PADL Software

ypldapd User Guide

ypldapd User Guide

PADL Software

ypldapd User Guide

Copyright (1998-2001 Luke Howard. All Rights Reserved.

Portions copyright (1999-2001 PADL Software Pty Ltd. All Rights Reserved.

Portions copyright © 1998 The Internet Society. All Rights Reserved.

PO Box 59 • Central Park VIC 3145 Australia

Email info@padl.com • Fax +61 3 9824 4426
Table of Contents

2Unpacking ypldapd

Configuring your LDAP server
4
Configuring your system
5
Populating LDAP`
8
Testing ypldapd
12
Changing passwords
13
Caching in ypldapd
13
Reporting bugs
14
Acknowledgments
16
Status of this Memo
17
Abstract
17
1. Background and Motivation
17
2. General Issues
3
2.1. Terminology
3
2.2. Attributes
4
2.3. Object classes
5
2.4. Syntax definitions
5
3. Attribute definitions
6
4. Class definitions
8
5. Implementation details
10
5.1. Suggested resolution methods
10
5.2. Affected library functions
10
5.3. Interpreting user and group entries
11
5.4. Interpreting hosts and networks
12
5.5. Interpreting other entities
13
5.6. Canonicalizing entries with multi-valued naming attributes
13
6. Implementation focus
14
7. Security Considerations
14
8. Acknowledgements
15
9. References
15
10. Author's Address
17
A. Example entries
17
Full Copyright Statement
18

Chapter

1

Installing ypldapd

This chapter describes how to install the binary release of ypldapd for Solaris.
t
hank you for choosing to deploy ypldapd. This chapter describes the installation process for ypldapd 1.0 for Solaris. The ypldapd daemon is a NIS (formerly Yellow Pages) server that serves processes that call the NIS client side routines. Such processes include any process that uses the standard libc calls such as getpwent(), gethostent() etc. and also, the special tools ypcat and ypmatch provided as part of the standard NIS distribution. Ypldapd emulates the equivalent process ypserv by providing an RPC call-compatible interface.

Rather than consulting ‘map’ files as ypserv does, however, ypldapd draws its data from LDAP directories. The mapping between LDAP schemas and YP maps can be extended at compile time by hooking into the dispatch table or using the nisObject schema, defined in RFC 2307. As shipped, ypldapd supports the passwd, group, rpc, services, protocols, hosts, networks, netmasks, automount, ethers, and mail alias NIS maps. Communication to and from ypldapd is by means of RPC calls. Lookup functions are described in ypclnt(3N), and are supplied as C-callable functions in /lib/libc.

The intent of ypldapd is to allow an organization to leverage the scalability and distributed nature of LDAP directory services, whilst maintaining an existing NIS infrastructure. (Ostensibly, one should be able to replace a NIS server with ypldapd without having to reconfigure any NIS clients.)

The binary distribution of ypldapd is presently available for Solaris 2.6 and Linux. Source licensees may build ypldapd for other platforms, except for HP-UX. Ypldapd for HP-UX is available directly from Hewlett Packard. Hewlett Packard provide their own documentation for their version of this software.

Please see the file README in /opt/ypldapd for late breaking news, including a list of issues resolved with your release of ypldapd.

Unpacking ypldapd

The ypldapd distribution may be obtained directly from the vendor, or from the URL http://www.padl.com. The distribution consists of a tar file containing a Solaris package file, ypldapd.pkg. You should use the Solaris pkgadd command to install the package into /opt. You may need to change the path to your Perl interpreter in the header of each of the scripts in the /opt/ypldapd/bin directory, as well as modifying the configuration file /opt/ypldapd/etc/ypldapd.conf.sample.

At the time of writing, the Linux version does not use a packaging mechanism. The distribution is provided as a tar file which must be extracted into /opt/ypldapd, a directory which you must create yourself. The ypldapd_linux_installer.sh shell script available from PADL’s FTP site to aid installation and configuration.

During the installation process, you will be asked the following questions:

Question
Answer

Naming context
Enter the distinguished name of the context in which your users, groups, etc exist. Typically this is an X.500-style name (such as o=Aceindustry,c=US) or a DNS-style name (such as dc=aceindustry,dc=com).

NIS domain
Enter the NIS domain that ypldapd will serve. This could be the same as your DNS domain (aceindustry.com), or the DNS domain with a prefix (yp.aceindustry.com). Consult your NIS documentation for more information on domain name choice. The installation script will suggest the name returned by /bin/domainname.

Default DNS mail domain
If you wish the migration tools to include the mail attribute in users’ LDAP entries, enter your mail domain here. The installation script will suggest the NIS domain as a default.

LDAP server
Enter the IP address or host name of your LDAP server. This name must be resolvable without using NIS; it is suggested that you use a DNS name (and configure /etc/nsswitch.conf to perform host lookups in DNS before NIS) or an IP address.

Import /etc flat files?
If you wish to run the migration tools to import /etc flat files into LDAP, type yes here. You can always run these shell scripts later; they are installed into /opt/ypldapd/bin.

Manager DN and credentials
To import /etc flat files, ypldapd needs to authenticate to your LDAP server as a user who can create entries subordinate to your naming context. If you’ve answered yes to the above question, enter the distinguished name and password of such a user.

A sample installation is shown below:

pkgadd -d ypldapd.pkg
The following packages are available:

 1 ypldapd.FCS ypldapd NIS gateway

 (sparc) 1.2FCS

Select package(s) you wish to process (or 'all' to process

all packages). (default: all) [?,??,q]: all
Processing package instance <ypldapd.FCS> from </tmp/ypldapd.pkg>

ypldapd NIS gateway

(sparc) 1.2FCS

ypldapd 1.2 Copyright (C) 1996, 1997, 1998 Luke Howard

All Rights Reserved.

…
Enter the distinguished name of your naming context: dc=aceindustry,dc=com
Enter the NIS domain ypldapd will serve [yoyo.aceindustry.com]: aceindustry.com
Enter your default DNS mail domain [aceindustry.com]: hit enter key
Enter the IP address or name of your LDAP server [ldap]: ldap.aceindustry.com
Do you wish to import /etc flat files into LDAP? [no]? yes
Enter the manager DN: [cn=manager,dc=aceindustry,dc=com]: hit enter key
Enter the credentials to bind with: enter password
Processing package information.

Processing system information.

Verifying disk space requirements.

Checking for conflicts with packages already installed.

Checking for setuid/setgid programs.

This package contains scripts which will be executed with super-user

permission during the process of installing this package.

Do you want to continue with the installation of this package [y,n,?] y
Installing ypldapd NIS gateway as

Installing part 1 of 1.

/etc/rc2.d/S94Ypldapd

/opt/ypldapd/README

/opt/ypldapd/bin/ldappasswd

/opt/ypldapd/bin/migrate_aliases.pl

/opt/ypldapd/bin/migrate_all_netinfo_offline.sh

/opt/ypldapd/bin/migrate_all_netinfo_online.sh

/opt/ypldapd/bin/migrate_all_nis_offline.sh

/opt/ypldapd/bin/migrate_all_nis_online.sh

/opt/ypldapd/bin/migrate_all_offline.sh

/opt/ypldapd/bin/migrate_all_online.sh

/opt/ypldapd/bin/migrate_base.pl

/opt/ypldapd/bin/migrate_common.ph

/opt/ypldapd/bin/migrate_fstab.pl

/opt/ypldapd/bin/migrate_group.pl

/opt/ypldapd/bin/migrate_hosts.pl

/opt/ypldapd/bin/migrate_networks.pl

/opt/ypldapd/bin/migrate_passwd.pl

/opt/ypldapd/bin/migrate_protocols.pl

/opt/ypldapd/bin/migrate_rpc.pl

/opt/ypldapd/bin/migrate_services.pl

/opt/ypldapd/etc/slapd.nis.conf

/opt/ypldapd/etc/ypldapd.conf.sample

/opt/ypldapd/man/man8/ypldapd.8

/opt/ypldapd/sbin/ypldapd

[verifying class]

Executing postinstall script.

Making copy of previous license file...

Creating license file...

Loading local configuration...

Importing into dc=aceindustry,dc=com...

Migrating aliases...

Migrating fstab...

Migrating groups...

Migrating hosts...

Migrating networks...

Migrating users...

Migrating protocols...

Migrating rpcs...

Migrating services...

Importing into LDAP...

Installation completed; now follow instructions in install guide.

Installation of ypldapd was successful.

Configuring your LDAP server

If you are using a slapd-derived LDAP v3 server that uses the Netscape/iPlanet schema , be sure to place a line of the form

include /opt/ypldapd/etc/slapd-v3.nis.conf

in your slapd configuration file (slapd.conf). Note that this configuration file will only work with LDAP v3 slapd servers, as it includes the object identifiers (for OIDs) for the RFC 2307 classes. OpenLDAP 2.x uses a different schema configuration format, but includes the RFC 2307 schema in the file nis.schema that contains most of the schema information in slapd-v3.nis.conf.

Recent versions of the iPlanet and Netscape Directory Servers also include the schema. If you are using an X.500 server as your LDAP server, you may need to configure the schema manually. You may use a string syntax instead of defining the custom syntaxes defined in RFC 2307. Note that the RFC 2307 schema is not compatible with Microsoft Active Directory.

To use the schema with an LDAP v2 server, use slapd-v2.nis.conf instead:

include /opt/ypldapd/etc/slapd-v2.nis.conf
If you are using Netscape’s Directory Server, you should configure it to use the UNIX Crypt has function. Go to the directory server administration web page, navigate to Server Preferences, LDAP, Password Storage Scheme and choose UNIX Crypt. (You may omit this if you are using the pam_ldap module.)

With Netscape’s Directory Server’s NT Synchronization service, you can maintain NT and UNIX account information for a user in a single LDAP entry. One way to do this is to populate the directory from an NT domain controller, and modify the migration tools to use ldapmodify instead of ldapadd to add the relevant RFC 2307 attributes.

If your LDAP server allows attribute indexing to optimize searches, you should index on the cn, uid, uidNumber, objectclass, and gidNumber attributes (and, if you have a large number of hosts, the ipHostNumber attribute).
Configuring your system

To use ypldapd, you must configure your system as a NIS client. To do so, use ypinit –c and copy /etc/nsswitch.nis to /etc/nsswitch.conf . See the manual page for ypinit for more information.
. Make sure that you are not already running a NIS server on the host on which you wish to install ypldapd.

Then, examine the file /opt/ypldapd/etc/ypldapd.conf.sample and append any relevant configuration items to the auto-generated /opt/ypldapd/etc/ypldapd.conf. An alternate configuration file may be specified on the command line.

Each entry in the configuration file consists of a key, followed by whitespace, followed by a value. Any line starting with the hash symbol (#) is treated as a comment and is ignored. Starting ypldapd in debug mode will log the configuration to syslog.

The keys and their permitted arguments are defined below:

Key
Value

ypdomain
The NIS domain which ypldapd should serve. Required.

ldaphost
The LDAP server to use. Required. Its IP address must be resolvable without consulting NIS (through NIS or /etc/hosts) or specified in dotted decimal notation, to avoid reentrancy problems.

ldapport
The TCP port to connect to the LDAP server with. The default is 389, the IANA registered port for LDAP.

basedn
The distinguished name to use as a base for queries. Required.

deref
How to handle aliases: never, find, search, or always (for never dereference, dereference when finding, dereference when searching, or always dereference, respectively). Default is to never dereference aliases.

scope
The search scope. One of sub, one, or base. Default is sub.

timelimit
An integer denoting the maximum number of seconds before an LDAP query will be aborted. Optional; default is no timeout.

caching
If the argument on is specified, then the DB library will be used to cache all maps. Optional; default is not to enable caching. (Not supported under NT.)

cache_dump_interval
(for DB cache)
An integer denoting the interval, in minutes, between flushing the entire cache (by sending ypldapd a SIGALRM signal). Optional, and only applicable if caching is enabled (default is not to flush the cache at all).

cache_ttl
(for LDAP cache)
The maximum amount of time (in seconds) that an item can be cached. If 0 (the default), there is no limit to the amount of time that an item can be cached. This item is only applicable if caching is enabled.

cache_size
(for LDAP cache)
Maximum amount of memory (in bytes) that the cache will consume. If 0 (the default), the cache has no size limit. This item is only applicable if caching is enabled.

binddn
The distinguished name to bind to the LDAP server as. Optional; default is to bind anonymously.

bindcred
The credentials to use in binding to the LDAP server.

loadmodule
A space separated list of dynamic shared objects to load. For each element XXX in the list, the file /opt/ypldapd/lib/ypldap_XXX.so.1 is loaded. If the library cannot be found, then (under Solaris) the environment variable LD_LIBRARY_PATH is searched for ypldap_XXX.so.1. Each library must contain an array of objects of type YPLDAPMap named ypldap_map_XXX_. (Dynamic loading is not supported under NT.)

hide_passwords
Whether to mangle passwords (if you do this, passwords will be set to “x” in the other the passwd.* maps).

pidfile
Where to write the process ID file to (eg /var/run/ypldapd.pid). Optional; default is /tmp/ypldapd.pid.

parentdomain
The parent NIS domain to fallthrough to. Maps not supported by ypldapd and maps already fulfilled by LDAP will be supplemented by binding to the NIS domain specificied. (Note: you cannot run ypldapd and another NIS server on the same machine.) You can fall through to a NIS+ domain if the NIS+ server is running in YP-compatibility mode.

ldapversion
The LDAP protocol version, as an integer. Must be 2 or 3. (Default is 2.)

namingcontexts
A fully qualified path to a file mapping NIS maps to X.500/LDAP naming contexts

chasereferrals
Whether to chase referrals.

acls
The file containing NIS ACL information acls.conf(5).

preload_maps
This parameter specifies NIS maps to be preloaded at initialization time before cache is flushed. The map name can be a nickname or fullname.If nickname is used, all related maps will be preloaded, eg. If group is specified, group.byname and group.bygid will be preloaded.

ypall_caching
Specifies whether map enumerations (YP_ALL) should fill and use the DB cache. Filling the cache can tie up ypldapd for a long time, preventing service of other NIS requests. The default and recommended values are off.

maxfds
The maximum number of file descriptors. This parameter does not normally need to be adjusted.

state_dump_interval
The period, in minutes, that state information for map enumerations in maintained. This parameter does not normally need to be adjusted.

Ypldapd accepts the following command line arguments:

usage: ypldapd [options]
options:
 -v Print version, and exit
 -d Start in debug mode, do not detach
 -c config Specify alternate path to configuration file
 -L Print licensing information, and exit
 -l license Specify alternate path to license file

Use –v to report the version (and immediately exit). The –d option starts ypldapd in debugging mode (it does not detach). The –L option prints licensing information to the standard output and exits. The –l option may be used to specify an alternate path to the license file, normally stored in /opt/ypldapd/etc/padlock.ldif.

Populating an LDAP directory

Once you have unpacked the distribution, you may wish to populate your LDAP database from the data in /etc flat files (or existing NIS maps). All the ‘migration’ scripts accept two parameters: the file to parse and, optionally, and output file. All output is in LDIF format, suitable for feeding to ldif2ldbm or ldapadd. (Note that the Netscape/iPlanet and OpenLDAP tools subsume the functionality of ldapadd into ldapmodify.)

The scripts require Perl, which is assumed to be in /usr/bin/perl. You may need to edit the path to the Perl interpreter if this is not the case. The migration tools are available separately from PADL’s FTP site. At the time of writing, the following scripts are provided:

· migrate_base.pl creates naming context entries, including subordinate contexts such as ou=People and ou=Hosts.

· migrate_aliases.pl migrates aliases in /etc/aliases to entries conforming to the rfc822MailGroup schema. Organizations who have deployed LDAP-based messaging solutions, such as Netscape’s Messaging Server, may wish to use a different schema for representing mail aliases. Ypldapd does not use X.500 groups (such as groupOfUniqueNames) for mail alias expansion because flattening an arbitrarily nested group at runtime may be expensive. (It is possible to write a ypldapd plug-in to support such a schema, however.)

· migrate_automount.pl migrates automount maps

· migrate_group.pl migrates groups in /etc/group
· migrate_hosts.pl migrates hosts in /etc/hosts
· migrate_networks.pl migrates networks in /etc/networks
· migrate_passwd.pl migrates users in /etc/passwd. Note that if users are allowed read the userPassword attribute, and your LDAP server doesn’t support authenticating against hashed passwords then anyone may read the userPassword attribute’s value and authenticate as that user. Modern LDAP servers, such as Netscape Directory Server, support authenticating against hashed passwords, so this is not an issue. The OpenLDAP slapd (http://www.openldap.org) also supports authenticating against hashed passwords.

· migrate_protocols.pl migrates protocols in /etc/protocols
· migrate_services.pl migrates services in /etc/services
· migrate_netgroup.pl migrates netgroups in /etc/netgroup
· migrate_netgroup_byuser.pl migrates the netgroup.byuser map

· migrate_netgroup_byhost.pl migrates the netgroup.byhost map

· migrate_profile.pl creates a POSIX DUA configuration profile entry; this is not supported by ypldapd but may be by other implementations of RFC 2307

· migrate_rpc.pl migrates RPCs in /etc/rpc
· migrate_slapd_conf.pl creates a skeletal OpenLDAP 2.x configuration file

The configuration for these Perl scripts is contained at the head of migrate_common.ph:

Perl variable
Description

$DEFAULT_MAIL_DOMAIN
The mail domain used for the mail attribute in migrate_passwd.pl when extended schema support is enabled. You may override this with the DEFAULT_MAIL_DOMAIN environment variable.

$DEFAULT_BASE
The naming suffix to use in entries’ distinguished names. If undefined, this will be constructed by mapping the mail domain name into a distinguished name (eg aceindustry.com becomes dc=aceindustry,dc=com). You may override this with the LDAP_BASEDN environment variable.

$EXTENDED_SCHEMA
Enables extended schema support. This adds the organizationalPerson and inetOrgPerson object classes, amongst others, to users migrated by the migrate_passwd.pl script.

$NAMINGCONTEXT
Determines the LDAP/X.500 naming context to use for a migration tool. The dictionary is keyed by tool (as in migrate_tool.pl). Values are concatenated with $DEFAULT_BASE by the &getsuffix() subroutine.

The following environment variables control the behavior of the migration shell scripts:

Environment variable
Description

DEFAULT_MAIL_DOMAIN
See above

LDAPADD
Path the ldapadd executable, for online migration (if not in the path or /usr/local/bin or /usr/bin)

LDIF2LDBM
Path the ldif2ldbm executable, for offline migration (if not in the path or /usr/local/bin or /usr/bin)

PERL
Path to the Perl interpreter (if not /usr/bin or /usr/local/bin)

LDAPHOST
Your LDAP server, for online migration. This is optional; you’ll be prompted if the environment variable is not set.

LDAP_BASEDN
See above ($DEFAULT_BASE). This is optional; you’ll be prompted if the environment variable is not set.

LDAP_BINDDN
The distinguished name to bind to the LDAP server as, for online migration. This is optional; you’ll be prompted if the environment variable is not set.

LDAP_BINDCRED
The password to bind to the LDAP server with, for online migration. This is optional; you’ll be prompted if the environment variable is not set.

You will probably wish to use a shell script or makefile to automate population of your LDAP database, either off-line (with ldif2ldbm) or on-line (with ldapadd). The migrate_all_*.sh shell scripts do this, but you may wish to customize their behaviour. The following table explains which migration scripts to use:

Shell script
Existing nameservice
LDAP running?

migrate_all_online.sh
/etc flat files
(

migrate_all_offline.sh
/etc flat files
(

migrate_all_netinfo_online.sh
NetInfo
(

migrate_all_netinfo_offline.sh
NetInfo
(

migrate_all_nis_online.sh
NIS/YP
(

migrate_all_nis_offline.sh
NIS/YP
(

Below are examples of migrate_hosts.pl and migrate_passwd.pl being used to migrate hosts and users, respectively:

$ migrate_hosts.pl /etc/hosts
dn: cn=mira.aceindustry.com,ou=Hosts,dc=aceindustry,dc=com
objectclass: ipHost
objectclass: device
objectclass: top
ipHostNumber: 10.1.70.5
cn: mira
cn: www.aceindustry.com

cn: mira.aceindustry.com

$ migrate_passwd.pl /etc/passwd
dn: cn=Joe Bloggs,ou=People,dc=aceindustry,dc=com
cn: Joe Bloggs
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
objectclass: posixAccount
objectclass: account
mail: jbloggs@aceindustry.com

givenname: Joe
sn: Bloggs
uid: jbloggs
userPassword: {crypt}daCXgaxahRNkg

loginShell: /bin/csh
uidNumber: 20
gidNumber: 20
homeDirectory: /home/jbloggs

Testing ypldapd

Once you have populated your LDAP database, verify that you can resolve an entry using the LDAP search tool, for example:

$ ldapsearch –L –b dc=aceindustry,dc=com uid=root

dn: cn=Joe Bloggs,ou=People,dc=aceindustry,dc=com
cn: Joe Bloggs
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
objectclass: posixAccount
objectclass: account
mail: jbloggs@aceindustry.com

givenname: Joe
sn: Bloggs
uid: jbloggs
userPassword: {crypt}daCXgaxahRNkg

loginShell: /bin/csh
uidNumber: 20
gidNumber: 20
homeDirectory: /home/jbloggs

If this is successful, you’re ready to start ypldapd. If you placed the configuration file in a different place to /opt/ypldapd/etc/ypldapd.conf, be sure to use the –c command line parameter to specify a different configuration file. Ensure that ypbind (this resides in /usr/lib/netsvc/yp) is running and that your machine is configured as a NIS client. For testing without configuring NIS, you can run ypbind in broadcast mode by specifying the ‘–broadcast’ flag. Then, start ypldapd:

/etc/rc2.d/S94ypldapd start

The ypldapd build version will be logged to syslog:

Aug 14 07:29:56 monk ypldapd[32077]: Starting @(#)PROGRAM:ypldapd PROJECT:ypldapd-84 DEVELOPER:lukeh BUILT:Fri Jan 12 10:57:35 UTC 2001

Confirm ypldapd is working by using the ypwhich and ypcat commands (your output may differ from that below):

$ ypwhich
localhost
$ ypcat passwd
root::0:1:Operator:/:/bin/csh

nobody:*:-2:-2::/private:
agent:*:1:1::/private:
daemon:*:1:1::/private:

…
If ypldapd is working, then you may check the other NIS maps. If not, verify that you have configured NIS and ypldapd correctly.

If large maps’ enumerations are truncated, verify that the search time limit in ypldapd.conf is sufficiently large (or not set at all, in which case there is no time limit).

Changing passwords

The ldappasswd program, installed in /opt/ypldapd/bin, allows users to change their passwords in the directory.

usage: ldappasswd [options]
options:
 -b basedn base dn for search
 (if ypldapd is running, then this is not required)
 -h host LDAP server name or IP address
 (if ypldapd is running, then this is not required)
 -c Generate hashed password on client
 -v Print version, and exit
 -p port LDAP server TCP port number
 -D binddn bind dn
 -w passwd bind passwd (for simple authentication)
 -l login uid of account to change; defaults to current user

Use the –c option (generate hashed password on client) if your directory server does not automatically encrypt the userPassword attribute. The default, which is suitable for use with Netscape’s Directory Server, is to send the new password in plaintext. If you are using the standard University of Michigan LDAP server with the crypt authentication patches applied, then you should use this option to force ldappasswd to generate a hashed password.

Caching in ypldapd

All versions of ypldapd implement a caching engine based on the Berkley DB library. Separate caches are held for each map, both for iteration and match RPCs. Sending ypldapd a SIGUSR1 (eg kill –USR1 `cat /tmp/ypldapd.pid`) will dump cache statistics via syslog. Sending the daemon a SIGALRM will flush all the caches. The ypall_caching configuration file parameter may be used to control whether map enumerations using the YP_ALL request are cached.

Entries can be expired from the match cache after a specified time using the ttl LDAP attribute (see draft-ietf-asid-ldap-cache-01.txt).

Changing a user’s password with the provided ldappasswd program will flush the cache entry for that user. Please note that ldappasswd assumes an LDAP server which can authenticate on encrypted passwords.

Configuring naming contexts

ypldapd allows a different X.500/LDAP naming context (search base) to be specified for each map. You may wish to do this for the following reasons:

· To optimize searches (rather than doing a subtree search of the organizational directory tree)

· To distribute the directory (for example, to refer searches for users to one directory server, and searches for hosts to another, using LDAP referrals)

The path to the naming context dictionary is specified by the namingcontexts entry in ypldapd.conf. The syntax of the dictionary is as follows:

[nis-map | ‘*’] [‘ ‘ | ‘\t’] [search-base] [‘,’ | ‘’]

For example, the following entry would direct NIS lookups on the passwd maps to the ou=People subtree:

passwd.byname ou=People,

passwd.byuid ou=People,

Note the trailing comma indicates that the default search base (specified in ypldapd.conf) should be concatenated with the map-specific naming context. In the following example, lookups on the host maps are directed to the absolute distinguished name ou=Hosts,o=Airius (regardless of the default search base):

hosts.byaddr ou=Hosts,o=Airius

hosts.byname ou=Hosts,o=Airius

The wildcard entry is used to determine the subtree for maps added at runtime (using the nisObject schema). Optionally the search base may contain a substitution string which will be replaced at runtime by the NIS map name. For example, the following entry directs requests for unknown NIS maps to the ou=NIS subtree:

* ou=NIS,

The following entry directs lookups for unknown NIS maps to the subtree distinguished by the nisMapName attribute:

* nisMapName=%s,

By default, ypldapd is configured to use the naming context dictionary in /opt/ypldapd/etc/namingcontexts.conf.

Configuring your license
Ypldapd ships with a licensing system called Padlock. License information is stored as an LDIF file in /opt/ypldapd/etc/padlock.ldif. An alternate license file may be specified at startup. If no license file can be found, ypldapd will search in the LDAP directory for license information in the entry named by the current host.

If you have purchased ypldapd, you will have received a license key from PADL Software Support when your payment has cleared and you have provided PADL with hostids or IP addresses of the servers you are deploying ypldapd on. (Ypldapd is licensed by server.) PADL requires the hostid for Solaris systems, and the IP address for Linux and FreeBSD systems. Paste this license key into /opt/ypldapd/etc/padlock.ldif
If you are evaluating ypldapd, send a mail message to ypldapd-eval-request@padl.com. You will receive an automated response containing a license key which you should copy into /opt/ypldapd/etc/padlock.ldif.

Or, instead of manually creating the license file, you may enter the license key when prompted by the installation procedure. If you wish to do this, enter the information the right of the padlockKey:: line, omitting all spaces and as one string. For example, the license key:

description: Created on Thu Mar 1 00:05:00 EST 2001 (Valid for 30 days).
padlockKey:: 3q+6vnlwbGRhcGRAUEFETC5DTAAAAAAAgAe
 B9EAADAtAhUAk

would be presented to the installation script as:

3q+6vnlwbGRhcGRAUEFETC5DTAAAAAAAgAeB9EAADAtAhUAk
Actual keys may vary in length.
Using the pam_ldap module

PADL Software provide an LDAP Pluggable Authentication Module (tested under Solaris and Linux) which provides user authentication, authorization, and password changing in terms of LDAP. It is available under the terms of the GNU General Library Public License.

Whilst pam_ldap is functionally orthogonal to ypldapd, the module can optionally obtain its configuration from ypldapd, in order to avoid having to configure /etc/ldap.conf on each client. This is configured at compile time configuring with –-enable-ypldapd.

Reporting bugs

Please send bug reports to support@padl.com. In your email, include the configuration of your system, the build number (logged in syslog on startup) and the version of ypldapd (the output of ypldapd –v).

Limitations in this release

· The publickey.byname map is not directly supported. As a workaround, use the nisObject object class.

· When using custom maps and the nisObject object class, if a match is done on a map which exists but doesn’t contain the required key, the NIS client will be returned YP_NOMAP instead of YP_NOKEY.

Acknowledgments

ypldapd was developed by Luke Howard in conjunction with Xedoc Software Development in Melbourne, Australia. Ypldapd is licensed to PADL Software Pty Ltd.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality of the two remains the same; only the name has changed. The name Yellow Pages is a registered trademark in the United Kingdom of British Telecommunications plc, and may not be used without permission.

Chapter

2

RFC 2307

An Approach for Using LDAP as a Network Information Service (Revised)
Status of this Memo

This memo defines an Experimental Protocol for the Internet community. It does not specify an Internet standard of any kind. Discussion and suggestions for improvement are requested.

Distribution of this memo is unlimited.

Copyright (C) The Internet Society (1998). All Rights Reserved.

Abstract

This document describes an experimental mechanism for mapping entities related to TCP/IP and the UNIX system into X.500 [X500] entries so that they may be resolved with the Lightweight Directory Access Protocol [RFC2251]. A set of attribute types and object classes are proposed, along with specific guidelines for interpreting them.

The intention is to assist the deployment of LDAP as an organizational nameservice. No proposed solutions are intended as standards for the Internet. Rather, it is hoped that a general consensus will emerge as to the appropriate solution to such problems, leading eventually to the adoption of standards. The proposed mechanism has already been implemented with some success.

1. Background and Motivation

The UNIX (R) operating system, and its derivatives (specifically, those which support TCP/IP and conform to the X/Open Single UNIX specification [XOPEN]) require a means of looking up entities, by matching them against search criteria or by enumeration. (Other operating systems that support TCP/IP may provide some means of resolving some of these entities. This schema is applicable to those environments also.)

These entities include users, groups, IP services (which map names to IP ports and protocols, and vice versa), IP protocols (which map names to IP protocol numbers and vice versa), RPCs (which map names to ONC Remote Procedure Call [RFC1057] numbers and vice versa), NIS netgroups, booting information (boot parameters and MAC address mappings), filesystem mounts, IP hosts and networks, and RFC822 mail aliases. Resolution requests are made through a set of C functions, provided in the UNIX system's C library. For example, the UNIX system utility “ls”, which enumerates the contents of a filesystem directory, uses the C library function getpwuid() in order to map user IDs to login names. Once the request is made, it is resolved using a “nameservice” which is supported by the client library. The nameservice may be, at its simplest, a collection of files in the local filesystem which are opened and searched by the C library. Other common nameservices include the Network Information Service (NIS) and the Domain Name System (DNS). (The latter is typically used for resolving hosts, services and networks.) Both these nameservices have the advantage of being distributed and thus permitting a common set of entities to be shared amongst many clients.

LDAP is a distributed, hierarchical directory service access protocol which is used to access repositories of users and other network-related entities. Because LDAP is often not tightly integrated with the host operating system, information such as users may need to be kept both in LDAP and in an operating system supported nameservice such as NIS. By using LDAP as the the primary means of resolving these entities, these redundancy issues are minimized and the scalability of LDAP can be exploited. (By comparison, NIS services based on flat files do not have the scalability or extensibility of LDAP or X.500.)

The object classes and attributes defined below are suitable for representing the aforementioned entities in a form compatible with LDAP and X.500 directory services.

2. General Issues

2.1. Terminology

The key words “MUST”, “SHOULD”, and “MAY” used in this document are to be interpreted as described in [RFC2119].

For the purposes of this document, the term “nameservice” refers to a service, such as NIS or flat files, that is used by the operating system to resolve entities within a single, local naming context. Contrast this with a “directory service” such as LDAP, which supports extensible schema and multiple naming contexts.

The term “NIS-related entities” broadly refers to entities which are typically resolved using the Network Information Service. (NIS was previously known as YP.) Deploying LDAP for resolving these entities does not imply that NIS be used, as a gateway or otherwise. In particular, the host and network classes are generically applicable, and may be implemented on any system that wishes to use LDAP or X.500 for host and network resolution.

The “DUA” (directory user agent) refers to the LDAP client querying these entities, such as an LDAP to NIS gateway or the C library. The “client” refers to the application which ultimately makes use of the information returned by the resolution. It is irrelevant whether the DUA and the client reside within the same address space. The act of the DUA making this information to the client is termed “republishing”.

To avoid confusion, the term “login name” refers to the user's login name (being the value of the uid attribute) and the term “user ID” refers to he user's integer identification number (being the value of the uidNumber attribute).

The phrases “resolving an entity” and “resolution of entities” refer respectively to enumerating NIS-related entities of a given type, and matching them against a given search criterion. One or more entities are returned as a result of successful “resolutions” (a “match” operation will only return one entity).

The use of the term UNIX does not confer upon this schema the endorsement of owners of the UNIX trademark. Where necessary, the term “TCP/IP entity” is used to refer to protocols, services, hosts, and networks, and the term “UNIX entity” to its complement. (The former category does not mandate the host operating system supporting the interfaces required for resolving UNIX entities.)

The OIDs defined below are derived from iso(1) org(3) dod(6) internet(1) directory(1) nisSchema(1).

2.2. Attributes

The attributes and classes defined in this document are summarized below.

The following attributes are defined in this document:

· uidNumber

· gidNumber

· gecos

· homeDirectory

· loginShell

· shadowLastChange

· shadowMin

· shadowMax

· shadowWarning

· shadowInactive

· shadowExpire

· shadowFlag

· memberUid

· memberNisNetgroup

· nisNetgroupTriple

· ipServicePort

· ipServiceProtocol

· ipProtocolNumber

· oncRpcNumber

· ipHostNumber

· ipNetworkNumber

· ipNetmaskNumber

· macAddress

· bootParameter

· bootFile

· nisMapName

· nisMapEntry

Additionally, some of the attributes defined in [RFC2256] are required.

2.3. Object classes

The following object classes are defined in this document:

· posixAccount

· shadowAccount

· posixGroup

· ipService

· ipProtocol

· oncRpc

· ipHost

· ipNetwork

· nisNetgroup

· nisMap

· nisObject

· ieee802Device

· bootableDevice

Additionally, some of the classes defined in [RFC2256] are required.

2.4. Syntax definitions

The following syntax definitions [RFC2252] are used by this schema. The nisNetgroupTripleSyntax represents NIS netgroup triples:

(nisSchema.0.0 NAME 'nisNetgroupTripleSyntax'

 DESC 'NIS netgroup triple')

Values in this syntax are represented by the following:

nisnetgrouptriple = "(" hostname "," username "," domainname ")"

hostname = "" / "-" / keystring

username = "" / "-" / keystring

domainname = "" / "-" / keystring

X.500 servers may use the following representation of the above syntax:

 nisNetgroupTripleSyntax ::= SEQUENCE {

 hostname [0] IA5String OPTIONAL,

 username [1] IA5String OPTIONAL,

 domainname [2] IA5String OPTIONAL

 }

The bootParameterSyntax syntax represents boot parameters:

(nisSchema.0.1 NAME 'bootParameterSyntax'

 DESC 'Boot parameter')

where:

 bootparameter = key "=" server ":" path

 key = keystring

 server = keystring

 path = keystring

X.500 servers may use the following representation of the above syntax:

 bootParameterSyntax ::= SEQUENCE {

 key IA5String,

 server IA5String,

 path IA5String

 }

Values adhering to these syntaxes are encoded as strings by LDAP servers.

3. Attribute definitions

This section contains attribute definitions to be implemented by DUAs supporting this schema.

 (nisSchema.1.0 NAME 'uidNumber'

 DESC 'An integer uniquely identifying a user in an

 administrative domain'

 EQUALITY integerMatch SYNTAX 'INTEGER' SINGLE-VALUE)

 (nisSchema.1.1 NAME 'gidNumber'

 DESC 'An integer uniquely identifying a group in an

 administrative domain'

 EQUALITY integerMatch SYNTAX 'INTEGER' SINGLE-VALUE)

 (nisSchema.1.2 NAME 'gecos'

 DESC 'The GECOS field; the common name'

 EQUALITY caseIgnoreIA5Match

 SUBSTRINGS caseIgnoreIA5SubstringsMatch

 SYNTAX 'IA5String' SINGLE-VALUE)

 (nisSchema.1.3 NAME 'homeDirectory'

 DESC 'The absolute path to the home directory'

 EQUALITY caseExactIA5Match

 SYNTAX 'IA5String' SINGLE-VALUE)

 (nisSchema.1.4 NAME 'loginShell'

 DESC 'The path to the login shell'

 EQUALITY caseExactIA5Match

 SYNTAX 'IA5String' SINGLE-VALUE)

 (nisSchema.1.5 NAME 'shadowLastChange'

 EQUALITY integerMatch

 SYNTAX 'INTEGER' SINGLE-VALUE)

 (nisSchema.1.6 NAME 'shadowMin'

 EQUALITY integerMatch

 SYNTAX 'INTEGER' SINGLE-VALUE)

 (nisSchema.1.7 NAME 'shadowMax'

 EQUALITY integerMatch

 SYNTAX 'INTEGER' SINGLE-VALUE)

 (nisSchema.1.8 NAME 'shadowWarning'

 EQUALITY integerMatch

 SYNTAX 'INTEGER' SINGLE-VALUE)

 (nisSchema.1.9 NAME 'shadowInactive'

 EQUALITY integerMatch

 SYNTAX 'INTEGER' SINGLE-VALUE)

 (nisSchema.1.10 NAME 'shadowExpire'

 EQUALITY integerMatch

 SYNTAX 'INTEGER' SINGLE-VALUE)

 (nisSchema.1.11 NAME 'shadowFlag'

 EQUALITY integerMatch

 SYNTAX 'INTEGER' SINGLE-VALUE)

 (nisSchema.1.12 NAME 'memberUid'

 EQUALITY caseExactIA5Match

 SUBSTRINGS caseExactIA5SubstringsMatch

 SYNTAX 'IA5String')

 (nisSchema.1.13 NAME 'memberNisNetgroup'

 EQUALITY caseExactIA5Match

 SUBSTRINGS caseExactIA5SubstringsMatch

 SYNTAX 'IA5String')

 (nisSchema.1.14 NAME 'nisNetgroupTriple'

 DESC 'Netgroup triple'

 SYNTAX 'nisNetgroupTripleSyntax')

 (nisSchema.1.15 NAME 'ipServicePort'

 EQUALITY integerMatch

 SYNTAX 'INTEGER' SINGLE-VALUE)

 (nisSchema.1.16 NAME 'ipServiceProtocol'

 SUP name)

 (nisSchema.1.17 NAME 'ipProtocolNumber'

 EQUALITY integerMatch

 SYNTAX 'INTEGER' SINGLE-VALUE)

 (nisSchema.1.18 NAME 'oncRpcNumber'

 EQUALITY integerMatch

 SYNTAX 'INTEGER' SINGLE-VALUE)

 (nisSchema.1.19 NAME 'ipHostNumber'

 DESC 'IP address as a dotted decimal, eg. 192.168.1.1,

 omitting leading zeros'

 EQUALITY caseIgnoreIA5Match

 SYNTAX 'IA5String{128}')

 (nisSchema.1.20 NAME 'ipNetworkNumber'

 DESC 'IP network as a dotted decimal, eg. 192.168,

 omitting leading zeros'

 EQUALITY caseIgnoreIA5Match

 SYNTAX 'IA5String{128}' SINGLE-VALUE)

 (nisSchema.1.21 NAME 'ipNetmaskNumber'

 DESC 'IP netmask as a dotted decimal, eg. 255.255.255.0,

 omitting leading zeros'

 EQUALITY caseIgnoreIA5Match

 SYNTAX 'IA5String{128}' SINGLE-VALUE)

 (nisSchema.1.22 NAME 'macAddress'

 DESC 'MAC address in maximal, colon separated hex

 notation, eg. 00:00:92:90:ee:e2'

 EQUALITY caseIgnoreIA5Match

 SYNTAX 'IA5String{128}')

 (nisSchema.1.23 NAME 'bootParameter'

 DESC 'rpc.bootparamd parameter'

 SYNTAX 'bootParameterSyntax')

 (nisSchema.1.24 NAME 'bootFile'

 DESC 'Boot image name'

 EQUALITY caseExactIA5Match

 SYNTAX 'IA5String')

 (nisSchema.1.26 NAME 'nisMapName'

 SUP name)

 (nisSchema.1.27 NAME 'nisMapEntry'

 EQUALITY caseExactIA5Match

 SUBSTRINGS caseExactIA5SubstringsMatch

 SYNTAX 'IA5String{1024}' SINGLE-VALUE)

4. Class definitions

This section contains class definitions to be implemented by DUAs supporting the schema.

The rfc822MailGroup object class MAY be used to represent a mail group for the purpose of alias expansion. Several alternative schemes for mail routing and delivery using LDAP directories, which are outside the scope of this document.

 (nisSchema.2.0 NAME 'posixAccount' SUP top AUXILIARY

 DESC 'Abstraction of an account with POSIX attributes'

 MUST (cn $ uid $ uidNumber $ gidNumber $ homeDirectory)

 MAY (userPassword $ loginShell $ gecos $ description))

 (nisSchema.2.1 NAME 'shadowAccount' SUP top AUXILIARY

 DESC 'Additional attributes for shadow passwords'

 MUST uid

 MAY (userPassword $ shadowLastChange $ shadowMin

 shadowMax $ shadowWarning $ shadowInactive $

 shadowExpire $ shadowFlag $ description))

 (nisSchema.2.2 NAME 'posixGroup' SUP top STRUCTURAL

 DESC 'Abstraction of a group of accounts'

 MUST (cn $ gidNumber)

 MAY (userPassword $ memberUid $ description))

 (nisSchema.2.3 NAME 'ipService' SUP top STRUCTURAL

 DESC 'Abstraction an Internet Protocol service.

 Maps an IP port and protocol (such as tcp or udp)

 to one or more names; the distinguished value of

 the cn attribute denotes the service's canonical

 name'

 MUST (cn $ ipServicePort $ ipServiceProtocol)

 MAY (description))

 (nisSchema.2.4 NAME 'ipProtocol' SUP top STRUCTURAL

 DESC 'Abstraction of an IP protocol. Maps a protocol number

 to one or more names. The distinguished value of the cn

 attribute denotes the protocol's canonical name'

 MUST (cn $ ipProtocolNumber)

 MAY description)

 (nisSchema.2.5 NAME 'oncRpc' SUP top STRUCTURAL

 DESC 'Abstraction of an Open Network Computing (ONC)

 [RFC1057] Remote Procedure Call (RPC) binding.

 This class maps an ONC RPC number to a name.

 The distinguished value of the cn attribute denotes

 the RPC service's canonical name'

 MUST (cn $ oncRpcNumber $ description)

 MAY description)

 (nisSchema.2.6 NAME 'ipHost' SUP top AUXILIARY

 DESC 'Abstraction of a host, an IP device. The distinguished

 value of the cn attribute denotes the host's canonical

 name. Device SHOULD be used as a structural class'

 MUST (cn $ ipHostNumber)

 MAY (l $ description $ manager))

 (nisSchema.2.7 NAME 'ipNetwork' SUP top STRUCTURAL

 DESC 'Abstraction of a network. The distinguished value of

 the cn attribute denotes the network's canonical name'

 MUST (cn $ ipNetworkNumber)

 MAY (ipNetmaskNumber $ l $ description $ manager))

 (nisSchema.2.8 NAME 'nisNetgroup' SUP top STRUCTURAL

 DESC 'Abstraction of a netgroup. May refer to other netgroups'

 MUST cn

 MAY (nisNetgroupTriple $ memberNisNetgroup $ description))

 (nisSchema.2.09 NAME 'nisMap' SUP top STRUCTURAL

 DESC 'A generic abstraction of a NIS map'

 MUST nisMapName

 MAY description)

 (nisSchema.2.10 NAME 'nisObject' SUP top STRUCTURAL

 DESC 'An entry in a NIS map'

 MUST (cn $ nisMapEntry $ nisMapName)

 MAY description)

 (nisSchema.2.11 NAME 'ieee802Device' SUP top AUXILIARY

 DESC 'A device with a MAC address; device SHOULD be

 used as a structural class'

 MAY macAddress)

 (nisSchema.2.12 NAME 'bootableDevice' SUP top AUXILIARY

 DESC 'A device with boot parameters; device SHOULD be

 used as a structural class'

 MAY (bootFile $ bootParameter))

5. Implementation details

5.1. Suggested resolution methods

The preferred means of directing a client application (one using the shared services of the C library) to use LDAP as its information source for the functions listed in 5.2 is to modify the source code to directly query LDAP. As the source to commercial C libraries and applications is rarely available to the end-user, one could emulate a supported nameservice (such as NIS). (This is also an appropriate opportunity to perform caching of entries across process address spaces.) In the case of NIS, reference implementations are widely available and the RPC interface is well known.

The means by which the operating system is directed to use LDAP is implementation dependent. For example, some operating systems and C libraries support end-user extensible resolvers using dynamically loadable libraries and a nameservice "switch". The means in which the DUA locates LDAP servers is also implementation dependent.

5.2. Affected library functions

The following functions are typically found in the C libraries of most UNIX and POSIX compliant systems. An LDAP search filter [RFC2254] which may be used to satisfy the function call is included alongside each function name. Parameters are denoted by %s and %d for string and integer arguments, respectively. Long lines are broken.

 getpwnam() (&(objectClass=posixAccount)(uid=%s))

 getpwuid() (&(objectClass=posixAccount)

 (uidNumber=%d))

 getpwent() (objectClass=posixAccount)

 getspnam() (&(objectClass=shadowAccount)(uid=%s))

 getspent() (objectClass=shadowAccount)

 getgrnam() (&(objectClass=posixGroup)(cn=%s))

 getgrgid() (&(objectClass=posixGroup)

 (gidNumber=%d))

 getgrent() (objectClass=posixGroup)

 getservbyname() (&(objectClass=ipService)

 (cn=%s)(ipServiceProtocol=%s))

 getservbyport() (&(objectClass=ipService)

 (ipServicePort=%d)

 (ipServiceProtocol=%s))

 getservent() (objectClass=ipService)

 getrpcbyname() (&(objectClass=oncRpc)(cn=%s))

 getrpcbynumber() (&(objectClass=oncRpc)(oncRpcNumber=%d))

 getrpcent() (objectClass=oncRpc)

 getprotobyname() (&(objectClass=ipProtocol)(cn=%s))

 getprotobynumber() (&(objectClass=ipProtocol)

 (ipProtocolNumber=%d))

 getprotoent() (objectClass=ipProtocol)

 gethostbyname() (&(objectClass=ipHost)(cn=%s))

 gethostbyaddr() (&(objectClass=ipHost)(ipHostNumber=%s))

 gethostent() (objectClass=ipHost)

 getnetbyname() (&(objectClass=ipNetwork)(cn=%s))

 getnetbyaddr() (&(objectClass=ipNetwork)

 (ipNetworkNumber=%s))

 getnetent() (objectClass=ipNetwork)

 setnetgrent() (&(objectClass=nisNetgroup)(cn=%s))

5.3. Interpreting user and group entries

User and group resolution is initiated by the functions prefixed by getpw and getgr respectively. The uid attribute contains the user’s login name. The cn attribute, in posixGroup entries, contains the group’s name.

The account object class provides a convenient structural class for posixAccount, and SHOULD be used where additional attributes are not required.

It is suggested that uid and cn are used as the RDN attribute type for posixAccount and posixGroup entries, respectively.

An account's GECOS field is preferably determined by a value of the gecos attribute. If no gecos attribute exists, the value of the cn attribute MUST be used. (The existence of the gecos attribute allows information embedded in the GECOS field, such as a user's telephone number, to be returned to the client without overloading the cn attribute. It also accommodates directories where the common name does not contain the user's full name.)

An entry of class posixAccount, posixGroup, or shadowAccount without a userPassword attribute MUST NOT be used for authentication. The client should be returned a non-matchable password such as “x”.

userPassword values MUST be represented by following syntax:

 passwordvalue = schemeprefix encryptedpassword

 schemeprefix = "{" scheme "}"

 scheme = "crypt" / "md5" / "sha" / altscheme

 altscheme = "x-" keystring

 encryptedpassword = encrypted password

The encrypted password contains of a plaintext key hashed using the algorithm scheme.

userPassword values which do not adhere to this syntax MUST NOT be used for authentication. The DUA MUST iterate through the values of the attribute until a value matching the above syntax is found. Only if encryptedpassword is an empty string does the user have no password. DUAs are not required to consider encryption schemes which the client will not recognize; in most cases, it maybe sufficient to consider only “crypt”.

Below is an example of a userPassword attribute:

userPassword: {crypt}X5/DBrWPOQQaI

A future standard may specify LDAP v3 attribute descriptions to represent hashed userPasswords, as noted below. This schema MUST NOT be used with LDAP v2 DUAs and DSAs.

 attributetype = attributename sep attributeoption

 attributename = "userPassword"

 sep = ";"

 attributeoption = schemeclass "-" scheme

 schemeclass = "hash" / altschemeclass

 scheme = "crypt" / "md5" / "sha" / altscheme

 altschemeclass = "x-" keystring

 altscheme = keystring

Below is an example of a userPassword attribute, represented with an LDAP v3 attribute description:

userPassword;hash-crypt: X5/DBrWPOQQaI

A DUA MAY utilise the attributes in the shadowAccount class to provide shadow password service (getspnam() and getspent()). In such cases, the DUA MUST NOT make use of the userPassword attribute for getpwnam() et al, and MUST return a non-matchable password (such as “x”) to the client instead.

5.4. Interpreting hosts and networks

The ipHostNumber and ipNetworkNumber attributes are defined in preference to dNSRecord (defined in [RFC1279]), in order to simplify the DUA’s role in interpreting entries in the directory. A dNSRecord expresses a complete resource record, including time to live and class data, which is extraneous to this schema.

Additionally, the ipHost and ipNetwork classes permit a host or network (respectively) and all its aliases to be represented by a single entry in the directory. This is not necessarily possible if a DNS resource record is mapped directly to an LDAP entry. Implementations that wish to use LDAP to master DNS zone information are not precluded from doing so, and may simply avoid the ipHost and ipNetwork classes.

This document redefines, although not exclusively, the ipNetwork class defined in [RFC1279], in order to achieve consistent naming with ipHost. The ipNetworkNumber attribute is also used in the siteContact object class [ROSE].

The trailing zeros in a network address MUST be omitted. CIDR-style network addresses (eg. 192.168.1/24) MAY be used. Hosts with IPv6 addresses MUST be written in their “preferred” form as defined in section 2.2.1 of [RFC1884], such that all components of the address are indicated and leading zeros are omitted. This provides a consistent means of resolving ipHosts by address.

5.5. Interpreting other entities

In general, a one-to-one mapping between entities and LDAP entries is proposed, in that each entity has exactly one representation in the DIT. In some cases this is not feasible; for example, a service which is represented in more than one protocol domain. Consider the following entry:

dn: cn=domain, dc=aja, dc=com

cn: domain

cn: nameserver

objectClass: top

objectClass: ipService

ipServicePort: 53

ipServiceProtocol: tcp

ipServiceProtocol: udp

This entry MUST map to the following two (2) services entities:

domain 53/tcp nameserver

domain 53/udp nameserver

While the above two entities may be represented as separate LDAP entities, with different distinguished names (such as cn=domain+ipServiceProtocol=tcp, ... and cn=domain+ipServiceProtocol=udp, ...) it is convenient to represent them as a single entry. (If a service is represented in multiple protocol domains with different ports, then multiple entries are required; multivalued RDNs may be used to distinguish them.)

With the exception of userPassword values, which are parsed according to the syntax considered in section 5.2, any empty values (consisting of a zero length string) are returned by the DUA to the client. The DUA MUST reject any entries which do not conform to the schema (missing mandatory attributes). Non-conforming entries SHOULD be ignored while enumerating entries.

The nisObject object class MAY be used as a generic means of representing NIS entities. Its use is not encouraged; where support for entities not described in this schema is desired, an appropriate schema should be devised. Implementors are strongly advised to support end-user extensible mappings between NIS entities and object classes. (Where the nisObject class is used, the nisMapName attribute may be used as a RDN.)

5.6. Canonicalizing entries with multi-valued naming attributes

For entities such as hosts, services, networks, protocols, and RPCs, where there may be one or more aliases, the respective entry’s relative distinguished name SHOULD be used to determine the canonical name. Any other values for the same attribute are used as aliases. For example, the service described in section 5.5 has the canonical name “domain” and exactly one alias, “nameserver”.

The schema in this document generally only defines one attribute per class which is suitable for distinguishing an entity (excluding any attributes with integer syntax; it is assumed that entries will be distinguished on name). Usually, this is the common name (cn) attribute. This aids the DUA in determining the canonical name of an entity, as it can examine the value of the relative distinguished name. Aliases are thus any values of the distinguishing attribute (such as cn) which do not match the canonical name of the entity.

In the event that a different attribute is used to distinguish the entry, as may be the case where these object classes are used as auxiliary classes, the entry's canonical name may not be present in the RDN. In this case, the DUA MUST choose one of the non- distinguished values to represent the entity's canonical name. As the directory server guarantees no ordering of attribute values, it may not be possible to distinguish an entry deterministically. This ambiguity SHOULD NOT be resolved by mapping one directory entry into multiple entities.

6. Implementation focus

A NIS server which uses LDAP instead of local files has been developed which supports the schema defined in this document.

A reference implementation of the C library resolution code has been written for the Free Software Foundation. It may support other C libraries which support the Name Service Switch (NSS) or the Information Retrieval Service (IRS).

The author has made available a freely distributable set of scripts which parses local databases such as /etc/passwd and /etc/hosts into a form suitable for loading into an LDAP server.

7. Security Considerations

The entirety of related security considerations are outside the scope of this document. It is noted that making passwords encrypted with a widely understood hash function (such as crypt()) available to non- privileged users is dangerous because it exposes them to dictionary and brute-force attacks. This is proposed only for compatibility with existing UNIX system implementations. Sites where security is critical SHOULD consider using a strong authentication service for user authentication.

Alternatively, the encrypted password could be made available only to a subset of privileged DUAs, which would provide "shadow" password service to client applications. This may be difficult to enforce.

Because the schema represents operating system-level entities, access to these entities SHOULD be granted on a discretionary basis. (There is little point in restricting access to data which will be republished without restriction, however.) It is particularly important that only administrators can modify entries defined in this schema, with the exception of allowing a principal to change their password (which may be done on behalf of the user by a client bound as a superior principal, such that password restrictions may be enforced). For example, if a user were allowed to change the value of their uidNumber attribute, they could subvert security by equivalencing their account with the superuser account.

A subtree of the DIT which is to be republished by a DUA (such as a NIS gateway) SHOULD be within the same administrative domain that the republishing DUA represents. (For example, principals outside an organization, while conceivably part of the DIT, should not be considered with the same degree of authority as those within the organization.)

Finally, care should be exercised with integer attributes of a sensitive nature (particularly the uidNumber and gidNumber attributes) which contain zero-length values. DUAs MAY treat such values as corresponding to the “nobody” or “nogroup” user and group, respectively.

8. Acknowledgements

Thanks to Leif Hedstrom of Netscape Communications Corporation, Michael Grant and Rosanna Lee of Sun Microsystems Inc., Ed Reed of Novell Inc., and Mark Wahl of Critical Angle Inc. for their valuable contributions to the development of this schema. Thanks to Andrew Josey of The Open Group for clarifying the use of the UNIX trademark, and to Tim Howes and Peter J. Cherny for their support.

UNIX is a registered trademark of The Open Group.

9. References

[RFC1057]

Sun Microsystems, Inc., “RPC: Remote Procedure Call: Protocol Specification Version 2”, RFC 1057, June 1988.

[RFC1279]

Kille, S., “X.500 and Domains”, RFC 1279, November 1991.

[RFC1884]

Hinden, R., and S. Deering, “IP Version 6 Addressing Architecture”, RFC 1884, December 1995.

[RFC2119]

Bradner, S., “Key Words for use in RFCs to Indicate Requirement Levels”, BCP 14, FC 2119, March 1997.

[RFC2251]

Wahl, M., Howes, T., and S. Kille, “Lightweight Directory Access Protocol (v3)”, RFC 2251, December 1997.

[RFC2252]

Wahl, M., Coulbeck, A., Howes, T., and S. Kille, “Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions”, RFC 2252, December 1997.

[RFC2254]

Howes, T., “The String Representation of LDAP Search Filters”, RFC 2254, December 1997.

[RFC2256]

Wahl, M., “A Summary of the X.500(96) User Schema for use with LDAPv3”, RFC 2256, December 1997.

[ROSE]

M. T. Rose, “The Little Black Book: Mail Bonding with OSI Directory Services”, ISBN 0-13-683210-5, Prentice-Hall, Inc., 1992.

[X500]

“Information Processing Systems -- Open Systems Interconnection -- The Directory: Overview of Concepts, Models and Service”, ISO/IEC JTC 1/SC21, International Standard 9594-1, 1988.

[XOPEN]

ISO/IEC 9945-1:1990, Information Technology -- Portable Operating Systems Interface (POSIX) - Part 1: Systems Application Programming Interface (API) [C Language]

10. Author's Address

Luke Howard
PO Box 59
Central Park Vic 3145
Australia

EMail: lukeh@padl.com

A. Example entries

The examples described in this section are provided to illustrate the schema described in this memo. They are not meant to be exhaustive.

The following entry is an example of the posixAccount class:

dn: uid=lester, dc=aja, dc=com

objectClass: top

objectClass: account

objectClass: posixAccount

uid: lester

cn: Lester the Nightfly

userPassword: {crypt}X5/DBrWPOQQaI

gecos: Lester

loginShell: /bin/csh

uidNumber: 10

gidNumber: 10

homeDirectory: /home/lester

This corresponds the UNIX system password file entry:

lester:X5/DBrWPOQQaI:10:10:Lester:/home/lester:/bin/csh

The following entry is an example of the ipHost class:

dn: cn=peg.aja.com, dc=aja, dc=com

objectClass: top

objectClass: device

objectClass: ipHost

objectClass: bootableDevice

objectClass: ieee802Device

cn: peg.aja.com

cn: www.aja.com

ipHostNumber: 10.0.0.1

macAddress: 00:00:92:90:ee:e2

bootFile: mach

bootParameter: root=fs:/nfsroot/peg

bootParameter: swap=fs:/nfsswap/peg

bootParameter: dump=fs:/nfsdump/peg

This entry represents the host canonically peg.aja.com, also known as www.aja.com. The Ethernet address and four boot parameters are also specified.

An example of the nisNetgroup class:

dn: cn=nightfly, dc=aja, dc=com

objectClass: top

objectClass: nisNetgroup

cn: nightfly

nisNetgroupTriple: (charlemagne,peg,dunes.aja.com)

nisNetgroupTriple: (lester,-,)

memberNisNetgroup: kamakiriad

This entry represents the netgroup nightfly, which contains two triples (the user charlemagne, the host peg, and the domain dunes.aja.com; and, the user lester, no host, and any domain) and one netgroup (kamakiriad).

Finally, an example of the nisObject class:

dn: nisMapName=tracks, dc=dunes, dc=aja, dc=com

objectClass: top

objectClass: nisMap

nisMapName: tracks

dn: cn=Maxine, nisMapName=tracks, dc=dunes, dc=aja, dc=com

objectClass: top

objectClass: nisObject

cn: Maxine

nisMapName: tracks

nisMapEntry: Nightfly$4

This entry represents the NIS map tracks, and a single map entry.

RFC 2307 Full Copyright Statement

Copyright (C) The Internet Society (1998). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Index

a

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

Index 3, 3

Index 1, 1

Index 1, 1

b

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

c

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 1, 1

d

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

e

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 1, 1

g

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

h

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

k

Index 1, 1

L

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

m

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

n

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 1, 1

r

Index 1, 1

Index 1, 1

s

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 1, 1

t

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

w

Index 1, 1

Index 1, 1

Index 1, 1

Index 2, 2

Index 1, 1

Index 1, 1

Index 1, 1

Index 1, 1

� See also “Managing NFS and NIS”, by Hal Stern (published by O’Reilly and Associates).

� There's a description of how Netscape Directory Server works, at http://help.netscape.com/products/server/directory/misc/passwd-SHA.html Note that version 4 will add a new scheme {SSHA}, Salted SHA. Relative to RFC 2307, if the scheme is “sha”, specify that the encrypted password is the base64 encoding of the SHA-1 digest of the password (plaintext).

� ypldapd (see Chapter 1)

� nss_ldap (see http://www.padl.com)

� MigrationTools, included with ypldapd

3
3

