses 36

321 Definition of the SAMPIE PrOtOCOL ...t 36

3.22 01T OSSOSO 39

3.2.3 Define root node of thiS ProtOCOLc.viniiricnee s 39

3231 Create hiDErarchy StTUCIUIEcvrvererriressissssssss st sss st sss s ssssssnsens 39
3.2.3.2 Implement every iNdIVIAUAl fIEIT ..o s 40
3.24 Define every child branch of this Protocol ... 43
324.1 Protocol branch: OCLEt SIEAM ...t 43
3.24.2 Protocol Branch: ip @d0reSS ... sees 44
3243 Protocol branch: BCD SEIEAM ..ottt s ssssssssssssssssssessnns 45
3244 Protocol branch: string with typeof attribULE ..o 46
3245 Protocol branch: fIXEd SIZE @AY ... ssssseessans 47
3.24.6 Protocol branch: UnfiXed SIZE @rTaYc.cevrrremrrnresinsnsesssssesessssssssessssssssssssssesssssssssenes 48
3.24.7 Protocol branch: tIMESIAMP.......ciii it ssees 49

3.25 SUMMATY c.ttiiri ettt 52
33 ADVANCED TOPICS ...covuvieeserssessessesssessesssessss st 53

331 Field deClared @S SHUCIUIE ...ttt eb bbbt 53

3.32 Structure With TYPEOT AUvvvverereieesrese st sssnsessens 54

3.33 Field With ChOICE AITIDULEcvvevceccsrsrce s 57

1) Name Of ChOICE fIEIU.........vverrreeerses st 57
2) DECIATEIMAD. ... vvevererriceeirerisse s bbb s 58

3.34 Field With array AttrDULE ...ttt 60

34 DEBUG THE SCRIPT w..vouceueesesessessssessessesssessessesssessessssssessesssessessessssssssssssesssssessesssssssssessasssessssasssesssssesseses 62

Protocol Reader 1.0 User's Guide

35 AAPPENDIX ¢1v1oveueesesceesses s sssss s s s 63
351 DEfAUIt AECOTR TUIE «....eveeere ettt bbb 63
352 Default dUMP fOMMAL.......cc.virecrr st snes 63
3.5.3 System reserved ProCess fOr OVEITIUR ... sss s 64
PLUG-IN DEVELOPING GUIDE ..ottt sss bbb 66

Protocol Reader 1.0 User's Guide

1 Overview

1.1 Introduction

Protocol Reader is a powerful protocol analyse tool for parsing and displaying received
binary messages. With an easy-to-use interface and programable kernel, it can support
variety of protocols such as | P based protocols(TCP,UDP, etc), Telcomunication protocols
(MTP3,ISUP,TUP, etc) and user -defined packet.

Unlike other protocol analyzer tool, we provide advanced features to meet future needs, not
only for standard protocols, but also for user-defined protocols. Instead of waiting long
time for a new protocol decoder to be released, you can easily write a script to support new
protocols in aincredible short time by yourself.

Main features and characteristics:

= Display packets content with detailed protocol information by hiberarchy.

= Excelent protocol-decoding kernel for supporting new or specific types of messages,
Script development environment allow you to write a script with simple and familiar
syntax, no boring program involved. Protocol Reader make it easier.
Write excellent script and share it with others makes it easy to support even newest
protocols.

= Plug-inis supported to dea with complicated protocols or specific requirement.

= Protocol Reader can be used as independent data analyzer, or integrated with other
application. A binary-packet-accepting interface is provided for accepting raw data
from any external applications.

= Smart real-time analyzer.
You can use manua or automatic decode mode to dea with the constantly coming

message.

= Two display mode, three comment mode and some alternation is provided for your
preference, easy to use.

= Import and export feature is provided for packets management.

Note: Protocol Reader is not developed to be a sniffer tool. We focus our work on
analyzing packet, not captureing packet, but you can intergrated it with sniffer
softwares through the binary-packet-accepting interface, for details about this
interface, See chapter 2.3.2 Communicate with other application

Protocol Reader 1.0 User's Guide

1.2 Who will benefit from this software

Protocol Reader can be used as message monitor or debug tool for software manufacturers,
protocol analyzers and program devel opers.

It is useful when you develop or debug applications which deal with protocol or have data
communication with each other. This software is helpful especialy for those who want to
have atool to support their own protocol or their own frame format, because no other
software can be found to meet such specific requirement.

1.3 Development and maintenance

Protocol Reader was originally developed by James.shen . Thisisthe first released version,
and ongoing development and continually improvement will continue. Our aim is to make
Protocol Reader to be one of the best softwares that are comparable to any other
commercia anayzer.

We will create and keep aloose group of individuas to fix bugs, add new functions,
improve manual document and develop new protocol scripts.

Technically, the code is still considered beta, sothere's always room for improvements. All
contributions and feedbacks are welcome. Our team, the users and devel opers worldwide
would benefit from your efforts, and we will merge useful contributions into the newly
released software.

If you have any feedback about Protocol Reader, please send them through
= Website http://aries-studio.vicp.net/soft/Protocol Reader.html
« EmailAddress shen bd@sohu.com

Note: When giving your feedback, it is helpful if you supply following informations

. Subject type (problem, comment or new script,etc.)
description of your feedback (the error/warning message you get, and the
relate script file, etc.)

Protocol Reader 1.0 User's Guide

2 Quickstart

2.1 Installation

To ingdl Protocol Reader , follow these steps:

1. Download this software from Website
The most authoritative source for downloads is the Protocol Reader download website

at www.....com/download.html.

2. For installion package, run setup.exe to install the software to the destination fold.
For compress package, uncompress the software to the destination fold.

3. After asuccessful installation, you can begin to use Protocol Reader.

In following Figure, you can see a breakdown of the installation directories contained in the

Protocol Reader distribution.

Elj Protocal Reader

: J doc
=12 Plugins
“47) ProjectPlugln
-7 Seript

Note: Asabeta version, you don't need to register this software.

2.2 User Interface

Protocol Reader 1.0 User's Guide

Protocol Reader’s graphical user interface is easy to use This chapter covers the main
components of its Graphical User Interface (GUI).

[Crmodemersd BLE
— I
Fari [CommaakiGE praastt =]
_}: Fanr Taariplice Comp il
& = mag = IRl of mcBilicy SERETVi..
s Yazaicn el] i
Tate TRl of moinl liny oarceing SEC 1THTA onivi MainVieW
LEITL 31 .
u Window
Jimellizg TETELTFT Icmntify the bype of ectiwicy imveo.. GISE_OFI_DITACH AS
Icrarld FaWBLE o
H INED Ireermaticnal Ranile dohecoriksr Td. .
L sawg) s u
B TSTSDN Rchile Stwcicn Irntecrstiorel TSDH ..
Lan TRERLTEY B
Bie? 1 -— L
kdraan_ Trdic -ni--— Ldrsas Trdicarar ITWIATAATLONA] hisr=r
Hibi=2 1EGPLAD 11610 —— OO0l WEEECIA) BISH JEILESt LI DENKS TEIEPAOTF PURHEDLE) FIA0
RELETH TEFEITTY fountcylode-BesiorelTertCode-Serin. . BEIE2010019 00
IHEL lan EL Mo dnad B oo
= RAI T i = 3
per BT orimrtst d e aloif
[napp e Tpri Wegini |
i) TEEL & P TloT Tt
RAZ TETHLTEY 01 T TRL 4 aekidliy € uring S ONTE, LESE O _MTTRCH T
Cuilla or SAc o B b E 1
T AT Ay ol Rl § AT N TFETwmiar rsghsd Frodari] M
| » nmm o " = essage
. |14 1T FIF_IEUTOVE B H
| = omnwr @ LIZE O ETcH B Window
Nankis ik Ao s Tessiuls
g E|
oL 03 o2t oz af o Il oL &5 9z 0z 02 40 8F 10 G0 &4 FD 3L 00 0L 00 97 o1 oo DONEEI Beoee i edoos Hexdata
0L 4 PE DA B E
Window
Localiabrg =730 5 [Tobd.p Pelon Wemeg. 2 Serpl | Efysher, o ifded Mg e e o it Trn_LIG PRk

Figure 2.1 Main Window

For this version, there are three main components to the window shown in Figure 2.1:

MainView Window

Figure 2.1 shows what atypica MainView window looks like. The main pane is the
protocol detail view. We wsethe protocol tree to display and access the details and
components of protocols contained inside the binary packet. The tree looks familiar to
you as one you might normally use to navigate afile system. The tree on the “Name
Column” alows you to navigate around the filds of the protocol.Clicking on various
parts of this protocol tree will highlight corresponding hexadecimal and ASCII output in
the bottom pane. Both of the main pane and the bottom pane areadjustable in size by
clicking on the seperator row between the panes and dragging up or down.

Table 2.1 Default Columns of the main pane

Column Name

Description

the column heading to show it.

Name display the name of protocol item
(defined in script file, see...)
Location display current location information of thisitem

this column isinitially hided, If required, you can click and drag

Protocol Reader 1.0 User's Guide

BitMask show how many bits or bytes current item has. ‘' B’ mean bytes, and
‘b’ mean hits.
Description description or remark of current item if present

(defined in script file, see...)

Comment display the comment of the current protocol item’s decoded value.
there are three format for selection :

Format I Comment (if present) :J

[Yalue I:I}'
Yalue & Comment

. Comment (if present)
If the definition of value-to-comment dump is present, show
comment, otherwise show the value.
It is the default selection.
. Vdue Only
Just show the value
. Vaue & Comment
If the definition of value-to-comment dump is present, show
value and comment, otherwise just show the value

Other componentsin MainView window

Display format Toolbar

Formal I Comment [1f present) ﬂ | F}

Toolbar Item Description
Comment Format select the comment column display mode
TypeOF—protocol item | toggle button for changing status of TypeOF-item,
display mode we expand the node of TypeOF-item when the button isin
push-down status.
for details about TypeOF—protocol item, see Chapter 3.3.2

Status bar

LocalSetting | =2900 g | Total- 1 Fail-1 Warning -0 Script |E:'|,pub|ic'l,Protc-caI Reader Script\ TCP_UDPYTCP_LUDP, Ext 4
Satusbar Parts Description
L ocal Setting 2900 isthe local Udp port for packet-accepting interface

for details about packet-accepting interface,
see Chapter2.3.2 Communicate with other application

Protocol Reader 1.0 User's Guide

Information

realtime statistics

Script

current protocol script file loaded

Configuration Window (To be implemented)

We will implement Configuration Window in next version, and three enhanced feature

will be provided:

= Filter Management allows you to enter afilter string restricting which packets are
Displayed in the Messagel ist Dialog when accepting external packets A filter string

is a string defining some conditions that may or may not match a packet. Powerful filter
provides a flexible mechanism to deal with specific packets

= Plug-In Management allows you to display and manage the Plug-in List, you can add,
Delete a certain Plug-in lib.

= Multi-protocol script will be supported.

M essagel nput & Messagel ist Window

Message Window has two pages, One is Message Input Page for entering hex data,
another one is Messagel_ist Window for accepting externa binary packets. We will give
you an overview of the interface components here, and detail description about how to
use it will be given in_ Chapter 2.3 Using Protocol Reader.

M essagel nput Page

Bl Messagelist 2 items g =10] x|

Input | M=zglist I

2 39 26 B3
'Y 74 51 72
Q¥ 74 g9 6f
Ge 67 3a
Ze 30 04
gd 3a 32
0d 0=

l

6f
74
1]
z0
Oa
37

ad
65
Zf
a7
45
31

7o
&4
e
Ta
6f
30

61 63 74 3d 31 Z6 69 7O 3d 31 32,37 2e 30 Ze &=
Z0 43 54 54 50 Zf 31 Ze 31 0Od Oz 41 83 63 a5
Zd 62 69 T4 74 6f TZ TEZ 65 ae 74 0d Oa 41 &3
g9 70 04 0= 55 73 65 72 2d 41 87 65 fe T4 3a
T3 74 3= Z0 Y4 T7E 61 63 gk 65 i e T S i
0d 0a 43 6f 6= 62 65 63 74 65 6f 6e 3a Z0 4k

Click herc o Tranzlate

Table 2.2 Message Input Page Item

Menu Item Description
78] Trandate current hex data
4 Add current hex data to Message List directly

10

Protocol Reader 1.0 User's Guide

Messagel ist Page

Il Messagelist 2 items 10 =]
Input M=glist |
|
o | 8] Time | Len | | Title | Info |
l= 0 20:02:29 175 nr Sre: 192 165.0. 156 D=t: 239 255 255 250
n i1 20:02:31 418 ICF Sre: 213122 214 127 D=t: BI.44. 153175
)
Double Click item to Tranzlate =

Table 2.3 Message List Page ltem

Menu Item Description

Load a saved data file for viewing

Save current data in the list to file

Clear thelist

© | O

Toggle button
When in push-down status, system will automatically trandate
external packet when accepting it.

Table 2.4 Default Columns of the Message List

Column Name Description

N Packet Number

Time Time to when we accept this packet

Len Packet length

Source I dentify data source (e.g from which PC, or direction ...)
Description For more information about how to use this field, see chapter ...
Title Summary of this packet.

Info For more information about how to use this field, see chapter ...

11

Protocol Reader 1.0 User's Guide

2.3 Using Protocol Reader

Having spent alot of time discussing Protocol Reader ‘s features and benefits, and now,
there may come atime to systematically explore how to use Protocol Reader. In this
chapter, we will aso provide you examples for quick start.

Protocol Reader is an easy-to use software, it can be use either as an independent protocol
analyzer , or as an monitor or debug tool who can communicate with other application.

Note: In this chapter, we assume the protocol script needed is ready for use.

Asfor how to develop script, see Chapter 3. Developing Guide

2.3.1 Use as an independant protocol analyzer

Using Protocol Reader as an independent software, in other words, input hexadecimal
message for analyzing is the major feature of typical protocol analyzer.

To analyze a single message, follow these steps

- Select the protocol script file by clicking menu item System | Select protocol script file
Select mainview displaymode by checking menu Advanced | Preference | Display mode
Select display format from the Display format Toolbar

- Bring up the “Messagel nput box”

You can show it by click menu Tool | Show Messagelist Window if it’s not visiable.

- Input or copy the hexadecimal message to the “ Messagel nput box”

00 OF 3D 2C 87 C1 00 OF EA 57 38 5F 08 00 45 00
CF 0B 06 C4 00 50 6D B6 31 72 00 00 00 00 70 02
20 00 CE F7 00 00 02 04 05 B4 01 01 08 02

- Start to analyze the message by click button. » in the “Messagel nput box”

- The result will be shown in the mainview window.

12

Protocol Reader 1.0 User's Guide

2.3.2 Communicate with other application

Accepting binary-packet from other application is one of the mgjor features of Protocol
Reader. Protocol Reader is not a sniffer tool, but it can be intergrated with sniffer softwares.
We provide binary-packet-accepting interface, so the permitted source of the data packets
are widely increased, you can receive any hex packet to “Messagel ist Dialog” for further
decoding, not only from packet-capture softwares, but also from any user applications.

. i = = -
s

. Ethemet -
== R

Protocol Reader
UdpPort: 2900

e "4 s 4
—_— D?
Sniffer software User Application

Figure 2.2 Network Architecture of Using Protocol Reader

Binary-packet-accepting interface

Because Protocol Reader is designed to accept packets from many different applications
simultaneously, we use UDP (User Datagram Protocol) as communication protocol, the
default udp port is 2900. This message interface is open to any application programs as
long as they have following header format:

Field Default Description
Octet O | FrameHeader 0x05 Header to identify this frame
Octet 1 | Sourceld 0x00 Identify data source (e.g from which PC, or direction ...)
For more information about how to use thisfield, see
chapter ...
Octet 2 | Protocolld 0x00 Reserved for this software’s next version to deal with

multi-protocol supporting.

Octet ... | RawData The payload stream need to be sent

Note: In this version we have 1 megabyte(s) size kernel buffer to keep the accepted
packets, if you encounter packets overflow, we will clear al received packets and restart
accepting. Feature of configuring the buffersize will be provided in next version.

13

Protocol Reader 1.0 User's Guide

To start binary-packet-accept interface, follow these steps

1. Select the protocol script file by clicking menu item System | Select protocol script file
Select mainview displaymode by checking menu Advanced | Preference | Display mode
Select display format from the Display format Toolbar

2. Bring up the “Messagel ist box”

Y ou can show it by click menu Tool | Show Messagelist Window if it’s not visiable.

3. Decide whether you would like to decode received packets in a automatical way while
keep on accepting.

Inthe “MessageList box” , if the ¥ button is in push-down state, we will decode every
packet automatically in real time when accepting it; otherwise, instead of decoding

received packet automatically, we just add accepted packets into “MessageList box”, you

could decode these packets by double clicking corresponding item.
Note: If the “MessageList box” isin automatical decode status, it will consuming alot

of CPU time, because real-time analyzing with large packets can be quite slow.
So close automatical-decode-feature, unless it is very necessary to analyze live
accepted packets.

4. Start accepting by checking the menu item System | Accept external data to trandlate
The accepted packets will be shown in the MessagelL ist box.
It's a packet summary window, each line corresponds to one packet.

Wl MessageList 2 items E -10] x|
Trnput M=slist |
1
o | B[Time | Len | | Title | Infa |
= 0 20:02:29 175 Juny Sre: 1920 16G6.0. 156 D=t: 239,255 255. 250
n i1 20:02:31 418 ICE Sre: 213,122 214127 Dst: 69,44, 153,178
&
Double Click item to Translate 7

5. Using the “MessageL ist box”
Once you have accept some packets, or you have opend a previously saved file, you can

view the packets that are displayed in the packet list by smply double-clicking on a
packet.

Double-click one packet to analyze, result will be shown in mainview window.

Right-click one packet to show the corresponding hexadecimal and ASCII content.
Click button = to save al the packetsin list to file.

Click button & to load a saved file to lit.

14

Protocol Reader 1.0 User's Guide

2.3.3 Demonstration

When first time use Protocol Reader, we will bring up a “quick start dialog” or you can

click the menu item Help | Quick start to show the “quick start didlog” as follows:

x

Working with sample

Stepl. Load sample
a. load the protocol script file "top_udp txt"
b. load sample message from "msg.dat”

Stepd. Analyse data packet
a. double click the item in the Msglist to decode
b input hex data to Inputhox, click to decode

Stepd. Practising with the sample
it's easy to read the script file, modify it to see
different result, you will have a primary understanding
of this powerful software

[¥ Load Sample

Do as the dialog shows, it will give you a step-by-step guidance about how to use the main

features of Protocol Reader.
Here is an example with a TCP pakcet, result is show in figure 2.3

=3 I Rieader L [Daqrpright - Shes e)
Trrles pdvaced Tall Ealp

Sarmatt | Coumont if precent] =] 0

0 TR | | Duveription | Crmsant
5 B ommy oz TR
& ETHERMET
et inacionkdde TrEEgTE H' BC IF 20 OO0 01 00
Zourcehddc T EpgTEy H' OO0 00 01 00 00 00
Protocol TEREZEEY IF |Intsrrat Frotoool]
11
4 IF
Wwrrion o100---- IFw4
HesdscLangth ----0101 IO |=sT4|
B TypaCESacvics
Precedanca low O to Hagh 7]
Delay Horreal
ThrowhpT Hoareal
Belisbility Horreal
G]
COTEET 100 Ho CoTgestion
Latgich Toral Lavgeh of the IF pacier 404
Identificacion 254
Fragmee ntFlag Ho FroEsentT | LAST oI 1T GSTSQ0SE)
Franmeens L 1aer]
Tirez ToLive 128
Frotonol TCF

Chae kmux H' 13941

Iaxtinacioniddceas £l AR 441531178

rrEgzEEY

al®l =]

BC BF 200 0D 0L Qi (0
95 B2 OF LC DA 96 E3
&E €3 65 JF &9 6E 64

an [
AS B Lg ED OB CL 72 30 14 22 3 BE 3 00 O30 47 45 54 0 2F 61 &€ SE &F 712
&aF L1

&F

&

[A | Totd -2 Fal -0 Wewming -1 Sk (At TCR_UCRLTOR LGP o

Figure 2.3 TCP packet example

15

Jdptionbinte TETEAQTEY H'
11
3 TCP
=curcePock TIRRZVET k1151
[extinationPockt TTERIYEY 71O
EZxqusncalurbec TEERQEEY QISR lEnY
icknowledgurantNurhec TEERQEET IDTESTOELD -l
i _rl'l
TL 00 00 00 05 00 45 00 01 54 55 Ak 40 0 90 05 L7 41 DSRINEHRIEAS 30 v cvorernins T - T

B oEL 73 B3 A 25 M A1 64 25 95 45 5 AT 45 3 36 31 36 Al A0 EF A5 poerinfo tashesDLahFESTESFLA10MSE

Protocol Reader 1.0 User's Guide

Infigure 2.3 Detailed information about Fields of this packet is generated in a tree-style
view, we can see that the packet contain TCP inside | P inside an Ethernet packet.

Y ou can then expand or collapse any part of the tree nodes to show more complicated data
structures in the protocol, or collapse it to only show the summary.

- Sdecting individua protocol fields by clicking on them will highlight corresponding
hexadecimal and ASCII output in the bottom pane. The bottom displays the raw data both
in hexadecimal and ASCII format.

- Right-click protocol field will bring up an information dialog to show you the definition
of thisfield in script file. It will give you some hint about how this field is decoded or
dumped.

Example L
when you right-click msg.ETHERNET .Destination.Addr, an information dialog is shown:
OCTET Destinationhddr |

21: woid Translate (String strCurIdent, dymamic fenrItem, long nldxInder)
{

i

23: sysFetchValue (strCurIdent, cuorTtem, now (1, 6, trus);

I

From the information box, we know that thisfield is decoded as a octet stream with six
Bytes (see procedure Trandate(), it's the base procedure for decoding, we will discuss
it in next chapter) and displayed in “comment column” as hexadecimal string (default
display mode for field with octet type) .

Example 2
when you right-click msg.IP.FragmentFlag, an information dialog is shown:

IHTZ FragmentFlag:3 |

103: String Dump (dymamic dcurltem)
{
105: retwrn strFormat (%s #s7,
(eurItem & 0x0Z2)7 “Wo_Frasment™: “A1low_Fragment”,
(oarItem & 0x01)7 ™ " (last one in datagram)”);

From the information box, we know that this field is decoded as unsigned short with 3
bits and displayed in “comment column” as a description string generated by procedure
Dump() (the base procedure for comment dumping, we will discussit in next chapter) .

16

Protocol Reader 1.0 User's Guide

3 Script Developing Guide

This chapter will outlined some of the most important parts of develping Protocol Reader, a
view of the syntax and development process will be presented. There are two basic component
you should master before you could become an expert or a contributor to the Protocol Reader
project :

. Protocol script

. Plug-in

3.1 Tutorial of syntax

Because ANS C isawidely used programming language, we make it as our script-writing
language, mgjority of the code base for script-implementing is plain ANS C, knowledge
about ANSI C will be sufficient for Protocol Reader development in almost any case.

Since Protocol Reader is not intended to be a C compilor, we just bring in the most
necesssary parts of ANSI C's syntax to keep a more simple and efficient kernel. Althougth
compare with the standard AN SI C language, there may have some tiny differencies, syntax
for script is designed to make it easy to compose, analysize the hiberarchy of encoded data

The tutorial, by being brief, does assume a basic knowledge of ANSI C programming, so
our aim is to show only the essential elements of the language , but without getting bogged
down in details, rules and specific programming techniques. At this point, we are not trying
to be complete or even precise. We want to get you as quickly as possible to the point where
you can write useful script.

Note: The Protocol Reader’s syntax is case-unsensitive.

3.1.1 Basic data types

Generdly, every name (identifier) has a type associated with it. This type will determine
what operations can be applied to the entity referred to by the name. Based on ANS C
standard, many small changes and additions have been made to the basic data types:

Type Description

Void null data type

Char 8 bits integer, capable of holding one character in the local character set
Short 16 bitsinteger

Long 32 bits integer

Double double-precision floating point

Octet an octect-stream is a sequence of characters

17

Protocol Reader 1.0 User's Guide

In addition, there are a number of qualifiers that can be applied to these basic types, we list
al the data type supported as follows:

Table 2.4 Data type List

Type BasicType Comment
char, intl Char

short, int2, short

int

long, int4 Long

byte, uintl unsigned char

bool

word, uint2 unsigned short

dword, uint4 unsigned long

tchar char the type is used mostly for char array with
fixed size

float double

octet octet hexadecimal sequence of 8-hit bytes

string octet astring is an array of characterswith \Q' at
the end, usually surrounded by “ " or * *

memo octet memo is used for large size octet-stream

void - null data type

choice - only used as a struct member, represent
there has one or more optional selection
here

Note: For Integral and floatingpoint types, they can be mixed freely in assignments and
expressions. Wherever possible, values are converted so as not to lose information.

3.1.2 Complicated data type: structure

A structure is a collection of one or more variables, possibly of different types, grouped
together for convenient handling. Structures help to organize complicated data, The
keyword struct introduces a structure declaration, which is alist of declarations enclosed
in braces.

Syntax of structure declaration is as follows:

struct name {

dat atype variabl ename; // structure nenber

18

Protocol Reader 1.0 User's Guide

Prefedined structure

A structure cannot be used in definition of instances unless it has been previousy
declared, but in some cases, we want to use a structure before the entity of structure has
been declared, so we bring in the concept of predefined structrue. Example is given to
show how to use predefined structure:

struct Location; /'l predefine(the entity they refer to nust
/1 be defined el sewhere)

Location | ocat; /1 use predefined structure
| ocat . x=1;
| ocat . y=2;

struct Location { /] structure entity
I ong X;
long y;

Bit-fields

Sometimes it may be necessary to pack several member objects into a unsigned integer
(e.g.byte,word,dword) . we offer the capability of defining and accessing fields within a
unsigned integer directly. Structure members with bit-field, is a set of adjacent objects
share one single data type object.

Example

struct nydata {
unsigned int nflag : 1; /1 the highest 1 bit
unsi gned int value : 15; /1 the lower 15 bits

This defines a variable table called mydata that contains two bit-fields. The number
following the colon represents the field width in bits. The fields are declared unsigned int
to ensure that they are unsigned quantities, and its format in octet-stream (bits awaysin
high to low order) is:

31 30 0

nflag | vaue unsigned int (32bits)

Individual fields are referenced in the same way as other structure members:
mydata.nflags mydata.value, etc. Fields behave like smaller integers, and may participate
in arithmetic expressions just like other integers. Padding field may needed if total bits of
associated adjacent fields is not reach the data type's bits-size. Any bit-field is not arrays.

19

Protocol Reader 1.0 User's Guide

3.1.3 Basic syntax components

This chapter discusses the basic syntax components for composing a script file, but there
will be no details here, because al the syntax is similar with ANSI C, it’s easy for you to
understand.

Notice: There will be some reductions and additions in the syntax of Protocol Reader.
following list show some ANS C syntax components we do not support:
. macros
. union, pointer, typedef
. array with two or more dimensions

1. Const definitions

Similar to ANS C, we offer the concept of a user -defined constant to express the Notion
that a value doesn't change directly. Thisis useful in several contexts. For instance, many
objects don't actually have their values changed after initialization, symbolic constants lead
to more maintainable code than do literals embedded directly in code. We use the keyword
define to the declaration of an object to make the object declared aconstant.

Form of const definitions

Syntax | # define const_identifier nunber|Plainstring

Sample | # define Pl 3.14
define MAX_LEN 20
define | NFO_STR “Wel cone”

2. Enumerations

The notion of enumeration in Protocol Reader differs from the enumeration notion in the
ANSI C. An enumeration hereis atype that can hold a set of values of constants specified
by the user, it'sagroup of contants used very much like an integer type. Therole of the
identifier in the enum-specifier is analogous to that of the structure tag in a struct specifier.
In addition, enumerator names in the same scope must al be distinct from each other.

Form of enumerations

Syntax Enum enum.identifier { enunerator-list }

enunerator-|ist:
enuner at or
enunerator-list, enunerator

20

Protocol Reader 1.0 User's Guide

enuner at or:
i dentifier=constant-expression // Nornmal enumitem
const ant- expressi on /1 inmplicit enumitem

Sample | Example 1. normal enumeration
enum MsgType {

C\VD = 0, /] command
REP = 1, /1l report
ACK = 2 /'l response
b
| ong type;

type = MsgType: : CVD; /1 use enunerator

Example 2: implicit enumeration
enum MsgType {

0, /1 comrand
1, Il report
2 /'l response

b
Note : Implicit enumeration is defined and used only for the kernel
of Protocol Reader, for more details see ...

3. Include

Include is the preferred way to tie the declarations together for alarge program. It
guarantees that all the script files will be supplied with the same definitions and variable
declarations, and thus makes it easy to handle shared codes. Naturally, when an included
fileis changed, al files that depend on it must be reload and recompiled.

Form of include

Syntax | # include “fil enane”

Sample | # include “sys.h"

include “header. h"

Note: filename is searched in association with the path of the origina
source file.

4, Variable Declarations

All variables must be declared before use A declaration specifies atype, and contains alist
of one or more variables of that type, asin

intx,y;
char linebuffer [1000];

21

Protocol Reader 1.0 User's Guide

Variables can be distributed among declarations in any fashion; the lists above could well
be written as

int x;

inty;

char ch;

char linebuffer[1000]; // line buffer

The latter form takes more space, but is convenient for adding a comment to each
declaration.

A variable may aso be initialized in its declaration. If the name is followed by an equals
sign and an expression, the expression serves as an initiaizer. Here are some examples
illustrating the diversity of declarations:
struct point {
intx;
inty;
[

char ch="a’;

double pi=3.1415926;

int size=MAXLINE+1,

string str[2]={ " welcomé&’, “ you” };
point pt= { 320,200 };

If the variable in question is not automatic, the initiaization is done once only before the
program starts executing, and the initializer must be a constant expression. An explicitly
initialized automatic variable is initialized each time the function or block it isin is entered;
the initializer may be any expression.

. Statements and program blocks

Asthat in ANSI C, fundamental constructions are privided for well-structured programs.
Here are a summary and basic elements of statements supported:

Statements Syntax

St at enent :
expr essi on- st at ement
If (condition_expr) statenent el se statenent
If (condition_expr) statenent
whil e (condition_expr) statenent
for(init_expr;condition_expr;expr) statenment
br eak
conti nue
return expression

statenent-list:
statement statenent-list
{ statenent }

22

Protocol Reader 1.0 User's Guide

In our script, the semicolon is a statement terminator. Braces { and } are used to group
declarations and statements together into a compound statement, or program block, so
that they are syntactically equivalent to a single statement. The braces that surround the
statements of a function are one obvious example; braces around multiple statements
after an if, else, while, or for are another. (Variables can be declared inside any program
block). There is no semicolon after the right brace that ends a block.

. Functions

Functions break large tasks into smaller ones, and enable people to build on what others
have done instead of starting over from scratch. Appropriate functions hide details of
operation from parts of the program that don't need to know about them, thus clarifying the
whole, and easing the pain of making changes.

Form of function definitions

Syntax Ret urn-type function_nane(argunent decl arations)

decl arations and statenents

Retur n-type

Functions may return values of any basic types defined in chapter 3.1, and values
with array are not allowed.

Argument declaration

Communication between the functions is by arguments and values returned by the
function, and through global variables. Type of the argument can be any basic type
defined in chapter 3.1 (except void) or user-defined structure. And argument can be
passed by value or by reference (It can more efficient to pass a large object by reference
than to passit by value).

Here are some examples for argument passing:

Sruct point {
int x;
inty;

it

bool setlLocationl(point pt); // passby value
bool setLocation2(point& pt); // pass by reference
I/ thevariable' pt’ can be altered by the function

void setDatas(long data[2]); // pass array

23

Protocol Reader 1.0 User's Guide

There are another two argument-passing modes we should mention:

1) Arguments with Unspecified number

For some functions, it is not possible to specify the number and type of al arguments
expected in acall. Such afunction is declared by terminating the list of argument
declarations with the éllipsis(. . .), which means “may has more arguments.’”’
For example:

extern string strFormat(string strFormat, ...); // definition

strFormat("Hello, world!\n");
strFormat(" My nameis %s %s\n", first? Rame, second? Rame);

strFormat("%d + %d = %d\n",2,3,5);
From these examples, you could know that such a function must rely on information
not available to the compiler when interpreting its argument list. Clearly, if an
argument has not been declared, the compiler does not have the information needed
to perform the standard type checking and type conversion for it.
Note :
In Protocol Reader software, this argument-passing mode can only be used for
extern function , as shown in example, function should be defined as an external
function and be implemented in plug-in library. For more information about how to
implement extern function, see chapter 3.3 Developing plug-in.

2) Adaptive arguments

New argument type “dynamic” makes it easier to pass data between functions.
“dynamic” mean adaptive to any basic type (not array), in other words, you can pass
any data (with basic type) to such an argument of the same function. It is useful when
you want to use a single function to share one of its argument to deal with different
data types. And similar to passing data by reference, it provide another way for the
caled function to ater avariable in the calling function.
An example for using adaptive argument is as follows:

void print_data(dynamic& data) /I definition

{

// to print the data which may be with different type

}

double val=1.68;
print_data(val); /[passa’ double’ value

string str=" Welcom¢’ ;
print_data(str); /l passa ‘string’ value

Predefined function

A function cannot be called unless it has been previously declared, but in some cases, we
want to cdl afunction before the entity of the function has been declared, so we bring in
the concept of predefined function. Example is given to show how to use predefined

24

Protocol Reader 1.0 User's Guide

function:
long max(long x,long y); // predefine (the entity must be defined elsewhere)

long val=max(2,0); /I call predefined function

long max(long x,long y) // function entity, argument must match that in predefined header

{
return (x>y)? xy; // function body

External function

A function can be defined as a external function, meaning that the entity of the function
is not implemented in the corresponding script files, instead, it might be implemented in
plug-in library.
In Protocol Reader, external function is an usual way to bring in alibrary (for more
details about bring in an externa library, see ...). To declare an externa function, just
add keyword extern in front of the function header, for example:

extern double sgrt(double v); // bring in a external function

double val=sgrt(2.0); /I call external function

8. Standard Library

Although similar to ANS C, the kernal compiler of Protocol Reader is independent of any
other C compilor, so there is no standard library (such as mathematical functions, string
functions, etc) initialy.

In order to develop a good script, we add build-in functions which are most necessary and
declareit in “sys.h”. Furthermore, you could create, manage commonly used functions as a
shared library (or asalibrary just for a given protocol) by your own. Y ou aso can merge
libraries develped by other Protocol Reader’s user into you project. A well organized library
can save you alot of time in furture devel opment.

And there are two way to create your own library: one is writing the functionsin script file
directly; the other is developing an external, plug-in function (remember that the latter
mode is more efficient, for more information, refer to chapter 3.3 Developing plug-in).

25

Protocol Reader 1.0 User's Guide
3.1.4 Enhanced syntax components

Section below shows the syntax of the enhanced components supported by SDE (script
develop environment). Detail about the meaning, where and how to use these syntax
components will be illustrated in next chapter.

Syntax

TypeO struct_ldentifier
ContentOf struct_ldentifier

Decl areMap(ltenjInplicitltem declareMap_identifier)

{

vari abl enane [nTag] basictype

vari abl enane [nTag] struct_ldendifier

vari abl ename [nTag] TypeO' struct_Idendifier
}

Choi ceMap decl areMap_i dentifier

3.1.5 Architecture of a typical script

Before going into the development process, you should have an understanding of how the
script filesis organized and what atypical script islike.

Hiberarchy of the script files

In order to understand the framework of script files, you could open the sample script
provided in Protocol Reader’s installation fold. Note that the sample do not necessarily
address the entire range of using Protocol Reader, it is merely a sample.

Example: \scrip\ TCP_UDP\main.txt

#i nclude “..\Include\ sys.h”
#i ncl ude “header. h”

1. File “sys.h” must be included at the beginging of the root script file. All the system
reserved constants and functions are defined in this file.

2. File “header.h" isincluded to define global constants, global functions and the externa
functions (implemented in plug-in dll) for the current protocol. initially Content of this
fileisinitially empty, and is left for your enhancement. Of couse, you can organize the
included files by your habit.

26

Protocol Reader 1.0 User's Guide

Syntax architecture for script element

In ANS C, structure is an useful component help to organize complicated data, so it can
be very suitable to present the hiberarchy of a protocol’s fields.
Let's start from a piece of code from example \script\helloworld\main.txt

#i nclude "..\Include\sys.h"

#def i ne PROTOCOL_ROOT msg
#defi ne NETWORK TRANMODE H TO L /Il default value is L_TOH

TEEEEEEEEE i rrrrrrrrrrrrrrrrrd
struct nsg

BYTE Header ; /1 Fram ng header
Ul NT2 Packet Type : 2 { /1 Type of this Packet
enumdescription {
0, /! Cormmand
1, // Ack
2, /] Report

I
string Dunp(dynani c& curltem
{
String str;
st r=sysGet EnunComment (curltem " descri ption","Equal ","-");
sysSetTitle(0,str);
return str;
}
b
Ul NT2 SequenceNunber: 14 ;
BYTE Cont ent Type { /1 Type of follow ng content
enumdescription {
1, /] Packet (string)
2, /1 Packet (ip address)
3, /I Packet (bcd strean)
4, |/ Packet (tinmestanp)
b
string Dunp(dynam c& curltem
String str;
st r=sysGet EnunmConment (cur | t em "descri ption","Equal ","-");
sysSetTitle(l,str);
return str;
}
b
Choi ce Content {
Decl areMap(| mplicitltem DataFi el d)
{
StringWthLenAndZeroEnd [1] tStringWthLenAndZer oEnd
| pAddr ess [2] tIpAddress
I
Choi ceMap DataField
void Transl ate(String strCurldent, dynam c&curlteml ong nl dxl nArr)
{
sysTranChoi cel ten(strCurldent, curltemthis. Packet Type);
}
b

Figure 3.1 sample script

27

Protocol Reader 1.0 User's Guide

We will not explain any detail about the script here. Just focus on the architecture!
Is there any thing common between the protocol fields ? Yes, see this script carefully, you
could find two important thing:

1) Structure is used to organize the protocol hiberarchy

Sructure is used for establishing parent/child relationships between protocols and
fields, as well as associating data with a particular field so that it can be stored in the
logical tree and displayed in the GUI protocol tree.

The structure (include al its members) can be regarded as one level of a protocol.

2) Each of the field has the form

struct identifier_name /'l struct_description

{
datatype field_identifier { /1 field_description

decode attribute

. } attribute_bl ock(optional)
dunp attribute

Figure 3.2 form of individual protocol field

Typica script for a certain protocol field is composed of four parts: the field definition,

the field description, the decode-attribute and the dump-attribute for the field.

= Field Definition : define the name and data type of the protocol field

= Field Description : a string of remark for thisfield (usually writed in the same line as
the Field Definition), used in display

= Decode Attribute : program block which describes how to decode thisfield. It's a
optional script block, if not exist, default decode-rule will be used.
For more information, refer to ...

= DumpAttribute : program block which descirbes how to comment decoded value of
the field. It'sa optional script block, if not exist, default dump
format will be used.
For more information, refer to ...

We can see this four parts from following result generated by the Protocol Reader:

Field Definition Datalen Description Dump Attribute

Hame | | Description | Comment

[F- msyg = Report

ﬂ Header TEER1EET Framing header H' FE
éw FlagiCK 10-———- Flag of Acknowledgement Feport
?-SequenceNumber FrRpl1gEEr 520
f" PacketType TEER1EEHE Type of this packet Packet [(string)
éuCDntent{}
E----stx:Data FEERIFFEE string content T' welcome
oooo FE 52 08 01 b'? ek eC 63 6F D RSO0 L., welcome.

28

Protocol Reader 1.0 User's Guide

Note:

When studing the sample above, it is recommended you open the script source \script\
helloworld\main.txt to see the entire script and corresponding protocol definition. It will
help you understand the framework of the script file.

Techniques

For most protocol analyse softwares, when it come to trying to support a new protocol,
you have to understand the internal framework of the software, write new codes for

this specific protocol, merge codes to the main software, and compile the entire software.
It is not an easy thing for even the seniror expert, and it will take you alot of time coding
and testing.

We are always thinking about is there any easier way for people to develop a decoder or
monitor for a complex protocol ? Now, things get better. The Protocol Reader could
realeas you from all the annoying task.

We know that the only one basic way of dealing with complexity is: divide and conquer.
A problem that can be separated into two sub-problems that can be handled separately is
more than half solved by that separation. This simple principle can be applied in amazing
variety of ways. it can be the fundamental approach to handling the inherent complexity
of aprotocol. Similarly, the process of developing a protocol anayser can be broken into
distinct activities.

We find that al the protocol’s hiberarchy is similar, and the main differences are how to
decode specific field and what's the meaning of decoded vaue. So, in Protocol Reader,
insteading of dealing with protocol itself, we focus our workload on individual field of
the protocoal, any field is relatively independent and coded like Figure 3.2. Separate the
complex protocal into smaller one help to smplify the problem, make it easier to test and
save your valuable time.

In addition, default decode and dump rule for specific datatype (see Table3.2) is provided
to fit most need; if there are no special requirements, you dor't need to write any codesin
attribute block, system will do &l that for you. That's what is called “ Avoiding Program”.

Protocol Reader provides you with an more efficient and easier way to develop protocol
analyzer. In chapter 3.2, we will show you the development process step by step in
details.

29

Protocol Reader 1.0 User's Guide

3.1.6 System reserved consts and functions

This section provides a comprehensive reference to the reserved keywords and functions of
Protocol Reader. All the keywords are case-unsensitive.

Table 3.1 System reserved const

Const Item Type | Description

PROTOCOL_ROOT M The root structure for starting decode
PROTOCOL_NAME o] Name of the protocol

NETWORK_TRANMODE (0] Define network transmit order for byte stream.

This const is used when decode a field with integer
or unsigned integer datatype.

Possible value
H TO L I high to low
L_TO_H /I low to high (default value for system)

Example:
#define PROTOCOL_ROOT msg
#define PROTOCOL_NAME TCP/IP

#define NETWORK_TRANMODE H_TO_L

NOTE
For NETWORK_TRANMODE, scope rule is introduced when there are one or more different
declaration exist. Following is an example:

#define NETWORK_TRANMODE H_TO L // global declaration for transmit mode
struct msg
{
UINT2 Datal,; I/ use global transmit mode to decode
UINT2 Data2 {

#define NETWORK_TRANMODE L_TO_H // local declaration hide global one

b
UIN2 Data3; /I use global transmit mode to decode

Type . M =mandatory
O= optional

30

Table 3.2 System reserved functions

Protocol Reader 1.0 User's Guide

Type Functions Descriptions
Input stream | Now Get current location of current input stream
manage TotalLength Get total length of current input stream
sysketchValue Fetch value (with number, octet or structure
datatype) from input stream
String strFormat Provide formatted output conversion
manage Strlen Return length of octet stream
strGetAt Get one character from octet stream

Decode proc

sysTranChoiceltem

Decode from current stream locat using specific
structure

Trandate Virtual function for overriding if you have some
specific requirement when decoding a protocol
field

Integrate The decode of a TypeOf structure starts by
caling this function. Every TypeOf structure
must contain one function called Integrate()

Dump proc SysSetTitle Set Titleinformation

Dump Virtual function for overriding if you have some
specific requirement when dumping a decoded
data of afield, aways return a string for display.

Others sysGetEnumComment | Get Comment for a value using certain enum

sysAbort Abort the decode or dump process, and give a

description
Note:

For system reserved functions, all of them are declared in “sys.h". The entity of these

Functions are embedded in Protocol Reader. if we want to create new functions, wehave

two choices:

[1] declare the function as an externa function (as that in “sys.n”) and implement it in
plug-in dll, see ... for more information.

[2] writethe function as an internal function, include header,argument and the entity
just aswe write afunciton in ANS C program.

SysFetchValue

void sysFetchValue(string strCurldent, dynamic& FetchValue, long locat, dword param,
bool bMovel ocatPointer);

Get value from input stream and assign it to FetchValue. Y ou can pass any variable
with integer, octet or structure datatype to FetchValue. This function is used when
decoding a packet.

31

Protocol Reader 1.0 User's Guide

Parameters
strCurldent current protocol field name
FetchvValue entity for saving the fetched data

locat current locat of input stream
param only available for octet type, mean length of bytes to be returned
bM ovel ocatPointer

true for moving the locat pointer after data fetched, or false with
no pointer move
Return
Return fetched datain FetchValue.
Example

1. Fetching string data, with bMovel ocatpointer=true

Sream status before call fetch function -> transmit direction

..‘FF|77‘65|6C‘63|6F‘6D|65‘01|..

f

current locat pointer = now ()

string str;
sysFetchVal ue(str Curldent,str,now(),7,true); /I str is“ welcome’ now

stream status after call fetch function

..‘FF|77‘65|6C‘63|6F‘6D|65‘01|..

f

current locat pointer

2. Fetching integer data, with bMovel ocatpointer=Ffalse
this locat-pointer’s control mode is very useful when you want to preview a
value but do not want the locat-pointer be moved.

Sream status before call fetch function -> transmit direction

..‘FF|65‘6C|63‘6F|6D‘65|01‘..

current locat pointer = now ()
#define network_tranmode H_TO_L.

word len;
sysFetchValue(str Curldent,len,now(),0,false); /I len is 0x656C now

stream status after call fetch function

..‘FF|65‘6C|63‘6F|6D‘65|01‘..

f

current locat pointer (no move)

32

Protocol Reader 1.0 User's Guide

« SysTranChoiceltem

void sysTranChoiceltem (string strCurldent, dynamic& curltem, long Elemid);

Decode from current stream locat using specific struct (structld=elemld), this function
is designed to parse optional structure, decoded structure will be added to choice list

of curltemwhich

Parameters
strCurldent
curltem
demid

Return

must be a choice datatype.

current protocol field name

current protocol field to decode, thisfield must be a choice item
elementld corresponding to the nTag declared in DeclareMap, refer
to chapter: Field with choice attribute for more information about

DeclareMap.

Return decoded optional structure, and add it to choice list of curltem.

Example

1. Following is a piece of codes from “\script\tcp_udp\main.txt”

struct tIP

{
tIPHeader

Choice {

In this exam
know from t
protocol.

IP;

/I following is theattribut-block for thisfield
DeclareMap(Item, IpData)
{
UDP [Ox11] tUDP
TCP [0x06] tTCP
b

ChoiceMap IpData

void Translate(String strCurldent,dynamic& curltem,long nldxinArr)

{
sysTranChoiceltem(str Curldent, curltem, this.IP.Protocoal);

ple, after decoding IP header (refer to RFC for details), we can
he value of this.IP.Protocol what content follows, udp, tcp or other

Then we create a Choice item. In attribute-block, there is one DeclareMap that
list al the candidate protocol (expressed by structure, for more informations
about DeclareMap, see ...), and sysTranChoiceltem(...) is provided to decode
such uncertain data. This function compare the value of this.IP.Protocol and the
vaue in IpData (declared by ChoiceMap), if this.IP.Protocol equa 0x11, we
use struct tUDP to decode following bytes, or if this.IP.Protocol equa 0x06,
we use struct tTCP to decode following bytes.

33

Protocol Reader 1.0 User's Guide

SysSetTitle

void sysSetTitle (uintl TitleN, string strTitle);

This function set the title information of current packet, and the title information
provide you one-line summary that displayed in MsgList Page. The summary display
brief but important information relative to the packet, and allows the user to browse
quickly through the packet trace without having to look at each packet decode.

Parameters
TitleN title index, the value can be O or 1
srTitle text of the content

Remarks

The title information will be passed to MsgList Page as one-line summary
Example

1. Following is a piece of codes from “\script\tcp_udp\header.txt”

struct tIPHeader

{
BYTE Protocol {
enum description {
oxo4, II'IP
O0x06, /I TCP
0x11, // UDP
|3
Sring Dump(dynamic& curltem)
{
Sring str;
str= sysGetEnumComment(curltem,"Description”,"Equal”," -");
sysetTitle(0,str); /I result of titleO is shown in Figure 3.1
return str;
}
3
|3
MsqList Title 0 Title 1
K| Tine | Len | | Title | Infn |
0 20:02:29 175 DR Sre: 182 168 0. 156 Dst: 233 255 255 250
1 20:02:31 418 TCP Sre: 213122 214 12T Dst: B3 44 153 178

Figure 3.1 example of one-line summary

34

Protocol Reader 1.0 User's Guide

« SysGetEnumComment

string sysGetEnumComment (long value, string strEnumListName, string strMode,
string strDefault);

This function provide you a way to get a value's corresponding comment, in other
words, it is avalue (must be a integer) to meanning utility.
Note: The value-comment list is declared in enumeration items.

Parameters
vaue an integer
strEnumListName enumeration name contain the value-comment list
strMode the following options are supported for strMode,
Value Meaning
“Equal’ Get the corresponding comment if the value
‘Equal’ one of the enum-item
“Or “ Get al corresponding comments if the value
‘Or’ enum-item unequal to 0, comments are
sperated by ‘|
strDefault this string is returned if the integer is not found in current enum
Return
Return a string that show the meanning for this value.
Example

1. In the following example, we show you how to use this function

enum FileAttribute {

0x01, // Readable
0x02, // Writable

Sring str;

str= sysGetEnumComment(2," FileAttribute"," Equal”,” -"); /I sample of ‘equal’
Il str is* Writable” now

str= sysGetEnumComment(3," FileAttribute"," Or"," -); /l sample of ‘or’
/I str is* Readable|Writable' now

str= sysGetEnumComment(5," FileAttribute","Equal”," -"); // not found

/I stris®-" now

35

Protocol Reader 1.0 User's Guide

3.2 Developing protocol script

The purpose of this session is to get the reader started as quickly as possible, example is
provided to show you step-by-step how to develop script. We' Il start with the made up

“Heloworld” protocol (you can find this sample at \script\helloworld\)

3.2.1 Definition of the sample protocol

In following tables, the format of the protocol parametersare specified.

a b W N B

8 | 7 | 6 | 5 | 4 | 3 | 2 | 1
Frame Header
PacketType | Sequence number (M SB)
Sequence number (LSB)
Content type
Content

Figure 3.3 protocol format

The following codes are used in the helloworld protocol parameter field:

a)

b)

c)

d)

Frame Header

One byte flag to identify this message, aways be OXFE
PacketType

Type of this packet, 2 bit

The following codes are used in the PacketType subfield:

00 command
10 report
Sequence number

Sequence number for this packet

Content type

One byte field, identify the type of following content

The following codes are used in the ContentType subfield:
1 octet stream

2 ipaddress

3 bcd data (positive BCD)

4 timestamp

5 string with typeof attribute
6 array with fixed size

7 array with unfixed size

36

Figure 3.3.1 Format for content field (octet stream)

Protocol Reader 1.0 User's Guide

s | 7 | s | s | « | s | 2 | :
1 Length
2 Octet stream data
a Length: Thelength of the octet stream
Figure 3.3.2 Format for content field (ipaddressA.B.C.D)
8 | 7 6 | 5 4 | 3 2 1
1 A B C D
Figure 3.3.3 Format for content field (positive bcd)
8 | 7 | 6 | 5 | 4 | 3 | 2 | 1
1 Length of PhoneNumber
2 Digitl Digit2
a Length: Number of BCD digits
Figure 3.3.4 Format for content field (string with typeof attribute)
8 | 7 | 6 | 5 | 4 | 3 | 2 | 1
1 Length
2 Binary string
N 0x00

a) Length: The length of the string(do not count the zero byte)

Figure 3.3.5 Format for content field (uint array with fixed size = 2)

s | 7 | s | s | « | s | 2 | 1
1 Identifierld 1 (MSB)
2 (LSB)
3 Identifierld_2 (MSB)
4 (LSB)
Figure 3.3.6 Format for content field (int array with unfixed size)
s | 7 | s | s | « | s | 2 | 1
Identifierld_num
Identifierld_1 (MSB)
3 (LSB)

a) Identifier_num: The total number of Identifierld

37

Protocol Reader 1.0 User's Guide

Figure 3.3.7 Format for content field (timestamp)

8 | 7 | 6 | 5 | 4 | 3 | 2 | 1
1 Timestamp (MSB)
2
3
4 (LSB)

= Aim of this example

By this example, we cover amost every part of the devel op technique commonly used.

Each of the subfield give you an speicifc demonstration :

Item Demonstration Refer.

Header decode and display hex field, using default rule 3.2.3.2

PacketType decode and display corresponding meanning for 3.2.3.2
number field with bit definition

SequgnceNumber decode and display number field (consider network | 3.2.3.2
transmit mode)

ContentType decode and display byte field 3.2.3.2

Content decode optional fied 3.2.3.2

Content-octet decode and display octet field 3.24.1

Content-ipaddress decode and display a user-defined field, demonstrate | 3.2.4.2
overriding system reserved function

Content-bcd decode and display a user-defined transformed field, | 3.2.4.3

demonstrate calling a global function

Content-typeof _string demonstrate field with Typeof attribute (two ways) 3.24.4

Content-fixedsize arr demonstrate field with fixed size array 3.245
Content-unfixedsize arr | demonstrate field with unfixed size array 3.2.4.6
Content-timestamp decode and display a user-defined complex field, 3.24.7

demonstrate how to implement external function
(plug-in development)

38

Protocol Reader 1.0 User's Guide
3.2.2 begin

To write a protocol script, first, you should follow these steps:

= Include “sys.h” a the beginning of your script file, it is needed for system reserved
functions

= Set the root structure name for starting protocol decode by PROTOCOL _ROOT

= Set the name of the protocol by PROTOCOL NAME, (optional in this version)

= Set the network transmit mode for byte stream by NETWORK_TRANMODE, if thisconst is
not present, default value L_TO_H will be used
Note: you can make a declaration anywhere for any specific protocol field if needed, the
declaration accords with the scope rule of ANSI C, that is, it can be redefined to refer to a
different entity within a program block, &ter exit from the block, the const resumes its
previous meaning.

#include".\Includdsys.h"

define PROTOCOL_ROOT msg
define NETWORK_TRANMODE H_TO L /I for this protocol

3.2.3 Define root node of this protocol

Root node is the access structure for decoding a stream. In this session, we will give you an
example. Note that we use structure to establish and organize parent/child relationships
between protocol and fields, aswell as associating data with a particular field so that it can
be stored in the logical tree and displayed in the GUI protocol tree.

There are two steps you should follow: the first step in the development process is to create
high-level hiberarchy which should accord with the format of the protocol. Then, we should
implement every individua field (write decode-attribute and dump-attribute if needed).

3.2.3.1 Create hiberarchy structure

According to the “HelloWorld” protocol format, the hiberarchy of root level is shown

as follows:

struct msg

{
byte Header;
uint2 PacketType: 2;
uint2 SequenceNumber: 14;
byte ContentType;
choice Content;

|

39

Protocol Reader 1.0 User's Guide

First we define a struct named “msg*, it is the root node of this protocol. Then, we add field
memebers to the structure according to Figure 3.3 protocol format. For the last member of
the structure named “ Content”, it’s a choice item composed of optional parts of the protocol,
and the number and attribute of these optional parts are lie on the value of “ContentType”
(refer to Figure 3.3 protocol format).

3.2.3.2 Implement every individual field

In this session, we write decode-attribute and dump-attribute (if needed) for every field.

1) Field: Header

The field Header is decoded and dumped using default dump rule, attribute block is
unnecessary, only field description is added. This field is coded as follows:

struct msg
{

byte Header; [/l Framing header
|3

2) Field: PacketType

The field PacketType isa number field with bit definition, it can be decoded by default
decode process (refer to Table 3.1) . Because we want to show corresponding comment
of the value when display, virtual function Dump() should be overrided to meet our need
(do not use default dump rule).

Thisfield is coded as follows:

Step 1: write codes for decoding (do not need here, use default process), add field
description

uint2 PacketType: 2; Il Type of this packet

uint2 PacketType: 2 { /I Type of this packet

enum description {
0, // Command
1. /I Ack
2, Il Report

40

Protocol Reader 1.0 User's Guide

string Dump(dynamic& curltem)

{

String str;

str=sysGetEnumComment(curltem," Description”,"Equal”

systTitle(0,str);
return str;

I

= Here we define a vaue-to-comment list named “description” at first, then override
Dump() and call sysGetEnumComment() to trandate the value of curltemto its

comment, the result string is returned for display.
And sysetTitle() is called to set the TitleO of one-line-summary information.

3) Field: SequenceNumber

The fiddd SequenceNumber is a number field with bit definition, it is decoded by default
decode process (refer to Table 3.1) and dumped by default dump rule. Because the
datatype occupy more than one byte, the NETWORK_TRANMODE is considered when fetch
data from byte stream, we define this constant at the begin of the script here, or you can
define it in its own attribute-block of this field for specific needs.

Thisfield is coded as follows:

4) Field: ContentType

The fidd ContentTypeisa byte field, it is decoded by default decode process (refer to
Table 3.1) , and virtual function Dump() is overrided to get corresponding comment of
the value when display. This field is coded as follows:

uint2 ContentType {

I Type of following content

enum description {

il
2,
3,
4,
5
6
7

b

/I Packet (octet stream)
/I Packet (ip address)
/I Packet (bcd stream)
/I Packet (string with typeof attribute)
Il Packet (array with fixed size)
/I Packet (array with unfixed size)
I Packet (timestamp)

string Dump(dynamic& curltem)

{

Sring str;

str=sysGetEnumComment(curltem," Description"”,"Equal”

sysSetTitle(,str);
return str;

41

T

Protocol Reader 1.0 User's Guide

5) Field: Content

The field Content isa choice item, representing that there has one or more optiona
selection here. To deal with field with this kind of type, you should follow these steps:
Step 1. Use DeclareMap to define all possiable choices

Choice Content {
DeclareMap(Implicitltem,DataField)

item [1] tOctetSream
item [2] tlpAddress

ChoiceMap DataField

= Herewe define a DeclareMap named “DataField” , listing all possiable Child
branch, the attribute of the DeclareMap is Implicitltem (for more details about
DeclareMap, see chapter 3.3.3).
Every choice item has one IdentifierI D, in this demo, we set the ID according to the
definition of Content type.
Then keyword ChoiceMap is declared to link “DataField” with thisfield.

Step 2: override virtual function Translate() to implement how to process optional items.

struct tOctetSream; // predefine structure before use
struct tIpAddress;

struct msg
{

byte ContentType;

Choice Content {
DeclareMap(Implicitltem,DataField)

{
item [1] tOctetStream
item [2] tlpAddress

b
ChoiceMap DataField

void Trandate(String strCurldent,dynamic& curltem,long nldxInArr)

{
sysTranChoi celtem(str Curldent,cur ltem,this.ContentType);

= Translate() is overrided, and sysTranChoiceltem() is called to decide which item
in the ChoiceMap should be select and add to Content field (sysTranChoiceltem is
called only once, because only one optional branch is valid here).
For example, if this.ContentType=1, then tOctetStream will be selected to decode

42

Protocol Reader 1.0 User's Guide

following binary stream and added as a new branch, or if this.ContentType=2, then
tipAddress will be selected ... (here this.Member mean Member of parent
structure)

Note: thisis one of the samples about choice item, for details about choice item,

refer to chapter 3.3.3

3.2.4 Define every child branch of this protocol

After defining root node, we will implement every child branches of this protocol.

3.2.4.1 Protocol branch: octet stream

1) Create hiberarchy structure

According to the Format of content field (octet stream), the hiberarchy of this protocol
branche is shown as follows:

struct tOctetStream
{
string strData; // octet stream content

2) Implement fields

The field strData is a string(octet) fidd, unlike field with number type, we do not know
the length of the strData in the beginning , so it should be decoded by overriding the
virtual function Trandate() (refer to ...). And we dump it by default dump rule.
Thisfield is coded as follows:

string strData { // octet stream content
void Translate(String strCurldent,dynamic& curltem,long nldxInArr)

{
uintl len;
sysFetchValue(strCurldent, len, now(), O, true);
sysFetchValue(strCurldent, curltem, now(), len, true);
return;

}

= Translate() is overrided. First, according to the format, we get the size of curltem
(strData), then we fetch the character stream and store it in curltem (strData).

43

Protocol Reader 1.0 User's Guide

3.2.4.2 Protocol branch: ip address

1) Create hiberarchy structure

According to the Format of content field (IpAddress), the hiberarchy of this protocol
branche is shown as follows:

struct tIpAddress
{

b

octet stripAddress;

2) Implement fields

The fidd stripAddressis a octet field with four bytes ipv4 address. We don't use array
to declare this field, because we want to dump the address as one single element (for
field with array attribute except Tchar, every element in the array is dumped seperately).
Because the software do not know the length of the stripAddressin the beginning , we
should override the virtual function Translate() and dump().

Thisfield is coded as follows:

string str I pAddress {

void Translate(String strCurldent,dynamic& curltem,long nldxInArr)
{

}
Sring Dump(dynamic& curltem)

sysFetchValue(str Curl dent,curltem,now(),4, true);

{

int i

BYTE Addresy4];

for(i=0;i<4;i=i+1)

{

strGetAt(this.strlpAddress, i, Address[i]);
1
return strFormat("%d.%d.%d.%d",
Address[0] ,Address] 1] ,Address[2] ,Address[3]);

}

« Trandate() is overrided. According to the format, we get four bytes (ipv4 address),
and store it in curltem (strlpAddress).
Dump() is overrided to display the data of stripAddress as the format we usually show
(suchas“127.0.0.1").

44

Protocol Reader 1.0 User's Guide

3.2.4.3 Protocol branch: BCD Stream

1) Create hiberarchy structure

According to the Format of content field (Positive BCD), the hiberarchy of this protocol
branche is shown as follows:

struct tBCDStream
{

b

string strPhoneNumber ;

2) Implement fields

The fidd strPhoneNumber is a user-defined transformed field, the string of the
strPhoneNumber is transferred as BCD-octet in the binary stream. When decoding, we
should convert the BCD-octet to phone number string. In this demonstration, we override
the virtual function Tranglate() and call a global function BCD2STR() to implement the
convertion.

Thisfield is coded as follows:

string str PhoneNumber {
void Trandlate(String strCurldent,dynamic& curltem,long nldxinArr)

{
UINT1 PhoneNumber Len;

OCTET strBCDData;

sysFetchValue(str Curl dent,PhoneNumberLen, now(),0, true);
sysFetchVal ue(str Curldent,strBCDData,now(), (PhoneNumberLen+1)/2, true);

curltem=BCD2STR(strBCDData, true, (PhoneNumberLen%2)? 0:1);
return;

« Trandate() is overrided. According to the format, first we get the length of the
phone number (total digits number), calculate the length of the BCD-octet that equal
to (PhoneNumberLen+1)/2, then fetch the BCD-octet and store it in strBCDData.
After that we call BCD2STR() to convert BCD data to visiable string.
Sample binary stream is given in the demonstration, you can load it and see the result
generated by the Protocol Reader.

45

Protocol Reader 1.0 User's Guide
3.2.4.4 Protocol branch: string with typeof attribute

1) Create hiberarchy structure

According to the Format of content field (String with TypeOF attribute), the hiberarchy of
this protocol branche is shown as follows:

struct tTypeOFSring
{

b

string drData { TypeOF tSringWithLenAndZeroEnd }; // TypeOf string

2) Implement fields

The fidd strData demonstrate Typeof attribute (For details about why and how to use
syntax element ' TypeOf’, please see Chapter. Struct with TypeOF attribute). We provide
two solutions to implement tStringWithLenAndZeroEnd, they are in common use in script
development.

Thisfield is coded as follows:

Solution 1: In this solution, we first decode al the members of ‘ tStringWithLenAndZeroEnd’,
then call Integrate() to assemble and calculate these members to generate a single
value which represent the structure itself.

When displaying, by toggling the button in Display format Toolbar, al the detailed
members in TypeOF-structure could be shown (such asLen, strData and Zero).

struct tStringWithLenAndZeroEnd = String

{
UINT1 Len;
Sring strData { // string content
void Trandate(String strCurldent,dynamic& curltem,long nldxinArr)
{
sysFetchVal ue(str Curldent,cur Item,now() this.len,true);
}
1
UINT1 Zero;
b
attribute name="tStringWithLenAndZer oEnd'
{
Sring Integrate(String strCurldent)
if (this.Zero!'=0)
sysAbort(strCurldent,"string not end with zero");
return this.strData;
}
¥

46

Protocol Reader 1.0 User's Guide

Solution 2: In this solution, the struct * tSringwWithLenAndZeroEnd' is null, all the decoding
processisin function Integrate() .

struct tSringWithLenAndZeroEnd = String {};

attribute name="tStringWithLenAndZeroEnd'
{

String Integrate(String strCurldent)
uintl Len;
Sring strData;
uintl Zero;
sysFetchValue(str Curldent,len, now(),0, true);
sysFetchValue(strCurldent,str Data,now(),len, true);
sysFetchValue(strCurldent,Zero, now(),0, true);

if (Zerol=0)
sysAbort(strCurldent,"string not end with zero");

return strData;

3.2.4.5 Protocol branch: fixed size array

According to the Format of content field (Fixed size array), this protocol branche is
coded as follows:

struct tFixedArray

uint2 Identifierld[2]; /I ldentifierld Array

The field Identifierld isa number field with array attribute, it is decoded by default
decode process (refer to Table 3.1) and dumped by default dump rule. Because the
datatype occupy more than one byte, the NETWORK_TRANMODE is considered when fetch
data from byte stream (we define this constant at the begin of the script here, or you can
define it in its own attribute-block of this field for specific needs).

Hame | | Dlescription | Comment

[msyg = Report

Header TEERLEEN Framing header H' FE

PacketType i0--—-——- Type of this packet Feport

L SequenceNurbher FrR1gEEE 520

ContentType FEEELEEH Type of following content Packet [(array with fixed size)

E Content{}
& TocncifierId[z]

0000 FE 82 08 05 [DIEEICEIRaS

47

FEERLFEE

IdentifierId Array

Protocol Reader 1.0 User's Guide
3.2.4.6 Protocol branch: unfixed size array

According to the Format of content field (unfixed size array), this protocol branche is
coded as follows:

{struct tUnFixedArray
choice IdArray {
DeclareMap(Item, DataField) {
Identifierld [0] int2
h
ChoiceMap DataField
byte Num;
sysFetchValue(* IdArray” , Num, now(), O, true);
void Translate(String strCurldent,dynamic& curltem,long nldxInArr)
{
int k=0;
while (k<Num) {
sysTranChoiceltem(str Curldent,curltem,0);
k=k+1;
}
}
b
3

The fidd IdArray isa number field with unfixed array attribute, and could be
implemented as a Choice field. According to the format, fisrt, get the identifier number
and store it in Num, Trandlate() is overrided and while statement is called to add certain
number (specified by Num) of Identifierld to IdArray.

Following is a sample result generated by Protocol Reader :

Hame | | Teceription | Comment

- m2g = Report

.. Header ***E1*%% Framing header H' FE

PacketType 10-————— Type of this packet Report

SJequencelumber FEp14EEF 5z0

ContentType tEsBltRk Type of following content Packet (array with unfixed =ziz..

E| Content{}
j Idirrayi}:

- IdentifierId FEFRZEET 375

. IdentifierId ***BZ*% -27284
. IdentifierId ###EZF%® z
R = 0L 77 95 &0 00 02

48

Protocol Reader 1.0 User's Guide
3.2.4.7 Protocol branch: timestamp

Thisfield (see Format of content field: timestamp) is along integer that store the
timestamp value in timer represents a date from midnight, January 1, 1970. When
dumping, we want to display the vaue using the format like “yyyy-mm-dd hh:mm:ss’.

How to implement it ?

Since Protocol Reader is not intended to be a ANS C compilor, we just bring in the most
necesssary parts of ANS C's syntax to keep a more ssimple kernel and we do not support
standard C library at the beginning (besides essential functions we declare in the “sys.h’),
furthermore, it is unnecessary to support all standard C library in Protocol Reader. So,
the problem is how to implement new functions ?

Considering furtune use, we give two fundamental ways of implement new functions:

= if the function is simple, you can declare and implement it as a global function (refer to
sample of BCD2STR() to create new functions).

« if the function is complex and it is difficult to code it directly in Protocol Reader (such
as convert the value of timestamp to format “yyyy-mm-dd hh:mm:ss’), we use plug-in
technegue to create such function: declare it as an external function in script and
implement it in the plug-in project. By this way, we can share most of the ready-made
functions and librarys that C or C++ compilors provide instead of implementing it by
oursalf.

There are two kind of plug-in library in Protocol Reader, one is public library which
could shared by any protocol script and is loaded when the software is launched, the
other is private library only caled by the specific protocol script and is loaded when
certain protocol script is loaded.

For details about plug-in development, see Chapter Plug-in Developing Guide, and
template project is aso provide in software installation fold.

In this session, we will describe how to add a shared function to the public library.

.We should first declare the shared function as an external function, and include the
function header in the script.

/I Filename: lib.h
#include".\Includésys.h"

extern string TimestampToDateStream(long timestamp);

. Second, load the template project: \ProjectPlugln with Visual C++ software, open the

File \ProjectPlugln\PluglnObject.h, register the procedure and declare the procedure as
one of the CPugln member.

49

Protocol Reader 1.0 User's Guide

/I Add your Function Header here

static DWORD TimestampToDateStream(void* pParent, unsigned int params_num,
DWORD params|[]);

/I Register your Plugln Function
static struct FuncLookupTableEnt Thl_FuncLis] =

{
{ "TimestampToDateStream”, & CPluglIn:: TimestampToDateStream },
{o NULL }

.Then, open the File \ProjectPlugln\PluglnObject.cpp, add implement codes for the
plug in procedure “ TimestampToDataStream()”

/I Add your function implement codes here !

DWORD CPlugln:: TimestampToDateStream (void* pParent, unsigned int params_num,
DWORD paramsl[])

{

if (params_num<4) return 0O;

ExecuteEnv& Env =*((ExecuteEnv*)paramg[1]); // current environment
Procedure* pProcedure = (Procedure*)paramg2]; // current procedure

BinStream* pstream = (BinSream*)paramg[3]; // current binary stream
RunTimeStk& curSk =*(Env.GetTopSk()); /I current stack in environment
Il

bool bRT=true;

Il

/I GET PROCEDURE PARAMETER
long nTimestamp;

bRT=bRT & cur3k.get("timestamp”, nTimestamp);

if ('bRT)

{
Env.SetlLastError("%s() get param fail",pProcedure-> GetProcName().GetBuffer ());
return O; /l error

}

Il

/I EXECUTE PROCEDURE

if (nTimestamp<0)

Env.SetLastError("%s() value of timestamp error",
pProcedure->GetProcName(). GetBuffer());
return O; // error

50

Protocol Reader 1.0 User's Guide

OTSIR str;
time t sec = nTimestamp;
tm* cur_time= localtime(& sec); /I Use standard C function
str.Format(" %04d-%02d-%02d %602d: %02d: %02d",
cur_time->tm_year+1900 ,
cur_time->tm mon+1,
cur_time>tm_mday,
cur_time->tm_hour,
cur_time->tm_min,
cur_time->tm_sec);

Il
/I SET RETURN VALUE

CVarient Varient;
Varient.set(str);

if (!pProcedure->setReturn(Env, Varient))

Env.SetLastError("%s() set return fail" ,pProcedure> GetProcName(). GetBuffer ());
returnQ; // error

.After coding, compile the source code, generate plug-in library file named *.dl_, and
copy it to the installation fold\Pluglns, it will go into effect next time the Protocol Reader

loaded. It is strongly recommended that you do some test for this newly added function
before you release this plug-in.

Following is a sample result generated by Protocol Reader :

Hame | | Description | Commernt
E- sy = Report
Header TEATREIEAY Framing header H' FE
PacketType Il Type of this packet REeport
SequencelNunmber e o 520
i ContentType L = R Type of following content Packet (timestamp)

= Content{}
[1 Timestamp

Z2000-10-21 19:40:01

0000 FE 82 08 07 EEIREUERICIN

Note: For un-licensed version, plug-in feature (number of plug-in, total number of
functions in every plug-in) is limited

51

Protocol Reader 1.0 User's Guide

3.2.5 Summary

In this session, we have presented an approach about how to develop ascript step-by-step,
we hope that it's helpful to you and could speed up the learning process. But please
remember that what we provide you is a powerful develop platform, there is no “one right
way” to design and build script on that platform, it’s all up to you. Since we believe strongly
that the way to learn new techneque is to do more practice , more experiments is needed
before you could create an excellent protocol script concisely and quickly.

52

Protocol Reader 1.0 User's Guide

3.3 Advanced topics

In this chapter, we will discuss some of the important component when developing a script.

3.3.1 Field declared as structure

Most protocols are multi-level. How can we express the parent/child relationships between
protocols and fields ? we introduce structure to organize the hiberarchy of the protocol,
every structure node represent one level or a child branch in the protocol. The syntax is the
same asthat in ANS C. Let’s see an example:

/I definition
Struct strucA

byte fieldl;
byte field2;

// sample 1:
Struct msg

{
strucA subNode;

/l sample 2: array
Struct msg

{
strucA subNode[2];

We give a sample result generated by the Protocol Reader for samplel. you can see the
tree of protocol hiberarchy from the figure:

Hame | | Description Comment
= msy = -
A SubNode
fieldl T = b i H' FE
e field? FEKELEEE H' 0D
o000 FE OD

53

Protocol Reader 1.0 User's Guide

3.3.2 Structure with TypeOf attribute

The TypeOf isaspecia syntax element in the Protocol Reader, it is very useful when
dealing with shared components or some complicated data.
Let's seeits syntax first:

/1 predeclaration if needed

struct struct_ldentifier = returntype;

/1 declaration

struct struct_ldentifier = returntype

{
/1 Note: for structure with typeof attribute, field definition
/1 is not mandatory

datatype field_identifier { // field _description

decode attribute }. attribute_bl ock(optional)

dunp attribute

b
attribute nane = 'struct_ldentifier'

{
returntype Integrate(string strCurldent)

string Dunp(dynam c& curltem) // optional

/'l usage
struct struct_name

datatype field_name { TypeOf struct_ldentifier }; // description
/1l Note: here, the datatype = returntype

The structure with TypeOf attribute return a single value (only basic type is allowed) to
represent itself. All the members of the structure will be organized and calculated to
generate a single value.

It is useful and make your script more compact and easy to maintenance. The following
example will help you to understand the benefit of TypeOf.

54

Protocol Reader 1.0 User's Guide

Figure 3.4.2 Message format

8 | 7 | 6 | 5 | 4 | 3 | 2 | 1
1 Length of UserName string
2 UserName string

Length of Password string

Password string

1) Script A: do not use TypeOf element

Sruct logininfo

{
string strUserName{
void Translate(String strCurldent,dynamic& curltem,long nldxInArr)
byte length;
sysFetchValue(strCurldent, length, now(), 0, true);
sysFetchVal ue(str Curldent,curltem,now() length, true);
}
b
string strPassWord{
void Trandlate(String strCurldent,dynamic& curltem,long nldxinArr)
{
bvte lenath;
sysFetchValue(strCurldent, length, now(), 0, true);
sysFetchVal ue(str Curl dent,curltem,now(),length, true);
}
b
b

2) Script B: use TypeOf element
First code shared component, and save it to file “share.h’.

#include".\Includdsys.h"

Sruct tString = string ; // define shared component

byte length;
string strData {
void Trandate(String strCurldent,dynamic& curltem,long nldxinArr)

{
sysFetchValue(str Curldent,cur Item,now(), this.length, true);
}
b
b
attribute name = ‘ tSring’
{
string Integrate(string strCurldent)
{
return this.strData; /I return a value for this structure
}
%

Then code our main protocol script:

#include " shareh"

Sruct

{

Protocol Reader 1.0 User's Guide

string strUserName { TypeOf tSring };
string strPassWord { TypeOf tSring };

Compare with ScriptA and ScriptB, we can see that the later one is more compact and the
shared component is more easy to maintenance We recommend you to make the shared
components more independent when developing script just as the example show you.

When displaying element with TypeOf attribute, there is atoggle in Display format Toolbar.
If the button is in push-down status, al the detailed members in TypeOF-structure is
showed, otherwise they will be hided to make the display more compact. Protocol Reader
does this for convenience, when display, it keep the protocol tree from having unwanted

details.

Here, we will give you another way to implement tSring, and you could use any one of
them for your Preference. Inputing a byte stream and using Protocol Reader to display the
result will show you the difference between them.

#include".\Includdsys.h"

Sruct tString = string ; // define shared component

{
h

attribute name = ‘ tString’

{

string Integrate(string strCurldent)

sysFetchValue(str Curldent,
sysFetchValue(str Curldent,
return strData;

/I no member introduced here!

length, now(), O, true);
strData, now(),length, true);
/I return a value for this structure

56

Protocol Reader 1.0 User's Guide
3.3.3 Field with choice attribute

The Choice is a frequently used syntax element in the Protocol Reader, it provide another
way to organize the hiberarchy of the protocol. If the datatype of a fied is Choice, meaning
that there has one or more optional selection here.

To implement field with this kind of type, you should follow these steps:

Step 1: Use DeclareMap to list all possiable choices (branches)

Step 2: override virtual function Translate() to implement how to process optional items.
We have shown you a sample about the implement of Choice field (refer to Field:Content),
and here, further discussion will be given:

1) Name of choice field

The syntax is as follows:

Struct struct Name
{
Choice [fieldname] { // field description (begin)
..... /] attribute-block (nust be exist)
}; /1 field_description (end)
}

For Choice fidld, the field name is optional. It don’t need to be an entity of the protocoal,
and when the name of the Choice field is not exist, it’s only used to organize al optional
data, just as a virtual container.

Samplel: Choice field with name

Hame | | Dlescription Comment

E- msg = Report

Header FEERLEES Framing header H' FE

PacketType LO==ama= Type of this packet Report

- BegquenceNwiler I e 520

FEERLEES Type of following content Packet [(ip address)

EEERGEEE 192.1658.0.1

oooo FE sz 08 02 |

L Data block of the Choice field
L Field name: Content (‘{}’ mean it's a choice field)

Sample2: Choice field without name

Hame | | Description Comment

[F- msg = Report

Header FEABLES Framing header H' FE

L PacketType 10-———— Type of this packet Report

- Zequencelumber FihlgFEFEw 520

- ContentType FEERLEEE Type of following content Facket [(ip address)

striplddress LS R 18z.163.0.1

oooo |FE sz 08 02 i

L Data block of the Choice field

Field without name (‘{}' mean it's a choice field)
S/

Protocol Reader 1.0 User's Guide

Note: To refer to the item in Choice content, the form structure-name.member
could be used. For example, if we want to refer to stripAddressin the
sample (see the figure above):

For samplel: expression will be msg.Content.strlpAddress
For sample2: expression will be msg.strlpAddress

2) DeclareMap

DeclareMap is another specia syntax element we add to declare and organize all the
optiona items of Choice field. The syntax is as follows:

Decl areMap(ltenjInplicitltem MapNane)

vari abl enane [nTag] basictype
vari abl enanme [nTag] TypeO' struct_Idendifier
vari abl enane [nTag] struct_Ildendifier

}

The attribute of a DeclareMap can be Item or Implicititem. For each choice item, arelevant

and exclusive Identifier ID (nTag) is given.

= When DeclareMap has Item attribute
If an optional item is exist, the corresponding node or leaf (named variablename) would
be added to current Choice field of the protocol tree.

= When DeclareMap has Implicitltem attribute
This attribute is only valid for variable with structure attribute, for variable with other
datatype, it is equal to Item.
If an optional item is exist, only the members of the corresponding structure (named
struct_ldendifier) would be added to current Choice field of the protocol tree.
In this circumstance, the structure is only used to organize the sequence of optional items
which appear at the same time, and the name of the structure item itself (variablename) is
hided, because it is not an element of the protocol tree (only the members of the structure
is needed for the protocol tree).

Here, we will give you two example to see the difference:

Samplel: DeclareMap with Item attribute
a) demo script

struct strucA
{
byte fiddi;
byte fidd2;
b

struct msg

{
byte Id;

58

Protocol Reader 1.0 User's Guide

choice content {
DeclareMap(Item , DataField)
{
item [1] strucA
h
ChoiceMap DataField

void Trandate(String strCurldent,dynamic& curltem,long nldxInArr)

{
sysTranChoiceltem(str Curldent,curltem,this.|d);
}
¥
b
b) demo result generate by Protocol Reader
Hame | | Description Comment
- m=Eg = —
Ia wEEELEEN H' 01

E content{}

-

i fieldl R =B Bt H' 00O
L. fieldZ pofuiu = oo H' 168
pooe o 3

Optional content with item attribute

Sample2: DeclareMap with Implicititem attribute
a) demo script

struct strucA
{
byte fiedl;
byte fidd2;
3
struct msg
{
byte Id;
choice content {
DeclareMap(Implicititem , DataField)
{
item [1] strucA
3
ChoiceMap DataField
void Trandate(String strCurldent,dynamic& curltem,long nldxInArr)

{
sysTranChoiceltem(str Curldent,curItem,this.|d);

59

Protocol Reader 1.0 User's Guide

b) demo result generate by Protocol Reader

Hame | | Description Comment
B wmsg = -
Id FEERLE AN H' 01
fieldl wEERLEEE H' 00
i fields *EEEL1FF*F H' 16
[l i3
2

Optional content with Implicititem attribute

(Only the members fieldl, field2 of strucA are added to content)

3.3.4 Field with array attribute

To support field with array attribute is necessary in some cases. The process for this kind of
field has some differences from that of others.

1) The form of array with fixed size is as follows:

struct identifier_nane /'l struct_description

datatype field_identifier[N {// field_description

decode attribute }attri bute_bl ock(optional), woul d be
dump attribute executed for each elenent of the array

2) The array with unfixed size could be implemented as a Choice fied

Let's see a piece of code demonstrate array with unfixed size:

struct msg
{
byte Num;
choice IdList {
DeclareMap(Item, DataField) {
Id [0] byte
b
ChoiceMap DataField
void Translate(String strCurldent,dynamic& curltem,long nldxInArr)
{
int k=0;
while (k<this.Num) {
sysTranChoiceltem(str Curldent,curltem,0);
k=k+1;
}
}
b
b

60

Protocol Reader 1.0 User's Guide

In this sample, we would like to get a Id list with dynamic size (determined by Num),
Following is a result generate by Protocol Reader.

| | Deseription | Comment

FTEFRLEFEF H! o3
FEERLFEH
FEFRLIEFEF H! 16

FEERLFEF H' 02

nooo 03 N. . .|

61

Protocol Reader 1.0 User's Guide

3.4 Debug the script

A script that has not been tested does not work. The ideal of designing and/or verifying a
piece of codesso that it works the first time is unattainable for all but the most trivial
programs. ‘‘How to test?’ is a question that cannot be answered in generd. ** When to
test?’ however, does have a general answer: as early and as often as possible.
« When to test
Testing should begin &s early as possiable, so, you don't need to write whole hiberarchy
nodes or codes at the very begin when protocol is complex, unless you have a good
understanding of using this software.
Actually, you could implement the protocol level by level or field by field, this method is
often used when you are not sure about the correctness of your script and try to debug the
newly writed code.
= How to test

In Protocol Reader, insteading of dealing with protocol itself, we focus our workload on
individual field of the protocol, any field is relatively independent (coded like Figure 3.2).
To separate the complex protocol into smaller one help to simplify the problem, and make
it easier to test and save your vauable time. So, the testing of a field would be the primary
problem.

When debug a newly coded field, you could input a hexadecima message, decode it and
check if the result is correct. Because there is no “one right way” to design and build a
script, you could compare different approaches of implementing a field to see different
result generated by the Protocol Reader, it will help you to understand this software and
get a better way of implementing a field. Usually, compilers will warn of most errors.

Write a field - test it > write another field ..., thiswill help you write a correct script.

Since we believe that the way to learn new techneque is to do more practice , more
experiments is needed before you could create an excellent protocol script concisely and
quickly. Besides, it is strongly recommended that you open and study the sample script, it
will give you alot of help.

62

Protocol Reader 1.0 User's Guide

3.5 Appendix

In Protocol Reader, default decode (see Table3.1) and dump rule (see Table3.2) for specific
datatype is provided to fit most need; if there are no specia requirements, you don't need to
write any codes in attribute block, system will do all that for you. Or you can override
system reserved virtual function (see Table 3.3) to meet certain needs.

3.5.1 Default decode rule

Table 3.1 Default decode process

Type Default process Remark

Intl, uintl Get data (1 byte)
char, unsigned char,
byte, bool

Int, int2,uint2, Get data (2 byte) 1. The order of byte stream is defined
short, unsigned short, by NETWORK_TRANMODE, if this
word const is not present, default value
Int4, uint4, Get data (4 byte) L_TO_H will be used

long, unsinged long,
dword

Float, double -

String -
Octet -
Tchar Get byte stream

Memo -

Choice -

= When there are some special requirements or default process is not valid for certern
data-type, one of the system reserved decode process should be overrided (shown in
Table 3.3)

3.5.2 Default dump format

Table 3.2 Default dump format

Type Internal Type Default dump format

Int, intl, int2, int4, signed dec integer %ld
char, short, long

63

Protocol Reader 1.0 User's Guide

Uintl1,uint2,uint4, Unsigned dec integer %lu
unsigned char,
unsigned short,
unsinged long,
bool
Byte, word , dword Unsigned hex integer H' %x
Foat, double Double %.3f
String Ascii string T' %s
T mean null
Octet octet stream H' %02x %02x ...
Tchar Fixed array of char T' ... (character \0->"")
Memo Large octet stream M' Length=...

« If there are some specific requirements when dumping a decoded data of afield, the
virtual function string Dump() could be overrided to meet you need.

3.5.3 System reserved process for override

Table 3.3 System reserved process for override

Type Valid decode process Corresponding dump
process

All number type 1. Default process Default process or Dump()
Float, double 2. TypeOF -
String 3. Trandate () Default process or Dump()
Octet
Tchar
Memo 1. Trandate () -

ContentOF (optional) | Default process or Dump()
Choice 1. void Trandate () -
Struct with TypeOf attribute | 1. Integrate () Default process or Dump()

There are three decode process mode you can override

1) Trandate()

This function is commonly used in most circumstances, you can write you own decode
process in thisfunction, and there are two return mode: if the funciton isvoid, the
returned data is stored in curltem; or if the function has return-type (must be same as
the type of current field), you can use return to return decoded data.

Form of this function is as follows:

type Trandate (string strCurldent,dynamic& curltem,long nldxInArr);

64

Protocol Reader 1.0 User's Guide

Parameters
strCurldent current protocol field name
curltem current protocol field to decode

if it'san array field, curltem pointer to ThisField[nldxInArr]
nldxInArr index in ThisField (dways equal to O for un-array field)
Return
If the return type is not a void data-type, return decoded data.

2) TypeOf
The TypeOf is a special syntax element in the Protocol Reader, it is very useful when
dealing with shared components or some complicated data. We will give you detailed
information in ...

3) ContentOf
This keyword is only used for the field with memo attribute. For this kind of field,
function Trandate () is mandatory, and after Trandate () return the decoded byte-stream,
you can use ContentOf to further decode returned byte-stream, the syntax is as follows:

Contentf struct _ldentifier

The usage of this keyword is somewhat like that of sysTranChoiceltem(), the difference
between them is when you use ContentOf, the further decoding is limited in current
stream returned by Trandate (), if overflow occur, system will give you an error message.

65

Protocol Reader 1.0 User's Guide

4 Plug-in Developing Guide

TO BE CONTINUED

66

