
Protocol Reader 1.0 User’s Guide

1

 The Protocol-Reader Manual

 (version 1.0)

10rd April 2007

Protocol Reader 1.0 User’s Guide

2

Preface

Version The manual is written to support Protocol Reader Version 1.0.0

Copyright© 2006-2008 james.shen

Here describe the history of the software version:

 Version Date Comments

0.9a 2006.12.20 Internal Test Version

1.0 2007.2.28
2007.4.10

Software Released (Beta Vesion)
Document Released

History

Introduction Protocol Reader is a powerful protocol-analyser tool for parsing and displaying
received binary messages. With an easy-to-use interface and highly advanced
decoding engine, it can be used to support all levels of protocols such as IP based
protocols (TCP, UDP, etc), Telcomunication protocols(MTP3,ISUP,TUP, etc) and
user-defined packets.
Unlike other protocol analyzer tool, we provide advanced features to meet future
needs. Instead of waiting long time for a new protocol decoder to be released,
you can easily write a script to support new protocols in a incredible short time
by yourself.

Objectives of this
Manual

This manual describes all the basics and features that Protocol Reader provides,
you’ll get an understanding of what Protocol Reader is, what its features are, and
how to use it.
This manual is part of documents to improve the usability of Protocol Reader.

Operation system
Support

Windows XP/2000/NT/ME/98/95

About this
Document

We hope you will find it useful, and look forward to your comments and valueble
feedback.

Protocol Reader 1.0 User’s Guide

3

1 OVERVIEW .. 5

1.1 INTRODUCTION ... 5
1.2 WHO WILL BENEFIT FROM THIS SOFTWARE... 6
1.3 DEVELOPMENT AND MAINTENANCE .. 6

2 QUICKSTART.. 7

2.1 INSTALLATION ... 7
2.2 USER INTERFACE... 8
2.3 USING PROTOCOL READER .. 12

2.3.1 Use as an independant protocol analyzer .. 12
2.3.2 Communicate with other application ... 13
2.3.3 Demonstration... 15

3 SCRIPT DEVELOPING GUIDE ... 17

3.1 TUTORIAL OF SYNTAX ... 17
3.1.1 Basic data types.. 17
3.1.2 Complicated data type: structure... 18
3.1.3 Basic syntax components .. 20
3.1.4 Enhanced syntax components .. 26
3.1.5 Architecture of a typical script.. 26
3.1.6 System reserved consts and functions ... 30

3.2 DEVELOPING PROTOCOL SCRIPT .. 36
3.2.1 Definition of the sample protocol ... 36
3.2.2 begin .. 39
3.2.3 Define root node of this protocol ... 39

3.2.3.1 Create hiberarchy structure.. 39
3.2.3.2 Implement every individual field ... 40

3.2.4 Define every child branch of this protocol .. 43
3.2.4.1 Protocol branch: octet stream .. 43
3.2.4.2 Protocol branch: ip address.. 44
3.2.4.3 Protocol branch: BCD Stream .. 45
3.2.4.4 Protocol branch: string with typeof attribute.. 46
3.2.4.5 Protocol branch: fixed size array .. 47
3.2.4.6 Protocol branch: unfixed size array ... 48
3.2.4.7 Protocol branch: timestamp.. 49

3.2.5 Summary... 52
3.3 ADVANCED TOPICS ... 53

3.3.1 Field declared as structure... 53
3.3.2 Structure with TypeOf attribute .. 54
3.3.3 Field with choice attribute .. 57

1) Name of choice field... 57
2) DeclareMap... 58

3.3.4 Field with array attribute... 60
3.4 DEBUG THE SCRIPT .. 62

Protocol Reader 1.0 User’s Guide

4

3.5 APPENDIX ... 63
3.5.1 Default decode rule .. 63
3.5.2 Default dump format... 63
3.5.3 System reserved process for override.. 64

4 PLUG-IN DEVELOPING GUIDE ... 66

Protocol Reader 1.0 User’s Guide

5

1 Overview

1.1 Introduction

 Protocol Reader is a powerful protocol analyse tool for parsing and displaying received
binary messages. With an easy-to-use interface and programable kernel, it can support
variety of protocols such as IP based protocols(TCP,UDP, etc), Telcomunication protocols
(MTP3,ISUP,TUP, etc) and user -defined packet.

Unlike other protocol analyzer tool, we provide advanced features to meet future needs, not
only for standard protocols, but also for user-defined protocols . Instead of waiting long
time for a new protocol decoder to be released, you can easily write a script to support new
protocols in a incredible short time by yourself.

◆ Main features and characteristics:

■ Display packets content with detailed protocol information by hiberarchy.

■ Excellent protocol-decoding kernel for supporting new or specific types of messages,

 Script development environment allow you to write a script with simple and familiar
syntax, no boring program involved. Protocol Reader make it easier.

 Write excellent script and share it with others makes it easy to support even newest
 protocols.

■ Plug-in is supported to deal with complicated protocols or specific requirement.

■ Protocol Reader can be used as independent data analyzer, or integrated with other
 application. A binary-packet-accepting interface is provided for accepting raw data
 from any external applications.

■ Smart real-time analyzer.
 You can use manual or automatic decode mode to deal with the constantly coming

message.

■ Two display mode, three comment mode and some alternation is provided for your
 preference, easy to use.

■ Import and export feature is provided for packets management.

Note: Protocol Reader is not developed to be a sniffer tool. We focus our work on
analyzing packet, not captureing packet, but you can intergrated it with sniffer
softwares through the binary-packet-accepting interface, for details about this

interface, See chapter 2.3.2 Communicate with other application

Protocol Reader 1.0 User’s Guide

6

1.2 Who will benefit from this software

 Protocol Reader can be used as message monitor or debug tool for software manufacturers,
protocol analyzers and program developers.

It is useful when you develop or debug applications which deal with protocol or have data
communication with each other. This software is helpful especially for those who want to
have a tool to support their own protocol or their own frame format, because no other
software can be found to meet such specific requirement.

1.3 Development and maintenance

 Protocol Reader was originally developed by James.shen . This is the first released version,
and ongoing development and continually improvement will continue. Our aim is to make
Protocol Reader to be one of the best softwares that are comparable to any other
commercial analyzer.

We will create and keep a loose group of individuals to fix bugs, add new functions,
improve manual document and develop new protocol scripts.

Technically, the code is still considered beta, so there’s always room for improvements. All
contributions and feedbacks are welcome. Our team, the users and developers worldwide
would benefit from your efforts, and we will merge useful contributions into the newly
released software.

If you have any feedback about Protocol Reader, please send them through

■ Website http://aries-studio.vicp.net/soft/ProtocolReader.html

■ Email Address shen_bd@sohu.com

Note: When giving your feedback, it is helpful if you supply following informations

 ● Subject type (problem, comment or new script,etc.)
description of your feedback (the error/warning message you get, and the

relate script file, etc.)

Protocol Reader 1.0 User’s Guide

7

2 Quickstart

2.1 Installation

 To install Protocol Reader , follow these steps:

1. Download this software from Website
The most authoritative source for downloads is the Protocol Reader download website
at www…..com/download.html.

2. For installion package, run setup.exe to install the software to the destination fold.
For compress package, uncompress the software to the destination fold.

3. After a successful installation, you can begin to use Protocol Reader.

In following Figure, you can see a breakdown of the installation directories contained in the

Protocol Reader distribution.

Note: As a beta version, you don’t need to register this software.

Protocol Reader 1.0 User’s Guide

8

2.2 User Interface

Protocol Reader’s graphical user interface is easy to use. This chapter covers the main
components of its Graphical User Interface (GUI).

 For this version, there are three main components to the window shown in Figure 2.1 :

◆ MainView Window

Figure 2.1 shows what a typical MainView window looks like. The main pane is the
protocol detail view. We use the protocol tree to display and access the details and
components of protocols contained inside the binary packet. The tree looks familiar to
you as one you might normally use to navigate a file system. The tree on the “Name
Column” allows you to navigate around the fields of the protocol.Clicking on various
parts of this protocol tree will highlight corresponding hexadecimal and ASCII output in
the bottom pane. Both of the main pane and the bottom pane are adjustable in size by
clicking on the seperator row between the panes and dragging up or down.

 Table 2.1 Default Columns of the main pane

Column Name Description

Name display the name of protocol item
(defined in script file, see…)

Location display current location information of this item
this column is initially hided, If required, you can click and drag
the column heading to show it.

Figure 2.1 Main Window

MainView
Window

Message
Window

Hexdata
Window

Protocol Reader 1.0 User’s Guide

9

BitMask show how many bits or bytes current item has. ‘B’ mean bytes, and
‘b’ mean bits.

Description description or remark of current item if present
(defined in script file, see…)

Comment display the comment of the current protocol item’s decoded value.
there are three format for selection :

● Comment (if present)

If the definition of value-to-comment dump is present, show
 comment, otherwise show the value.
 It is the default selection.

● Value Only
 Just show the value
● Value & Comment

If the definition of value-to-comment dump is present, show
 value and comment, otherwise just show the value

■ Other components in MainView window

 Display format Toolbar

Toolbar Item Description

Comment Format select the comment column display mode

TypeOF–protocol item
display mode

toggle button for changing status of TypeOF-item,
we expand the node of TypeOF-item when the button is in
push-down status.
for details about TypeOF–protocol item, see Chapter 3.3.2

 Status bar

Statusbar Parts Description

LocalSetting 2900 is the local Udp port for packet-accepting interface
for details about packet-accepting interface,
see Chapter2.3.2 Communicate with other application

Protocol Reader 1.0 User’s Guide

10

Information realtime statistics

Script current protocol script file loaded

◆ Configuration Window (To be implemented)

We will implement Configuration Window in next version, and three enhanced feature
will be provided:

■ Filter Management allows you to enter a filter string restricting which packets are

Displayed in the MessageList Dialog when accepting external packets. A filter string
is a string defining some conditions that may or may not match a packet. Powerful filter
provides a flexible mechanism to deal with specific packets

■ Plug-In Management allows you to display and manage the Plug-in List, you can add,

Delete a certain Plug-in lib.

■ Multi-protocol script will be supported.

◆ MessageInput & MessageList Window

Message Window has two pages, One is Message Input Page for entering hex data,
another one is MessageList Window for accepting external binary packets. We will give
you an overview of the interface components here, and detail description about how to
use it will be given in Chapter 2.3 Using Protocol Reader.

 MessageInput Page

 Table 2.2 Message Input Page Item

Menu Item Description

 Translate current hex data

 Add current hex data to Message List directly

Protocol Reader 1.0 User’s Guide

11

 MessageList Page

 Table 2.3 Message List Page Item

Menu Item Description

 Load a saved data file for viewing

 Save current data in the list to file

 Clear the list

 Toggle button
When in push-down status, system will automatically translate
external packet when accepting it.

 Table 2.4 Default Columns of the Message List

Column Name Description

N Packet Number

Time Time to when we accept this packet

Len Packet length

Source
Description

Identify data source (e.g from which PC, or direction …)
For more information about how to use this field, see chapter …

Title

Info

Summary of this packet.
For more information about how to use this field, see chapter …

Protocol Reader 1.0 User’s Guide

12

2.3 Using Protocol Reader

Having spent a lot of time discussing Protocol Reader ‘s features and benefits, and now,
there may come a time to systematically explore how to use Protocol Reader. In this
chapter, we will also provide you examples for quick start.

Protocol Reader is an easy-to use software, it can be use either as an independent protocol
analyzer , or as an monitor or debug tool who can communicate with other application.

Note: In this chapter, we assume the protocol script needed is ready for use.

 As for how to develop script, see Chapter 3. Developing Guide

2.3.1 Use as an independant protocol analyzer

Using Protocol Reader as an independent software, in other words, input hexadecimal
message for analyzing is the major feature of typical protocol analyzer.

◆ To analyze a single message, follow these steps

- Select the protocol script file by clicking menu item System | Select protocol script file

Select mainview displaymode by checking menu Advanced | Preference | Display mode

 Select display format from the Display format Toolbar

- Bring up the “MessageInput box”

You can show it by click menu Tool | Show MessageList Window if it’s not visiable.

- Input or copy the hexadecimal message to the “MessageInput box”

You should input message like this (only hex character, Space and Tab is allowed)

00 0F 3D 2C 87 C1 00 0F EA 57 38 5F 08 00 45 00

CF 0B 06 C4 00 50 6D B6 31 72 00 00 00 00 70 02

20 00 CE F7 00 00 02 04 05 B4 01 01 08 02

- Start to analyze the message by click button. in the “MessageInput box”

- The result will be shown in the mainview window.

Protocol Reader 1.0 User’s Guide

13

2.3.2 Communicate with other application

Accepting binary-packet from other application is one of the major features of Protocol
Reader. Protocol Reader is not a sniffer tool, but it can be intergrated with sniffer softwares.
We provide binary-packet-accepting interface, so the permitted source of the data packets
are widely increased, you can receive any hex packet to “MessageList Dialog” for further
decoding, not only from packet-capture softwares, but also from any user applications.

◆ Binary-packet-accepting interface

Because Protocol Reader is designed to accept packets from many different applications
simultaneous ly, we use UDP (User Datagram Protocol) as communication protocol, the
default udp port is 2900. This message interface is open to any application programs as
long as they have following header format:

 Field Default Description

Octet 0 FrameHeader 0x05 Header to identify this frame

Octet 1 SourceId 0x00 Identify data source (e.g from which PC, or direction …)

For more information about how to use this field, see

chapter …

Octet 2 ProtocolId 0x00 Reserved for this software’s next version to deal with

multi-protocol supporting.

 Octet …

RawData The payload stream need to be sent

Note: In this version we have 1 megabyte(s) size kernel buffer to keep the accepted
packets, if you encounter packets overflow, we will clear all received packets and restart
accepting. Feature of configuring the buffersize will be provided in next version.

Figure 2.2 Network Architecture of Using Protocol Reader

Ethernet

Sniffer software
Application

Protocol Reader
UdpPort: 2900

User Application

Protocol Reader 1.0 User’s Guide

14

◆ To start binary-packet-accept interface , follow these steps

1. Select the protocol script file by clicking menu item System | Select protocol script file

Select mainview displaymode by checking menu Advanced | Preference | Display mode

Select display format from the Display format Toolbar

2. Bring up the “MessageList box”

You can show it by click menu Tool | Show MessageList Window if it’s not visiable.

3. Decide whether you would like to decode received packets in a automatical way while

keep on accepting.

In the “MessageList box” , if the button is in push-down state, we will decode every

packet automatically in real time when accepting it; otherwise, instead of decoding

received packet automatically, we just add accepted packets into “MessageList box”, you

could decode these packets by double clicking corresponding item.

Note: If the “MessageList box” is in automatical decode status, it will consuming a lot

of CPU time, because real-time analyzing with large packets can be quite slow.

 So close automatical-decode-feature, unless it is very necessary to analyze live

 accepted packets.

4. Start accepting by checking the menu item System | Accept external data to translate

The accepted packets will be shown in the MessageList box.

It’s a packet summary window, each line corresponds to one packet.

5. Using the “MessageList box”

Once you have accept some packets, or you have opend a previously saved file, you can

view the packets that are displayed in the packet list by simply double-clicking on a

packet.

Double-click one packet to analyze, result will be shown in mainview window.

Right-click one packet to show the corresponding hexadecimal and ASCII content.

Click button to save all the packets in list to file.

Click button to load a saved file to list.

Protocol Reader 1.0 User’s Guide

15

2.3.3 Demonstration

When first time use Protocol Reader, we will bring up a “quick start dialog” or you can
click the menu item Help | Quick start to show the “quick start dialog” as follows:

Do as the dialog shows, it will give you a step-by-step guidance about how to use the main
features of Protocol Reader.
Here is an example with a TCP pakcet, result is show in figure 2.3

Figure 2.3 TCP packet example

Protocol Reader 1.0 User’s Guide

16

In figure 2.3, Detailed information about Fields of this packet is generated in a tree-style
view, we can see that the packet contain TCP inside IP inside an Ethernet packet.

You can then expand or collapse any part of the tree nodes to show more complicated data
structures in the protocol, or collapse it to only show the summary.

- Selecting individual protocol fields by clicking on them will highlight corresponding
hexadecimal and ASCII output in the bottom pane. The bottom displays the raw data both
in hexadecimal and ASCII format.

- Right-click protocol field will bring up an information dialog to show you the definition
of this field in script file. It will give you some hint about how this field is decoded or
dumped.

Example 1:
when you right-click msg.ETHERNET.Destination.Addr, an information dialog is shown:

From the information box, we know that this field is decoded as a octet stream with six
Bytes (see procedure Translate(), it’s the base procedure for decoding, we will discuss
it in next chapter) and displayed in “comment column” as hexadecimal string (default
display mode for field with octet type) .

Example 2:
when you right-click msg.IP.FragmentFlag, an information dialog is shown:

From the information box, we know that this field is decoded as unsigned short with 3
bits and displayed in “comment column” as a description string generated by procedure
Dump() (the base procedure for comment dumping, we will discuss it in next chapter) .

Protocol Reader 1.0 User’s Guide

17

3 Script Developing Guide

This chapter will outlined some of the most important parts of develping Protocol Reader, a
view of the syntax and development process will be presented. There are two basic component
you should master before you could become an expert or a contributor to the Protocol Reader
project :

■ Protocol script

■ Plug-in

3.1 Tutorial of syntax

Because ANSI C is a widely used programming language, we make it as our script-writing
language, majority of the code base for script-implementing is plain ANSI C, knowledge
about ANSI C will be sufficient for Protocol Reader development in almost any case.

Since Protocol Reader is not intended to be a C compilor, we just bring in the most
necesssary parts of ANSI C’s syntax to keep a more simple and efficient kernel. Althougth
compare with the standard ANSI C language, there may have some tiny differencies, syntax
for script is designed to make it easy to compose, analysize the hiberarchy of encoded data.

The tutorial, by being brief, does assume a basic knowledge of ANSI C programming, so
our aim is to show only the essential elements of the language , but without getting bogged
down in details, rules and specific programming techniques. At this point, we are not trying
to be complete or even precise. We want to get you as quickly as possible to the point where
you can write useful script.

Note: The Protocol Reader’s syntax is case-unsensitive.

3.1.1 Basic data types

Generally, every name (identifier) has a type associated with it. This type will determine
what operations can be applied to the entity referred to by the name. Based on ANSI C
standard, many small changes and additions have been made to the basic data types:

Type Description

 Void null data type
Char 8 bits integer, capable of holding one character in the local character set

Short 16 bits integer
Long 32 bits integer

 Double double-precision floating point

 Octet an octect-stream is a sequence of characters

Protocol Reader 1.0 User’s Guide

18

In addition, there are a number of qualifiers that can be applied to these basic types, we list
all the data type supported as follows:

Table 2.4 Data type List

Type BasicType Comment

char, int1 Char

short, int2,
int

short

long, int4 Long

byte, uint1
bool

unsigned char

word, uint2 unsigned short

dword, uint4 unsigned long

tchar char the type is used mostly for char array with
fixed size

float double

octet octet hexadecimal sequence of 8-bit bytes

string octet a string is an array of characters with '\0' at
the end, usually surrounded by “ ” or ‘ ‘

memo octet memo is used for large size octet-stream

void - null data type

choice - only used as a struct-member, represent
there has one or more optional selection
here

Note: For Integral and floatingpoint types, they can be mixed freely in assignments and

 expressions. Wherever possible, values are converted so as not to lose information.

3.1.2 Complicated data type: structure

A structure is a collection of one or more variables, possibly of different types, grouped
together for convenient handling. Structures help to organize complicated data, The
keyword struct introduces a structure declaration, which is a list of declarations enclosed
in braces.

Syntax of structure declaration is as follows:

struct name {

 datatype variablename; // structure member

};

Protocol Reader 1.0 User’s Guide

19

◆ Prefedine d structure

A structure cannot be used in definition of instances unless it has been previously
declared, but in some cases, we want to use a structure before the entity of structure has
been declared, so we bring in the concept of predefined structrue. Example is given to
show how to use predefined structure:

Example : predefined structure

...
struct Location; // predefine(the entity they refer to must

 // be defined elsewhere)
...
Location locat; // use predefined structure
locat.x=1;
locat.y=2;
...
struct Location { // structure entity
 long x;
 long y;

};

◆ Bit-fields

Sometimes it may be necessary to pack several member objects into a unsigned integer
(e.g.byte,word,dword) . we offer the capability of defining and accessing fields within a
unsigned integer directly. Structure members with bit-field, is a set of adjacent objects
share one single data type object.

Example :

 struct mydata {

 unsigned int nflag : 1; // the highest 1 bit

 unsigned int value : 15; // the lower 15 bits

};

This defines a variable table called mydata that contains two bit-fields. The number
following the colon represents the field width in bits. The fields are declared unsigned int
to ensure that they are unsigned quantities, and its format in octet-stream (bits always in
high to low order) is:

31 30 0

nflag value unsigned int (32bits)

Individual fields are referenced in the same way as other structure members:
mydata.nflags, mydata.value, etc. Fields behave like smaller integers, and may participate
in arithmetic expressions just like other integers. Padding field may needed if total bits of
associated adjacent fields is not reach the data type’s bits-size. Any bit-field is not arrays.

Protocol Reader 1.0 User’s Guide

20

3.1.3 Basic syntax components

This chapter discusses the basic syntax components for composing a script file, but there
will be no details here, because all the syntax is similar with ANSI C, it’s easy for you to
understand.

Notice: There will be some reductions and additions in the syntax of Protocol Reader.
following list show some ANSI C syntax components we do not support:
● macros
● union, pointer, typedef

● array with two or more dimensions

1. Const definitions
Similar to ANSI C, we offer the concept of a user -defined constant to express the Notion
that a value doesn’t change directly. This is useful in several contexts. For instance, many
objects don’t actually have their values changed after initialization, symbolic constants lead
to more maintainable code than do literals embedded directly in code. We use the keyword
define to the declaration of an object to make the object declared a constant.

Form of const definitions

Syntax # define const_identifier number|Plainstring

Sample # define PI 3.14
define MAX_LEN 20
define INFO_STR “Welcome”

2. Enumerations
The notion of enumeration in Protocol Reader differs from the enumeration notion in the
ANSI C . An enumeration here is a type that can hold a set of values of constants specified
by the user, it’s a group of contants used very much like an integer type. The role of the
identifier in the enum-specifier is analogous to that of the structure tag in a struct-specifier.
In addition, enumerator names in the same scope must all be distinct from each other.

Form of enumerations

Syntax Enum enum_identifier { enumerator-list }

enumerator-list:
 enumerator
 enumerator-list, enumerator

Protocol Reader 1.0 User’s Guide

21

enumerator:
 identifier=constant-expression // Normal enum-item
 constant-expression // implicit enum-item

Sample Example 1: normal enumeration
 enum MsgType {
 CMD = 0, // command
 REP = 1, // report
 ACK = 2 // response
 };
 long type;
 type = MsgType::CMD; // use enumerator

Example 2: implicit enumeration
 enum MsgType {
 0, // command
 1, // report
 2 // response
 };

Note : Implicit enumeration is defined and used only for the kernel
 of Protocol Reader, for more details see …

3. Include
Include is the preferred way to tie the declarations together for a large program. It
guarantees that all the script files will be supplied with the same definitions and variable
declarations, and thus makes it easy to handle shared codes . Naturally, when an included
file is changed, all files that depend on it must be reload and recompiled.

Form of include

Syntax # include “filename”

Sample # include “sys.h"

include “header.h"

Note : filename is searched in association with the path of the original
 source file.

4. Variable Declarations
All variables must be declared before use. A declaration specifies a type, and contains a list
of one or more variables of that type, as in

int x, y;

char linebuffer[1000];

Protocol Reader 1.0 User’s Guide

22

Variables can be distributed among declarations in any fashion; the lists above could well
be written as

int x;
int y;

char ch;

char linebuffer[1000]; // line buffer

The latter form takes more space, but is convenient for adding a comment to each
declaration.

A variable may also be initialized in its declaration. If the name is followed by an equals
sign and an expression, the expression serves as an initializer. Here are some examples
illustrating the diversity of declarations:

struct point {
int x;

int y;

};
...

char ch=’a’;

double pi=3.1415926;
int size=MAXLINE+1;

string str[2]={ ”welcome”, “you” };

point pt= { 320,200 };

If the variable in question is not automatic, the initialization is done once only before the
program starts executing, and the initializer must be a constant expression. An explicitly
initialized automatic variable is initialized each time the function or block it is in is entered;
the initializer may be any expression.

5. Statements and program blocks
As that in ANSI C, fundamental constructions are privided for well-structured programs.
Here are a summary and basic elements of statements supported:

Statements Syntax

Statement:
 expression-statement
 If (condition_expr) statement else statement
 If (condition_expr) statement
 while (condition_expr) statement
 for(init_expr;condition_expr;expr) statement
 break
 continue
 return expression

statement-list:
 statement statement-list
 { statement }

Protocol Reader 1.0 User’s Guide

23

In our script, the semicolon is a statement terminator. Braces { and } are used to group
declarations and statements together into a compound statement, or program block, so
that they are syntactically equivalent to a single statement. The braces that surround the
statements of a function are one obvious example; braces around multiple statements
after an if, else, while, or for are another. (Variables can be declared inside any program
block). There is no semicolon after the right brace that ends a block.

7. Functions
Functions break large tasks into smaller ones, and enable people to build on what others
have done instead of starting over from scratch. Appropriate functions hide details of
operation from parts of the program that don't need to know about them, thus clarifying the
whole, and easing the pain of making changes.

Form of function definitions

Syntax Return-type function_name(argument declarations)
{
 declarations and statements

}

◆ Return-type

Functions may return values of any basic types defined in chapter 3.1, and values
with array are not allowed.

◆ Argument declaration

Communication between the functions is by arguments and values returned by the
function, and through global variables. Type of the argument can be any basic type
defined in chapter 3.1 (except void) or user-defined structure. And argument can be
passed by value or by reference (It can more efficient to pass a large object by reference
than to pass it by value).
Here are some examples for argument passing:

Struct point {

int x;
int y;

};

bool setLocation1(point pt); // pass by value
bool setLocation2(point& pt); // pass by reference

 // the variable’pt’ can be altered by the function
void setDatas(long data[2]); // pass array

Protocol Reader 1.0 User’s Guide

24

There are another two argument-passing modes we should mention:

 1) Arguments with Unspecified number

For some functions, it is not possible to specify the number and type of all arguments
expected in a call. Such a function is declared by terminating the list of argument
declarations with the ellipsis(...), which means “may has more arguments.’’

For example:
extern string strFormat(string strFormat, …); // definition

...

strFormat("Hello, world!\n");
strFormat("My name is %s %s\n", first ??name, second ??name);? ?

strFormat("%d + %d = %d\n",2,3,5);

From these examples, you could know that such a function must rely on information
not available to the compiler when interpreting its argument list. Clearly, if an
argument has not been declared, the compiler does not have the information needed
to perform the standard type checking and type conversion for it.
Note :
In Protocol Reader software, this argument-passing mode can only be used for
extern function , as shown in example, function should be defined as an external
function and be implemented in plug-in library. For more information about how to
implement extern function, see chapter 3.3 Developing plug-in.

 2) Adaptive arguments

New argument type “dynamic” makes it easier to pass data between functions.
“dynamic” mean adaptive to any basic type (not array), in other words, you can pass
any data (with basic type) to such an argument of the same function. It is useful when
you want to use a single function to share one of its argument to deal with different
data types. And similar to passing data by reference, it provide another way for the
called function to alter a variable in the calling function.
An example for using adaptive argument is as follows:

void print_data(dynamic& data) // definition

{

... // to print the data which may be with different type
}

…

double val=1.68;

print_data(val); // pass a ’ double’ value

…

string str=”Welcome”;

print_data(str); // pass a ‘string’ value

◆ Predefined function

A function cannot be called unless it has been previously declared, but in some cases, we
want to call a function before the entity of the function has been declared, so we bring in
the concept of predefined function. Example is given to show how to use predefined

Protocol Reader 1.0 User’s Guide

25

function:

long max(long x,long y); // predefine (the entity must be defined elsewhere)

...

long val=max(2,0); // call predefined function
...

long max(long x,long y) // function entity, argument must match that in predefined header

{
return (x>y)? x:y; // function body

}

◆ External function

A function can be defined as a external function, meaning that the entity of the function
is not implemented in the corresponding script files, instead, it might be implemented in
plug-in library.
In Protocol Reader, external function is an usual way to bring in a library (for more
details about bring in an external library, see …). To declare an external function, just
add keyword extern in front of the function header, for example:

extern double sqrt(double v); // bring in a external function

...

double val=sqrt(2.0); // call external function
...

8. Standard Library

Although similar to ANSI C, the kernal compiler of Protocol Reader is independent of any
other C compilor, so there is no standard library (such as mathematical functions, string
functions, etc) initially.

In order to develop a good script, we add build-in functions which are most necessary and
declare it in “sys.h”. Furthermore, you could create, manage commonly used functions as a
shared library (or as a library just for a given protocol) by your own. You also can merge
libraries develped by other Protocol Reader’s user into you project. A well organized library
can save you a lot of time in furture development.

And there are two way to create your own library: one is writing the functions in script file
directly; the other is developing an external, plug-in function (remember that the latter
mode is more efficient, for more information, refer to chapter 3.3 Developing plug-in).

Protocol Reader 1.0 User’s Guide

26

3.1.4 Enhanced syntax components

Section below shows the syntax of the enhanced components supported by SDE (script
develop environment). Detail about the meaning, where and how to use these syntax
components will be illustrated in next chapter.

Syntax

TypeOf struct_Identifier

ContentOf struct_Identifier

DeclareMap(Item|ImplicitItem,declareMap_identifier)
{
 variablename [nTag] basictype
 variablename [nTag] struct_Idendifier
 variablename [nTag] TypeOf struct_Idendifier
}

ChoiceMap declareMap_identifier

3.1.5 Architecture of a typical script

Before going into the development process, you should have an understanding of how the
script files is organized and what a typical script is like.

◆ Hiberarchy of the script files

 In order to understand the framework of script files, you could open the sample script
provided in Protocol Reader’s installation fold. Note that the sample do not necessarily
address the entire range of using Protocol Reader, it is merely a sample.

Example: \script\TCP_UDP\main.txt

1. File “sys.h” must be included at the beginging of the root script file. All the system
reserved constants and functions are defined in this file.

2. File “header.h” is included to define global constants, global functions and the external
functions (implemented in plug-in dll) for the current protocol. initially Content of this
file is initially empty, and is left for your enhancement. Of couse, you can organize the
included files by your habit.

#include “..\Include\sys.h”
#include “header.h”

... ...

Protocol Reader 1.0 User’s Guide

27

◆ Syntax architecture for script element

 In ANSI C, structure is an useful component help to organize complicated data, so it can
be very suitable to present the hiberarchy of a protocol’s fields.
Let’s start from a piece of code from example \script\helloworld\main.txt

Figure 3.1 sample script

#include "..\Include\sys.h"

#define PROTOCOL_ROOT msg
#define NETWORK_TRANMODE H_TO_L // default value is L_TO_H

……

///
struct msg
{
 BYTE Header; // Framing header
 UINT2 PacketType : 2 { // Type of this Packet
 enum description {
 0, // Command
 1, // Ack
 2, // Report
 };
 string Dump(dynamic& curItem)
 {
 String str;
 str=sysGetEnumComment(curItem,"description","Equal","-");
 sysSetTitle(0,str);
 return str;
 }
 };
 UINT2 SequenceNumber: 14 ;
 BYTE ContentType { // Type of following content
 enum description {
 1, // Packet (string)
 2, // Packet (ip address)
 3, // Packet (bcd stream)
 4, // Packet (timestamp)
 };
 string Dump(dynamic& curItem)
 {
 String str;
 str=sysGetEnumComment(curItem,"description","Equal","-");
 sysSetTitle(1,str);
 return str;
 }
 };
 Choice Content {
 DeclareMap(ImplicitItem,DataField)
 {
 StringWithLenAndZeroEnd [1] tStringWithLenAndZeroEnd
 IpAddress [2] tIpAddress
 };
 ChoiceMap DataField

 void Translate(String strCurIdent,dynamic& curItem,long nIdxInArr)
 {
 sysTranChoiceItem(strCurIdent,curItem,this.PacketType);
 }
 };
};

Protocol Reader 1.0 User’s Guide

28

We will not explain any detail about the script here. Just focus on the architecture!
Is there any thing common between the protocol fields ? Yes, see this script carefully, you
could find two important thing:

1) Structure is used to organize the protocol hiberarchy

Structure is used for establishing parent/child relationships between protocols and
fields, as well as associating data with a particular field so that it can be stored in the
logical tree and displayed in the GUI protocol tree.

The structure (include all its members) can be regarded as one level of a protocol.

2) Each of the field has the form

struct identifier_name // struct_description
{

 ……
datatype field_identifier { // field_description

 decode attribute
 dump attribute
 };
 ……

}

 Figure 3.2 form of individual protocol field

Typical script for a certain protocol field is composed of four parts: the field definition,
the field description, the decode-attribute and the dump-attribute for the field.
■ Field Definition : define the name and data type of the protocol field
■ Field Description : a string of remark for this field (usually writed in the same line as

the Field Definition), used in display
■ Decode Attribute : program block which describes how to decode this field. It’s a

optional script block, if not exist, default decode-rule will be used.
For more information, refer to …

■ Dump Attribute : program block which descirbes how to comment decoded value of
the field. It’s a optional script block, if not exist, default dump
format will be used.
For more information, refer to …

 We can see this four parts from following result generated by the Protocol Reader:

 Field Definition DataLen Description Dump Attribute

 attribute_block(optional)

Protocol Reader 1.0 User’s Guide

29

Note:
When studing the sample above, it is recommended you open the script source \script\
helloworld\main.txt to see the entire script and corresponding protocol definition. It will
help you understand the framework of the script file.

◆ Techniques

For most protocol analyse softwares, when it come to trying to support a new protocol,
you have to understand the internal framework of the software, write new codes for
this specific protocol, merge codes to the main software, and compile the entire software.
It is not an easy thing for even the seniror expert, and it will take you a lot of time coding
and testing.

We are always thinking about is there any easier way for people to develop a decoder or
monitor for a complex protocol ? Now, things get better. The Protocol Reader could
realeas you from all the annoying task.

We know that the only one basic way of dealing with complexity is: divide and conquer.
A problem that can be separated into two sub-problems that can be handled separately is
more than half solved by that separation. This simple principle can be applied in amazing
variety of ways. it can be the fundamental approach to handling the inherent complexity
of a protocol. Similarly, the process of developing a protocol analyser can be broken into
distinct activities.

We find that all the protocol’s hiberarchy is similar, and the main differences are how to
decode specific field and what’s the meaning of decoded value. So, in Protocol Reader,
insteading of dealing with protocol itself, we focus our workload on individual field of
the protocol, any field is relatively independent and coded like Figure 3.2. Separate the
complex protocol into smaller one help to simplify the problem, make it easier to test and
save your valuable time.

In addition, default decode and dump rule for specific datatype (see Table3.2) is provided
to fit most need; if there are no special requirements, you don’t need to write any codes in
attribute block, system will do all that for you. That’s what is called “Avoiding Program”.

Protocol Reader provides you with an more efficient and easier way to develop protocol
analyzer. In chapter 3.2, we will show you the development process step by step in
details.

Protocol Reader 1.0 User’s Guide

30

3.1.6 System reserved consts and functions

This section provides a comprehensive reference to the reserved keywords and functions of
Protocol Reader. All the keywords are case-unsensitive.

Table 3.1 System reserved const

Const Item Type Description

PROTOCOL_ROOT M The root structure for starting decode

PROTOCOL_NAME O Name of the protocol

NETWORK_TRANMODE O Define network transmit order for byte stream.
This const is used when decode a field with integer
or unsigned integer datatype.
Possible value:

H_TO_L // high to low
 L_TO_H // low to high (default value for system)

Example:

#define PROTOCOL_ROOT msg

#define PROTOCOL_NAME TCP/IP

#define NETWORK_TRANMODE H_TO_L

NOTE

For NETWORK_TRANMODE, scope rule is introduced when there are one or more different
declaration exist. Following is an example:

 #define NETWORK_TRANMODE H_TO_L // global declaration for transmit mode

 struct msg
 {

 UINT2 Data1; // use global transmit mode to decode

 UINT2 Data2 {

 #define NETWORK_TRANMODE L_TO_H // local declaration hide global one

 …

 };

 UIN2 Data3; // use global transmit mode to decode

 };

Type : M = mandatory
 O = optional

Protocol Reader 1.0 User’s Guide

31

Table 3.2 System reserved functions

Type Functions Descriptions

Now Get current location of current input stream

TotalLength Get total length of current input stream

Input stream
manage

sysFetchValue Fetch value (with number, octet or structure
datatype) from input stream

strFormat Provide formatted output conversion

Strlen Return length of octet stream

String
manage

strGetAt Get one character from octet stream

sysTranChoiceItem Decode from current stream locat using specific
structure

Translate Virtual function for overriding if you have some
specific requirement when decoding a protocol
field

Decode proc

Integrate The decode of a TypeOf structure starts by
calling this function. Every TypeOf structure
must contain one function called Integrate()

Dump proc sysSetTitle Set Title information

 Dump Virtual function for overriding if you have some
specific requirement when dumping a decoded
data of a field, always return a string for display.

sysGetEnumComment Get Comment for a value using certain enum Others

sysAbort Abort the decode or dump process, and give a
description

Note :
For system reserved functions, all of them are declared in “sys.h”. The entity of these
Functions are embedded in Protocol Reader. if we want to create new functions, we have
two choices:
[1] declare the function as an external function (as that in “sys.h”) and implement it in

 plug-in dll, see … for more information.
[2] write the function as an internal function, include header,argument and the entity

just as we write a funciton in ANSI C program.

■ SysFetchValue

void sysFetchValue (string strCurIdent, dynamic& FetchValue, long locat, dword param,
 bool bMoveLocatPointer);

 Get value from input stream and assign it to FetchValue. You can pass any variable

with integer, octet or structure datatype to FetchValue. This function is used when
decoding a packet.

Protocol Reader 1.0 User’s Guide

32

 Parameters
 strCurIdent current protocol field name
 FetchValue entity for saving the fetched data

locat current locat of input stream
param only available for octet type, mean length of bytes to be returned
bMoveLocatPointer
 true for moving the locat pointer after data fetched, or false with

no pointer move
Return

 Return fetched data in FetchValue.
Example

1. Fetching string data, with bMoveLocatpointer=true

Stream status before call fetch function -> transmit direction

.. FF 77 65 6C 63 6F 6D 65 01 ..

 current locat pointer = now ()

...

string str;

sysFetchValue(strCurIdent,str,now(),7,true); // str is “welcome” now
...

stream status after call fetch function

.. FF 77 65 6C 63 6F 6D 65 01 ..

 current locat pointer

 2. Fetching integer data, with bMoveLocatpointer=false

 this locat-pointer ’s control mode is very useful when you want to preview a
value but do not want the locat-pointer be moved.

Stream status before call fetch function -> transmit direction

.. FF 65 6C 63 6F 6D 65 01 ..

 current locat pointer = now ()

...

#define network_tranmode H_TO_L.
word len;

sysFetchValue(strCurIdent,len,now(),0,false); // len is 0x656C now

...

stream status after call fetch function

.. FF 65 6C 63 6F 6D 65 01 ..

 current locat pointer (no move)

Protocol Reader 1.0 User’s Guide

33

■ SysTranChoiceItem

void sysTranChoiceItem (string strCurIdent, dynamic& curItem, long ElemId);

Decode from current stream locat using specific struct (structId=elemId), this function
is designed to parse optional structure, decoded structure will be added to choice list
of curItem which must be a choice datatype.

Parameters

 strCurIdent current protocol field name
 curItem current protocol field to decode, this field must be a choice item

elemId elementId corresponding to the nTag declared in DeclareMap, refer
to chapter: Field with choice attribute for more information about
DeclareMap.

Return
Return decoded optional structure, and add it to choice list of curItem.

Example

1. Following is a piece of codes from “\script\tcp_udp\main.txt”

...

struct tIP
{
 tIPHeader IP;
 Choice { // following is the attribut-block for this field
 DeclareMap(Item, IpData)
 {
 UDP [0x11] tUDP
 TCP [0x06] tTCP
 };
 ChoiceMap IpData

 void Translate(String strCurIdent,dynamic& curItem,long nIdxInArr)

{
 sysTranChoiceItem(strCurIdent, curItem, this.IP.Protocol);

 }
 };
};
...

In this example, after decoding IP header (refer to RFC for details), we can
know from the value of this.IP.Protocol what content follows, udp, tcp or other
protocol.
Then we create a Choice item. In attribute-block, there is one DeclareMap that
list all the candidate protocol (expressed by structure, for more informations
about DeclareMap, see …), and sysTranChoiceItem(…) is provided to decode
such uncertain data. This function compare the value of this.IP.Protocol and the
value in IpData (declared by ChoiceMap), if this.IP.Protocol equal 0x11, we
use struct tUDP to decode following bytes, or if this.IP.Protocol equal 0x06,
we use struct tTCP to decode following bytes.

Protocol Reader 1.0 User’s Guide

34

■ SysSetTitle

void sysSetTitle (uint1 TitleN, string strTitle);

This function set the title information of current packet, and the title information
provide you one-line summary that displayed in MsgList_Page. The summary display
brief but important information relative to the packet, and allows the user to browse
quickly through the packet trace without having to look at each packet decode.

Parameters

 TitleN title index, the value can be 0 or 1
 strTitle text of the content

Remarks
The title information will be passed to MsgList_Page as one-line summary

Example

1. Following is a piece of codes from “\script\tcp_udp\header.txt”

struct tIPHeader

{

...
 BYTE Protocol {
 enum description {
 ...
 0x04, // IP
 0x06, // TCP

0x11, // UDP
 ...
 };

String Dump(dynamic& curItem)
{

 String str;

 str= sysGetEnumComment(curItem,"Description","Equal"," -");

 sysSetTitle(0,str); // result of title0 is shown in Figure 3.1

 return str;

 }

 };

...

};

 MsgList Title 0 Title 1

 Figure 3.1 example of one-line summary

Protocol Reader 1.0 User’s Guide

35

■ SysGetEnumComment

string sysGetEnumComment (long value, string strEnumListName, string strMode,
 string strDefault);

This function provide you a way to get a value’s corresponding comment, in other
words, it is a value (must be a integer) to meanning utility.
Note: The value-comment list is declared in enumeration items.

Parameters

 value an integer
 strEnumListName enumeration name contain the value-comment list

strMode the following options are supported for strMode,

Value Meaning

“Equal” Get the corresponding comment if the value
‘Equal’ one of the enum-item

“Or “ Get all corresponding comments if the value
‘Or’ enum-item unequal to 0, comments are
sperated by ‘|’

strDefault this string is returned if the integer is not found in current enum
Return

Return a string that show the meanning for this value.
Example

1. In the following example, we show you how to use this function

enum FileAttribute {
 0x01, // Readable
 0x02, // Writable
};

String str;

str= sysGetEnumComment(2,"FileAttribute","Equal"," -"); // sample of ‘equal’

// str is “Writable” now

str= sysGetEnumComment(3,"FileAttribute","Or"," -"); // sample of ‘or’

// str is “Readable|Writable” now

str= sysGetEnumComment(5,"FileAttribute","Equal"," -"); // not found

// str is “-” now

Protocol Reader 1.0 User’s Guide

36

3.2 Developing protocol script

The purpose of this session is to get the reader started as quickly as possible, example is
provided to show you step-by-step how to develop script. We’ll start with the made up

“HelloWorld” protocol (you can find this sample at \script\helloworld\)

3.2.1 Definition of the sample protocol

In following tables, the format of the protocol parameters are specified.

 8 7 6 5 4 3 2 1

1 Frame Header

2 PacketType Sequence number (MSB)

3 Sequence number (LSB)

4 Content type

5

..

Content

 Figure 3.3 protocol format

The following codes are used in the helloworld protocol parameter field:

a)

b)

c)

d)

Frame Header

One byte flag to identify this message, always be 0xFE

PacketType

Type of this packet, 2 bit

The following codes are used in the PacketType subfield:

0 0 command

1 0 report

Sequence number

Sequence number for this packet

Content type

One byte field, identify the type of following content

The following codes are used in the ContentType subfield:

1 octet stream

2 ip address

3 bcd data (positive BCD)

4 timestamp

5 string with typeof attribute

6 array with fixed size

7 array with unfixed size

Protocol Reader 1.0 User’s Guide

37

Figure 3.3.1 Format for content field (octet stream)

 8 7 6 5 4 3 2 1

1 Length

2

..

Octet stream data

 a) Length: The length of the octet stream

Figure 3.3.2 Format for content field (ipaddress A.B.C.D)

 8 7 6 5 4 3 2 1

1 A B C D

Figure 3.3.3 Format for content field (positive bcd)

 8 7 6 5 4 3 2 1

1 Length of PhoneNumber

2 Digit1 Digit2

..

 a) Length: Number of BCD digits

Figure 3.3.4 Format for content field (string with typeof attribute)

 8 7 6 5 4 3 2 1

1 Length

2

..

Binary string

N 0x00

 a) Length: The length of the string(do not count the zero byte)

Figure 3.3.5 Format for content field (uint array with fixed size = 2)

 8 7 6 5 4 3 2 1

1 IdentifierId_1 (MSB)

2 (LSB)

3 IdentifierId_2 (MSB)

4 (LSB)

Figure 3.3.6 Format for content field (int array with unfixed size)

 8 7 6 5 4 3 2 1

1 IdentifierId_num

2 IdentifierId_1 (MSB)

3 (LSB)

.. . . .

 a) Identifier_num: The total number of IdentifierId

Protocol Reader 1.0 User’s Guide

38

Figure 3.3.7 Format for content field (timestamp)

 8 7 6 5 4 3 2 1

1 Timestamp (MSB)

2

3

4 (LSB)

 ■ Aim of this example

By this example, we cover almost every part of the develop technique commonly used.

Each of the subfield give you an speicifc demonstration :

Item Demonstration Refer.

Header decode and display hex field, using default rule 3.2.3.2

PacketType decode and display corresponding meanning for
number field with bit definition

3.2.3.2

SequqnceNumber decode and display number field (consider network
transmit mode)

3.2.3.2

ContentType decode and display byte field 3.2.3.2

Content decode optional field 3.2.3.2

Content-octet decode and display octet field 3.2.4.1

Content-ipaddress decode and display a user-defined field, demonstrate
overriding system reserved function

3.2.4.2

Content-bcd decode and display a user-defined transformed field,
demonstrate calling a global function

3.2.4.3

Content-typeof_string demonstrate field with Typeof attribute (two ways) 3.2.4.4

Content-fixedsize_arr demonstrate field with fixed size array 3.2.4.5

Content-unfixedsize_arr demonstrate field with unfixed size array 3.2.4.6

Content-timestamp decode and display a user-defined complex field,
demonstrate how to implement external function
(plug-in development)

3.2.4.7

Protocol Reader 1.0 User’s Guide

39

3.2.2 begin

To write a protocol script, first, you should follow these steps:

■ Include “sys.h” at the beginning of your script file, it is needed for system reserved
functions
■ Set the root structure name for starting protocol decode by PROTOCOL_ROOT
■ Set the name of the protocol by PROTOCOL_NAME, (optional in this version)
■ Set the network transmit mode for byte stream by NETWORK_TRANMODE , if this const is

not present, default value L_TO_H will be used
Note: you can make a declaration anywhere for any specific protocol field if needed, the
declaration accords with the scope rule of ANSI C, that is, it can be redefined to refer to a
different entity within a program block, after exit from the block, the const resumes its
previous meaning.

3.2.3 Define root node of this protocol

Root node is the access structure for decoding a stream. In this session, we will give you an
example. Note that we use structure to establish and organize parent/child relationships
between protocol and fields, as well as associating data with a particular field so that it can
be stored in the logical tree and displayed in the GUI protocol tree.
There are two steps you should follow: the first step in the development process is to create
high-level hiberarchy which should accord with the format of the protocol. Then, we should
implement every individual field (write decode-attribute and dump-attribute if needed).

3.2.3.1 Create hiberarchy structure

According to the “HelloWorld” protocol format, the hiberarchy of root level is shown
as follows:

...

struct msg
{

byte Header;

uint2 PacketType:2;

uint2 SequenceNumber:14;

byte ContentType;

choice Content;

};

include "..\Include\sys.h"

define PROTOCOL_ROOT msg
define NETWORK_TRANMODE H_TO_L // for this protocol

Protocol Reader 1.0 User’s Guide

40

First we define a struct named “msg“, it is the root node of this protocol. Then, we add field
memebers to the structure according to Figure 3.3 protocol format. For the last member of
the structure named “Content”, it’s a choice item composed of optional parts of the protocol,
and the number and attribute of these optional parts are lie on the value of “ContentType”
(refer to Figure 3.3 protocol format).

3.2.3.2 Implement every individual field

In this session, we write decode-attribute and dump-attribute (if needed) for every field.

 1) Field: Header
 The field Header is decoded and dumped using default dump rule, attribute block is

unnecessary, only field description is added. This field is coded as follows:

struct msg
{
 ...

byte Header; // Framing header
 ...

};

 2) Field: PacketType
 The field PacketType is a number field with bit definition, it can be decoded by default

decode process (refer to Table 3.1) . Because we want to show corresponding comment
of the value when display, virtual function Dump() should be overrided to meet our need
(do not use default dump rule).

This field is coded as follows:
Step 1: write codes for decoding (do not need here, use default process), add field
 description

...
uint2 PacketType: 2; // Type of this packet

...

Step 2: override virtual function Dump() to implement our display requirement.

...
uint2 PacketType: 2 { // Type of this packet

enum description {
 0, // Command
 1, // Ack
 2, // Report
 };

Protocol Reader 1.0 User’s Guide

41

 string Dump(dynamic& curItem)
 {
 String str;
 str=sysGetEnumComment(curItem,"Description","Equal"," -");
 sysSetTitle(0,str);
 return str;
 }

 };

■ Here we define a value-to-comment list named “description” at first, then override
Dump() and call sysGetEnumComment() to translate the value of curItem to its
comment, the result string is returned for display.
And sysSetTitle() is called to set the Title0 of one-line-summary information.

 3) Field: SequenceNumber
 The field SequenceNumber is a number field with bit definition, it is decoded by default

decode process (refer to Table 3.1) and dumped by default dump rule. Because the
datatype occupy more than one byte, the NETWORK_TRANMODE is considered when fetch
data from byte stream, we define this constant at the begin of the script here, or you can
define it in its own attribute-block of this field for specific needs.
This field is coded as follows:

...
uint2 SequenceNumber;

...

 4) Field: ContentType
 The field ContentType is a byte field, it is decoded by default decode process (refer to

Table 3.1) , and virtual function Dump() is overrided to get corresponding comment of
the value when display. This field is coded as follows:

uint2 ContentType { // Type of following content
enum description {

 1, // Packet (octet stream)
 2, // Packet (ip address)
 3, // Packet (bcd stream)
 4, // Packet (string with typeof attribute)
 5, // Packet (array with fixed size)
 6, // Packet (array with unfixed size)
 7, // Packet (timestamp)
 };

 string Dump(dynamic& curItem)
 {
 String str;
 str=sysGetEnumComment(curItem,"Description","Equal"," -");
 sysSetTitle(1,str);
 return str;
 }

 };

Protocol Reader 1.0 User’s Guide

42

 5) Field: Content
 The field Content is a choice item, representing that there has one or more optional

selection here. To deal with field with this kind of type, you should follow these steps:
Step 1: Use DeclareMap to define all possiable choices

...
Choice Content {
 DeclareMap(ImplicitItem,DataField)
 {
 item [1] tOctetStream
 item [2] tIpAddress
 };
 ChoiceMap DataField
 };

...

■ Here we define a DeclareMap named “DataField” , listing all possiable Child
branch, the attribute of the DeclareMap is ImplicitItem (for more details about
DeclareMap, see chapter 3.3.3).
Every choice item has one IdentifierID, in this demo, we set the ID according to the
definition of Content type.
Then keyword ChoiceMap is declared to link “DataField” with this field.

Step 2: override virtual function Translate() to implement how to process optional items.

struct tOctetStream; // predefine structure before use
struct tIpAddress;
…

struct msg
{
 ...

byte ContentType;

Choice Content {
 DeclareMap(ImplicitItem,DataField)
 {
 item [1] tOctetStream
 item [2] tIpAddress
 };
 ChoiceMap DataField

 void Translate(String strCurIdent,dynamic& curItem,long nIdxInArr)
 {
 sysTranChoiceItem(strCurIdent,curItem,this.ContentType);
 }
 };
 ...

};

■ Translate() is overrided, and sysTranChoiceItem() is called to decide which item
in the ChoiceMap should be select and add to Content field (sysTranChoiceItem is
called only once, because only one optional branch is valid here).
For example, if this.ContentType=1, then tOctetStream will be selected to decode

Protocol Reader 1.0 User’s Guide

43

following binary stream and added as a new branch, or if this.ContentType=2, then
tIpAddress will be selected … (here, this.Member mean Member of parent
structure)
Note: this is one of the samples about choice item, for details about choice item,

 refer to chapter 3.3.3

3.2.4 Define every child branch of this protocol

After defining root node, we will implement every child branches of this protocol.

3.2.4.1 Protocol branch: octet stream

 1) Create hiberarchy structure
According to the Format of content field (octet stream), the hiberarchy of this protocol
branche is shown as follows:

 2) Implement fields
 The field strData is a string(octet) field, unlike field with number type, we do not know

the length of the strData in the beginning , so it should be decoded by overriding the
virtual function Translate() (refer to …). And we dump it by default dump rule.
This field is coded as follows:

string strData { // octet stream content
 void Translate(String strCurIdent,dynamic& curItem,long nIdxInArr)
 {
 uint1 len;

 sysFetchValue(strCurIdent, len, now(), 0, true);
 sysFetchValue(strCurIdent, curItem, now(), len, true);

 return;
 }
 };

...

■ Translate() is overrided. First, according to the format, we get the size of curItem
(strData), then we fetch the character stream and store it in curItem (strData).

...

struct tOctetStream
{

string strData; // octet stream content

};

Protocol Reader 1.0 User’s Guide

44

3.2.4.2 Protocol branch: ip address

 1) Create hiberarchy structure
According to the Format of content field (IpAddress), the hiberarchy of this protocol
branche is shown as follows:

 2) Implement fields
 The field strIpAddress is a octet field with four bytes ipv4 address. We don’t use array

to declare this field, because we want to dump the address as one single element (for
field with array attribute except Tchar, every element in the array is dumped seperately).
Because the software do not know the length of the strIpAddress in the beginning , we
should override the virtual function Translate() and dump().
This field is coded as follows:

string strIpAddress {
 void Translate(String strCurIdent,dynamic& curItem,long nIdxInArr)
 {
 sysFetchValue(strCurIdent,curItem,now(),4, true);
 }
 String Dump(dynamic& curItem)
 {
 int i;
 BYTE Address[4];

 for(i=0;i<4;i=i+1)

 {
 strGetAt(this.strIpAddress, i, Address[i]);
 }

 return strFormat("%d.%d.%d.%d",
Address[0],Address[1],Address[2],Address[3]);

 }
 };

...

■ Translate() is overrided. According to the format, we get four bytes (ipv4 address),
and store it in curItem (strIpAddress).
Dump() is overrided to display the data of strIpAddress as the format we usually show
(such as “127.0.0.1”).

...

struct tIpAddress
{
 octet strIpAddress;

};

Protocol Reader 1.0 User’s Guide

45

3.2.4.3 Protocol branch: BCD Stream

 1) Create hiberarchy structure
According to the Format of content field (Positive BCD), the hiberarchy of this protocol
branche is shown as follows:

 2) Implement fields
 The field strPhoneNumber is a user-defined transformed field, the string of the

strPhoneNumber is transferred as BCD-octet in the binary stream. When decoding, we
should convert the BCD-octet to phone number string. In this demonstration, we override
the virtual function Translate() and call a global function BCD2STR() to implement the
convertion.
This field is coded as follows:

string strPhoneNumber {
 void Translate(String strCurIdent,dynamic& curItem,long nIdxInArr)
 {

 UINT1 PhoneNumberLen;
 OCTET strBCDData;

 sysFetchValue(strCurIdent,PhoneNumberLen, now(),0, true);
 sysFetchValue(strCurIdent,strBCDData,now(), (PhoneNumberLen+1)/2, true);

 curItem=BCD2STR(strBCDData, true, (PhoneNumberLen%2)? 0:1);
 return;

 }
};

...

■ Translate() is overrided. According to the format, first we get the length of the
phone number (total digits number), calculate the length of the BCD-octet that equal
to (PhoneNumberLen+1)/2, then fetch the BCD-octet and store it in strBCDData.
After that we call BCD2STR() to convert BCD data to visiable string.
Sample binary stream is given in the demonstration, you can load it and see the result
generated by the Protocol Reader.

...

struct tBCDStream
{
 string strPhoneNumber;

};

Protocol Reader 1.0 User’s Guide

46

3.2.4.4 Protocol branch: string with typeof attribute

 1) Create hiberarchy structure
According to the Format of content field (String with TypeOF attribute), the hiberarchy of
this protocol branche is shown as follows:

 2) Implement fields
 The field strData demonstrate Typeof attribute (For details about why and how to use

syntax element ’ TypeOf ’, please see Chapter. Struct with TypeOF attribute). We provide
two solutions to implement tStringWithLenAndZeroEnd, they are in common use in script
development.
This field is coded as follows:

Solution 1: In this solution, we first decode all the members of ‘tStringWithLenAndZeroEnd’,
 then call Integrate() to assemble and calculate these members to generate a single
 value which represent the structure itself.

 When displaying, by toggling the button in Display format Toolbar, all the detailed
 members in TypeOF-structure could be shown (such as Len, strData and Zero).

struct tStringWithLenAndZeroEnd = String
{

UINT1 Len;
String strData { // string content

 void Translate(String strCurIdent,dynamic& curItem,long nIdxInArr)
 {
 sysFetchValue(strCurIdent,curItem,now(),this.len,true);
 }
 };

UINT1 Zero;
};
attribute name='tStringWithLenAndZeroEnd'
{
 String Integrate(String strCurIdent)
 {
 if (this.Zero!=0)
 sysAbort(strCurIdent,"string not end with zero");

 return this.strData;
 }
};

...

struct tTypeOFString
{
 string strData { TypeOF tStringWithLenAndZeroEnd }; // TypeOf string

};

Protocol Reader 1.0 User’s Guide

47

Solution 2: In this solution, the struct ‘tStringWithLenAndZeroEnd’ is null, all the decoding
 process is in function Integrate() .

struct tStringWithLenAndZeroEnd = String {};

attribute name='tStringWithLenAndZeroEnd'
{
 String Integrate(String strCurIdent)
 {

 uint1 Len;
 String strData;

uint1 Zero;

 sysFetchValue(strCurIdent,len, now(),0, true);
 sysFetchValue(strCurIdent,strData,now(),len, true);
 sysFetchValue(strCurIdent,Zero, now(),0, true);

 if (Zero!=0)
 sysAbort(strCurIdent,"string not end with zero");

 return strData;

 }
};

3.2.4.5 Protocol branch: fixed size array

According to the Format of content field (Fixed size array), this protocol branche is
coded as follows:

 The field IdentifierId is a number field with array attribute, it is decoded by default
decode process (refer to Table 3.1) and dumped by default dump rule. Because the
datatype occupy more than one byte, the NETWORK_TRANMODE is considered when fetch
data from byte stream (we define this constant at the begin of the script here, or you can
define it in its own attribute-block of this field for specific needs).

...

struct tFixedArray
{
 uint2 IdentifierId[2]; // IdentifierId Array
};

Protocol Reader 1.0 User’s Guide

48

3.2.4.6 Protocol branch: unfixed size array

According to the Format of content field (unfixed size array), this protocol branche is
coded as follows:

 The field IdArray is a number field with unfixed array attribute, and could be
implemented as a Choice field. According to the format, fisrt, get the identifier number
and store it in Num, Translate() is overrided and while statement is called to add certain
number (specified by Num) of IdentifierId to IdArray.
Following is a sample result generated by Protocol Reader :

...

struct tUnFixedArray
{
 choice IdArray {
 DeclareMap(Item , DataField) {
 IdentifierId [0] int2
 };
 ChoiceMap DataField

 byte Num;

 sysFetchValue(“IdArray”, Num, now(), 0, true);

void Translate(String strCurIdent,dynamic& curItem,long nIdxInArr)

 {
int k=0;
while (k<Num) {

sysTranChoiceItem(strCurIdent,curItem,0);
k=k+1;

}
 }
 };

};

Protocol Reader 1.0 User’s Guide

49

3.2.4.7 Protocol branch: timestamp

This field (see Format of content field: timestamp) is a long integer that store the
timestamp value in timer represents a date from midnight, January 1, 1970. When
dumping, we want to display the value using the format like “yyyy-mm-dd hh:mm:ss”.

How to implement it ?

Since Protocol Reader is not intended to be a ANSI C compilor, we just bring in the most
necesssary parts of ANSI C’s syntax to keep a more simple kernel and we do not support
standard C library at the beginning (besides essential functions we declare in the “sys.h”),
furthermore, it is unnecessary to support all standard C library in Protocol Reader. So,
the problem is how to implement new functions ?
Considering furtune use, we give two fundamental ways of implement new functions:
■ if the function is simple, you can declare and implement it as a global function (refer to

sample of BCD2STR() to create new functions).
■ if the function is complex and it is difficult to code it directly in Protocol Reader (such

as convert the value of timestamp to format “yyyy-mm-dd hh:mm:ss”), we use plug-in
techneque to create such function: declare it as an external function in script and
implement it in the plug-in project. By this way, we can share most of the ready-made
functions and librarys that C or C++ compilors provide instead of implementing it by
ourself.
There are two kind of plug-in library in Protocol Reader, one is public library which
could shared by any protocol script and is loaded when the software is launched, the
other is private library only called by the specific protocol script and is loaded when
certain protocol script is loaded.
For details about plug-in development, see Chapter Plug-in Developing Guide, and
template project is also provide in software installation fold.

In this session, we will describe how to add a shared function to the public library.

ⅰ.We should first declare the shared function as an external function, and include the

function header in the script.

ⅱ.Second, load the template project: \ProjectPlugIn with Visual C++ software, open the

File \ProjectPlugIn\PlugInObject.h, register the procedure and declare the procedure as
one of the CPugIn member.

// Filename: lib.h
include "..\Include\sys.h"

… …

extern string TimestampToDateStream(long timestamp);

Protocol Reader 1.0 User’s Guide

50

class CPlugIn: public CPlugInbase
{

… …

 // Add your Function Header here

 static DWORD TimestampToDateStream(void* pParent, unsigned int params_num,
DWORD params[]);

};

// Register your PlugIn Function

static struct FuncLookupTableEnt Tbl_FuncList[] =
{
 { "TimestampToDateStream", &CPlugIn::TimestampToDateStream },
 { 0, NULL }
};

ⅲ.Then, open the File \ProjectPlugIn\PlugInObject.cpp, add implement codes for the
plug in procedure “TimestampToDataStream()”

// Add your function implement codes here !

DWORD CPlugIn::TimestampToDateStream (void* pParent, unsigned int params_num,

DWORD params[])
{

 if (params_num<4) return 0;

 ExecuteEnv& Env =*((ExecuteEnv*)params[1]); // current environment
 Procedure* pProcedure = (Procedure*)params[2]; // current procedure
 BinStream* pstream = (BinStream*)params[3]; // current binary stream
 RunTimeStk& curStk =*(Env.GetTopStk()); // current stack in environment

 //---
 bool bRT=true;

 //---
 // GET PROCEDURE PARAMETER

 long nTimestamp;

 bRT=bRT & curStk.get("timestamp", nTimestamp);
 if (!bRT)
 {
 Env.SetLastError("%s() get param fail",pProcedure->GetProcName().GetBuffer());
 return 0; // error
 }

 //---
 // EXECUTE PROCEDURE

 if (nTimestamp<0)
 {

Env.SetLastError("%s() value of timestamp error",
pProcedure->GetProcName().GetBuffer());

 return 0; // error
 }

Protocol Reader 1.0 User’s Guide

51

 OTSTR str;
 time_t sec = nTimestamp;
 tm* cur_time = localtime(&sec); // Use standard C function
 str.Format("%04d-%02d-%02d %02d:%02d:%02d",
 cur_time->tm_year+1900 ,
 cur_time->tm_mon+1,
 cur_time->tm_mday,
 cur_time->tm_hour,
 cur_time->tm_min,
 cur_time->tm_sec);

 //---
 // SET RETURN VALUE

 CVarient Varient;
 Varient.set(str);

 if (!pProcedure->setReturn(Env, Varient))
 {
 Env.SetLastError("%s() set return fail",pProcedure->GetProcName().GetBuffer());
 return 0; // error
 }

 return 1;

}

ⅳ.After coding, compile the source code, generate plug-in library file named *.dl_, and
copy it to the installation fold\PlugIns, it will go into effect next time the Protocol Reader
loaded. It is strongly recommended that you do some test for this newly added function
before you release this plug-in.

Following is a sample result generated by Protocol Reader :

Note: For un-licensed version, plug-in feature (number of plug-in, total number of

functions in every plug-in) is limited

Protocol Reader 1.0 User’s Guide

52

3.2.5 Summary

In this session, we have presented an approach about how to develop a script step-by-step,
we hope that it’s helpful to you and could speed up the learning process. But please
remember that what we provide you is a powerful develop platform, there is no “one right
way” to design and build script on that platform, it’s all up to you. Since we believe strongly
that the way to learn new techneque is to do more practice , more experiments is needed
before you could create an excellent protocol script concisely and quickly.

Protocol Reader 1.0 User’s Guide

53

3.3 Advanced topics

In this chapter, we will discuss some of the important component when developing a script.

3.3.1 Field declared as structure

Most protocols are multi- level. How can we express the parent/child relationships between
protocols and fields ? we introduce structure to organize the hiberarchy of the protocol,
every structure node represent one level or a child branch in the protocol. The syntax is the
same as that in ANSI C. Let’s see an example:

// definition

Struct strucA
{
 byte field1;

byte field2;
};

// sample 1:
Struct msg
{
 strucA subNode;
 ……
};

// sample 2: array
Struct msg
{
 strucA subNode[2];
 ……

};

We give a sample result generated by the Protocol Reader for sample1. you can see the
tree of protocol hiberarchy from the figure:

Protocol Reader 1.0 User’s Guide

54

3.3.2 Structure with TypeOf attribute

The TypeOf is a special syntax element in the Protocol Reader, it is very useful when
dealing with shared components or some complicated data.
Let’s see its syntax first:

// predeclaration if needed

struct struct_Identifier = returntype;
……

// declaration

struct struct_Identifier = returntype
{
 // Note: for structure with typeof attribute, field definition
 // is not mandatory

 datatype field_identifier { // field_description

decode attribute

dump attribute

};
 ……
};
attribute name = 'struct_Identifier'
{

 returntype Integrate(string strCurIdent)
{
 ……
}

 string Dump(dynamic& curItem) // optional
{
 ……
}

};

// usage
struct struct_name
{
 ……
 datatype field_name { TypeOf struct_Identifier }; // description

// Note: here, the datatype = returntype
 ……
};

The structure with TypeOf attribute return a single value (only basic type is allowed) to
represent itself. All the members of the structure will be organized and calculated to
generate a single value.
It is useful and make your script more compact and easy to maintenance. The following
example will help you to understand the benefit of TypeOf .

 attribute_block(optional)

Protocol Reader 1.0 User’s Guide

55

Figure 3.4.2 Message format

 8 7 6 5 4 3 2 1

1 Length of UserName string

2

..

UserName string

 Length of Password string

..

Password string

 1) Script A: do not use TypeOf element

Struct loginInfo
{

string strUserName {
 void Translate(String strCurIdent,dynamic& curItem,long nIdxInArr)

 {
byte length;
sysFetchValue(strCurIdent, length, now(), 0, true);

 sysFetchValue(strCurIdent,curItem,now(),length, true);
 }

};
string strPassWord {

 void Translate(String strCurIdent,dynamic& curItem,long nIdxInArr)
 {

byte length;
sysFetchValue(strCurIdent, length, now(), 0, true);

 sysFetchValue(strCurIdent,curItem,now(),length, true);
 }

};

};

 2) Script B: use TypeOf element
First code shared component, and save it to file “share.h”.

include "..\Include\sys.h"

Struct tString = string ; // define shared component
{

byte length;
string strData {

 void Translate(String strCurIdent,dynamic& curItem,long nIdxInArr)
 {
 sysFetchValue(strCurIdent,curItem,now(), this.length, true);
 }

 };
};
attribute name = ‘tString’
{

string Integrate(string strCurIdent)
{
 return this.strData; // return a value for this structure
}

};

Protocol Reader 1.0 User’s Guide

56

Then code our main protocol script:

...

include "share.h"

Struct loginInfo
{

string strUserName { TypeOf tString };
string strPassWord { TypeOf tString };

};

Compare with ScriptA and ScriptB, we can see that the later one is more compact and the
shared component is more easy to maintenance. We recommend you to make the shared
components more independent when developing script just as the example show you.

When displaying element with TypeOf attribute, there is a toggle in Display format Toolbar.
If the button is in push-down status, all the detailed members in TypeOF-structure is
showed, otherwise they will be hided to make the display more compact. Protocol Reader
does this for convenience, when display, it keep the protocol tree from having unwanted
details.

Here, we will give you another way to implement tString, and you could use any one of
them for your Preference. Inputing a byte stream and using Protocol Reader to display the
result will show you the difference between them.

include "..\Include\sys.h"

Struct tString = string ; // define shared component
{
 // no member introduced here !
};
attribute name = ‘tString’
{

string Integrate(string strCurIdent)
{

 byte length;
 string strData;
 sysFetchValue(strCurIdent, length, now(), 0, true);
 sysFetchValue(strCurIdent, strData, now(),length, true);

 return strData; // return a value for this structure
}

};

Protocol Reader 1.0 User’s Guide

57

3.3.3 Field with choice attribute

The Choice is a frequently used syntax element in the Protocol Reader, it provide another
way to organize the hiberarchy of the protocol. If the datatype of a field is Choice, meaning
that there has one or more optional selection here.
To implement field with this kind of type, you should follow these steps:
Step 1: Use DeclareMap to list all possiable choices (branches)
Step 2: override virtual function Translate() to implement how to process optional items.

We have shown you a sample about the implement of Choice field (refer to Field:Content),
and here, further discussion will be given:

1) Name of choice field
The syntax is as follows:

Struct structName
{
 ……
 Choice [fieldname] { // field_description (begin)
 …… // attribute-block (must be exist)
 }; // field_description (end)
 ……
}

For Choice field, the field name is optional. It don’t need to be an entity of the protocol,
and when the name of the Choice field is not exist, it’s only used to organize all optional
data, just as a virtual container.

Sample1: Choice field with name

Sample2: Choice field without name

Field name: Content (‘{}’ mean it’s a choice field)

Data block of the Choice field

Field without name (‘{}’ mean it’s a choice field)

Data block of the Choice field

Protocol Reader 1.0 User’s Guide

58

Note: To refer to the item in Choice content, the form structure-name.member
could be used. For example, if we want to refer to strIpAddress in the
sample (see the figure above):
For sample1: expression will be msg.Content.strIpAddress

For sample2: expression will be msg.strIpAddress

2) DeclareMap

DeclareMap is another special syntax element we add to declare and organize all the
optional items of Choice field. The syntax is as follows:

DeclareMap(Item|ImplicitItem, MapName)
{
 variablename [nTag] basictype
 variablename [nTag] TypeOf struct_Idendifier
 variablename [nTag] struct_Idendifier
}

The attribute of a DeclareMap can be Item or ImplicitItem. For each choice item, a relevant
and exclusive Identifier ID (nTag) is given.
■ When DeclareMap has Item attribute

If an optional item is exist, the corresponding node or leaf (named variablename) would
be added to current Choice field of the protocol tree.
■ When DeclareMap has ImplicitItem attribute

This attribute is only valid for variable with structure attribute, for variable with other
data type, it is equal to Item.
If an optional item is exist, only the members of the corresponding structure (named
struct_Idendifier) would be added to current Choice field of the protocol tree.
In this circumstance, the structure is only used to organize the sequence of optional items
which appear at the same time, and the name of the structure item itself (variablename) is
hided, because it is not an element of the protocol tree (only the members of the structure
is needed for the protocol tree).

Here, we will give you two example to see the difference:

Sample1: DeclareMap with Item attribute
a) demo script
… …
struct strucA
{
 byte field1;
 byte field2;
};

struct msg
{
 byte Id;

Protocol Reader 1.0 User’s Guide

59

 choice content {
 DeclareMap(Item , DataField)
 {
 item [1] strucA
 };
 ChoiceMap DataField

 void Translate(String strCurIdent,dynamic& curItem,long nIdxInArr)
 {
 sysTranChoiceItem(strCurIdent,curItem,this.Id);
 }
 };
};

b) demo result generate by Protocol Reader

Sample2: DeclareMap with ImplicitItem attribute
a) demo script
… …
struct strucA
{
 byte field1;
 byte field2;
};
struct msg
{

byte Id;
 choice content {
 DeclareMap(ImplicitItem , DataField)
 {
 item [1] strucA
 };
 ChoiceMap DataField
 void Translate(String strCurIdent,dynamic& curItem,long nIdxInArr)
 {
 sysTranChoiceItem(strCurIdent,curItem,this.Id);
 }
 };
};

Optional content with item attribute

Protocol Reader 1.0 User’s Guide

60

b) demo result generate by Protocol Reader

3.3.4 Field with array attribute

To support field with array attribute is necessary in some cases. The process for this kind of
field has some differences from that of others.

 1) The form of array with fixed size is as follows:

struct identifier_name // struct_description
{
 ……
 datatype field_identifier[N] { // field_description

 decode attribute
 dump attribute
 };
}

 2) The array with unfixed size could be implemented as a Choice field

Let’s see a piece of code demonstrate array with unfixed size:

struct msg
{

byte Num;
 choice IdList {
 DeclareMap(Item , DataField) {
 Id [0] byte
 };
 ChoiceMap DataField

void Translate(String strCurIdent,dynamic& curItem,long nIdxInArr)
 {

int k=0;
while (k<this.Num) {

sysTranChoiceItem(strCurIdent,curItem,0);
k=k+1;

}
 }
 };
};

Optional content with ImplicitItem attribute

(Only the members field1, field2 of strucA are added to content)

attribute_block(optional), would be
executed for each element of the array

Protocol Reader 1.0 User’s Guide

61

In this sample, we would like to get a Id list with dynamic size (determined by Num),
Following is a result generate by Protocol Reader.

Protocol Reader 1.0 User’s Guide

62

3.4 Debug the script

A script that has not been tested does not work. The ideal of designing and/or verifying a
piece of codes so that it works the first time is unattainable for all but the most trivial
programs. ‘‘How to test?’’ is a question that cannot be answered in general. ‘‘When to
test?’’ however, does have a general answer: as early and as often as possible.
■ When to test

 Testing should begin as early as possiable, so, you don’t need to write whole hiberarchy
nodes or codes at the very begin when protocol is complex, unless you have a good
understanding of using this software.
Actually, you could implement the protocol level by level or field by field, this method is
often used when you are not sure about the correctness of your script and try to debug the
newly writed code.
■ How to test

 In Protocol Reader, insteading of dealing with protocol itself, we focus our workload on
individual field of the protocol, any field is relatively independent (coded like Figure 3.2).
To separate the complex protocol into smaller one help to simplify the problem, and make
it easier to test and save your valuable time. So, the testing of a field would be the primary
problem.
When debug a newly coded field, you could input a hexadecimal message, decode it and

check if the result is correct. Because there is no “one right way” to design and build a
script, you could compare different approaches of implementing a field to see different
result generated by the Protocol Reader, it will help you to understand this software and
get a better way of implementing a field. Usually, compilers will warn of most errors.

 Write a field à test it à write another field … , this will help you write a correct script.

Since we believe that the way to learn new techneque is to do more practice , more
experiments is needed before you could create an excellent protocol script concisely and
quickly. Besides, it is strongly recommended that you open and study the sample script, it
will give you a lot of help.

Protocol Reader 1.0 User’s Guide

63

3.5 Appendix

In Protocol Reader, default decode (see Table3.1) and dump rule (see Table3.2) for specific
datatype is provided to fit most need; if there are no special requirements, you don’t need to
write any codes in attribute block, system will do all that for you. Or you can override
system reserved virtual function (see Table 3.3) to meet certain needs.

3.5.1 Default decode rule

 Table 3.1 Default decode process

Type Default process Remark

Int1, uint1
char, unsigned char,
byte, bool

Get data (1 byte)

Int, int2,uint2,
short, unsigned short,
word

Get data (2 byte)

Int4, uint4,
long, unsinged long,
dword

Get data (4 byte)

1. The order of byte stream is defined
by NETWORK_TRANMODE, if this
const is not present, default value
L_TO_H will be used

Float, double -

String -

Octet -

Tchar Get byte stream

Memo -

Choice -

■ When there are some special requirements or default process is not valid for certern
data-type, one of the system reserved decode process should be overrided (shown in
Table 3.3)

3.5.2 Default dump format

Table 3.2 Default dump format

Type Internal Type Default dump format

Int, int1, int2, int4,
char, short, long

signed dec integer %ld

Protocol Reader 1.0 User’s Guide

64

Uint1,uint2,uint4,
unsigned char,
unsigned short,
unsinged long,
bool

Unsigned dec integer %lu

Byte, word , dword Unsigned hex integer H' %x

Float, double Double %.3f

String Ascii string T' %s
T mean null

Octet octet stream H' %02x %02x …

Tchar Fixed array of char T' … (character '\0'->'.')

Memo Large octet stream M' Length=...

■ If there are some specific requirements when dumping a decoded data of a field, the
virtual function string Dump() could be overrided to meet you need.

3.5.3 System reserved process for override

 Table 3.3 System reserved process for override

Type Valid decode process Corresponding dump
process

All number type

Float, double

String

Octet

Tchar

1. Default process
2. TypeOF
3. Translate ()

Default process or Dump()
-
Default process or Dump()

Memo 1. Translate ()
ContentOF (optional)

-
Default process or Dump()

Choice 1. void Translate () -

Struct with TypeOf attribute 1. Integrate () Default process or Dump()

There are three decode process mode you can override

1) Translate()
 This function is commonly used in most circumstances, you can write you own decode

process in this function, and there are two return mode: if the funciton is void, the
returned data is stored in curItem; or if the function has return-type (must be same as
the type of current field), you can use return to return decoded data.

Form of this function is as follows:

type Translate (string strCurIdent,dynamic& curItem,long nIdxInArr);

Protocol Reader 1.0 User’s Guide

65

Parameters
 strCurIdent current protocol field name
 curItem current protocol field to decode
 if it’s an array field, curItem pointer to ThisField[nIdxInArr]

nIdxInArr index in ThisField (always equal to 0 for un-array field)
Return

If the return type is not a void data-type, return decoded data.

2) TypeOf
 The TypeOf is a special syntax element in the Protocol Reader, it is very useful when

dealing with shared components or some complicated data. We will give you detailed
information in …

3) ContentOf
 This keyword is only used for the field with memo attribute. For this kind of field,

function Translate () is mandatory, and after Translate () return the decoded byte-stream,
you can use ContentOf to further decode returned byte-stream, the syntax is as follows:

ContentOf struct_Identifier

 The usage of this keyword is somewhat like that of sysTranChoiceItem(), the difference
between them is when you use ContentOf , the further decoding is limited in current
stream returned by Translate (), if overflow occur, system will give you an error message.

Protocol Reader 1.0 User’s Guide

66

4 Plug-in Developing Guide

TO BE CONTINUED … …

