Document Object Model (DOM) Level 3 Content Models and Load and Save Specification

W3C

I~

DocumentObject Model (DOM) Level 3 Content Models
and Load and SaveSpecification

Version 1.0

W3C Working Draft 19 April 2001

This version:
[http://mvww.w3.0rg/TR/2001/WD-DOM-Level-3-CMLS-20010419
(PostScripfile| ,[PDFfile|,[plaintext, [ZIP file] ,|single HTML file)

Latest version:

[http://mvww.w3.org/TR/DOM-Level-3-CMLS

Previous version:

[http://mvww.w3.0org/TR/2001/WD-DOM-Level-3-CMLS-20010309

Editors:
Ben ChangQracle
Andy Heninger)BM
Joe KesselmanBM
Rezaur Rahmarnntel Corporation

[Copyright©2001jWw3d® (MIT}[I[NRIA] [Keid), All Rights Reserved. W3lEability] frademarlfdocument
uséandsoftwarelicensingrulesapply.

Abstract

This specification defines the Document Object Model Content Models and Load and Save Level 3, a
platform- and language-neutral interface that allows programs and scripts to dynamically access and
update the content, structure and style of documents. The Document Object Model Content Models and
Load and Save Level 3 builds on the Document Object Model Core Bevel

Status of this document

This section describes the status of this document at the time of its publication. Other documents may
super sede this document. The latest status of this document seriesis maintained at the W3C.

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209/
http://www.w3.org/TR/DOM-Level-3-CMLS
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010419/DOM3-CMLS.html
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010419/DOM3-CMLS.zip
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010419/DOM3-CMLS.txt
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010419/DOM3-CMLS.pdf
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010419/DOM3-CMLS.ps
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010419
http://www.w3.org/

Table of contents

This is a W3C Working Draft for review by W3C members and other interpatéids.

It is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to use W3C Working Drafts as reference material or to cite them as other than "work in
progress". This is work in progress and does not imply endorsement by, or the consensus of, either W3C
or members of the DOM workingyoup.

Comments on this document are invited and are to be sent to the public maiinvgwistom@w3.org
An archive is available fhttp://lists.w3.org/Archives/Public/www-dom/

This document has been produced as part ¢/ BE DOM Activity| The authors of this document are
the DOM WGmembers.

A list of[current W3C Recommendations and other techdicalimentsan be found at
http://lwww.w3.0rg/TR.

Table of contents

|[Expanded Table dfontentp 8
|CopyrightNoticea5
|Chapter 1: Content Models an@lidaton9
|Chapter 2: Document Object Model Load &8=d/¢ 47
[Appendix A: IDL Definitiong 13
[Appendix B: Java Languadgndind 81
[Appendix C: ECMA Script Languad&ndind 95
Referencas 109

http://www.w3.org/TR/
http://www.w3.org/DOM/Activity.html
http://lists.w3.org/Archives/Public/www-dom/

Expanded Table of Contents

Expanded Table of Contents

|[Expanded Table dEontentp

|[CopyrightNoticq .
[W3C Document Copyrlqht Notlce amntensda
[W3C Software Copyright Notice argdcensé

|Chapter 1: Content Models aN@lidation]
Il 1.1. Generaﬂ:haracterlstlds
|1.1.2. Use Cases aR&quirements
[1.2. Content Model and CM-Editirigterfacep .
[1.3. Validation and Othdnterfacep
|1.4. Document-Editinénterfacep .
[1.5. DOM Error Handleinterfacep
[1.6. Editing and Generating a Cont&fide|
[1.7. Content Model-directed Documéviainipulation
[1.8. Validating a Document Against a Contbtudel|
[1.9. Well-formednes$esting .
|[Chapter 2: Document Object Model Load eﬁu:tlda
[2.1. Load and Saveequirements .
[2.1.1. GeneraRequirements .
[2.1.2. LoadRequirements
[2.1.3. XML WriterRequirements .
[2.1.4. Other ltems Undé€onsideration
|2 2.1. Operlssuels
[2.2.2. Resolvetbsuep
2.3.Interfacep
|2 3.1. InterfacéSummart/
[2.3.2.Interfacek .

[Appendix A: IDL Definitiong
[Appendix B: Java Languad&nding
IAppendix C: ECMA Script Lanquadginding

[Referencds .

[1. Normatlvereferencels .

o v oW

© © ©

10
12
26
29
40
43
43
44
45
47
47
47
48
48
49
50
50
51
55
55
56

73
81
95
109
109
111

Expanded Table of Contents

Copyright Notice

Copyright Notice

Copyright © 2001[World Wide Web Consortium] (Massachusetts Institute ofTechnology [Institut]
[National de Recherche en Informatique et eAutomatique] [Keio University). All Rights Reserved.

This document is published under fiM8C Document Copyright Notice alhttensg[p.5] . The bindings

within this document are published under[ii@C Software Copyright Notice amdcens¢[p.6] . The

software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no longer be
'w3c.org’; in the case of the Java language binding, the package names can no longer be in the 'org.w3c’
package.

W3C Document Copyright Notice andLicense

Note: This section is a copy of the W3C Document Notice and License and could be found at
|http://www.w3.org/Consortium/Legal/copyright-documents-1999p405

Copyright © 1994-2001World Wide Web Consortium] (Massachusetts Institute ofTechnology,
[Institut National de Recherche en Informatique et erAutomatique} [Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
[SoftwareNoticg By using and/or copying this document, or the W3C document from which this

statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms andonditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following éh.L copies of the document, or portions thereof, thatusmu

1. Alink or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn't exist, a notice of the form:

"Copyright © [$date-of-documern/orld Wide WebConsortium (Massachusetts Institute jof
[Technolog)/[institut National de Recherche en Informatique eAetomatiquéKeio University).

All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)
3. If it exists, the STATUS of the W3@ocument.

When space permits, inclusion of the full text of tRBTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any poetieaf.

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/

W3C Software Copyright Notice and License

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented ifGbpyrightFAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS 1S," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHERRIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTBHEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyridhlders.

W3C Software Copyright Notice andLicense

Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
[http:/iwvww.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2001World Wide Web Consortium] (Massachusetts Institute ofTechnology
[Institut National de Recherche en Informatique et erAutomatique} [Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terneemditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-softwar§Vorld Wide WebConsortiunh (Massachusetts Institute Jof
[Technologl/[institut National de Recherche en Informatique eAetomatiquéKeio University).

All Rights Reserved. http://www.w3.org/Consortium/Legal/."

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

W3C Software Copyright Notice and License

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We
recommend you provide URIs to the location from which the coderiged.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHERRIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyhghtters.

W3C Software Copyright Notice and License

1. Content Models and Validation

1. Content Models andValidation

Editors
Ben Chang, Oracle
Joe Kesselman, IBM
Rezaur Rahman, Int€lorporation

1.1.Overview

This chapter describes the optional DOM Lev€@ddtent Moddl (CM) feature. This module provides a
representation for XML content models, e.g., DTDs and XML Schemas, together with operations on the
content models, and how such information within the content models could be applied to XML documents
used in both the document-editing and CM-editing worlds. It also provides additional tests for
well-formedness of XML documents, including Namespace well-formedness. A DOM application can use
thehasFeat ur e method otheDOM npl enent at i on interface to determine whether a given DOM
supports these capabilities or not. One feature string for the CM-editing interfaces listed in this section is
"CM-EDIT" and another feature string for document-editing interfacé&SN&DOC".

This chapter interacts strongly with thead and Save chapter, which is also under development in DOM

Level 3. Not only will that code serialize/deserialize content models, but it may also wind up defining its
well-formedness and validity checks in terms of what is defined in this chapter. In addition, the CM and
Load/Save functional areas will share a common error-reporting mechanism allowing user-registered error
callbacks. Note that this may not imply that the parser actually calls the DOM’s validation code -- it may

be able to achieve better performance via its own -- but the appearance to the user should probably be "as
if* the DOM has been asked to validate the document, and parsers should probably be able to validate
newly loaded documents in terms of a previously loaded [ZDM

Finally, this chapter will have separate sections to address the needs of the document-editing and
CM-editing worlds, along with a section that details overlapping areas such as validation. In this manner,
the document-editing world’s focuses on editing aspects and usage of information in the CM are made
distinct from the CM-editing world’s focuses on defining and manipulating the information @Mhe

1.1.1.General Characteristics

In the October 9, 1997 DOM requirements document, the following appeared: "There will be a way to
determine the presence of a DTD. There will be a way to add, remove, and change declarations in the
underlying DTD (if available). There will be a way to test conformance of all or part of the given
document against a DTD (if available)." In later discussions, the following was added, "There will be a
way to query element/attribute (and maybe other) declarations in the underlying DTD (if available),"
supplementing the primitive support for these in Lével

That work was deferred past Level 2, in the hope that XML Schemas would be addressed as well. It is
anticipated that lowest common denominator general APIs generated in this chapter can support both
DTDs and XML Schemas, and other XML content models downoie.

1.1.2. Use Cases and Requirements

The kinds of information that a Content Model must make available are mostly self-evident from the
definitions of Infoset, DTDs, and XML Schemas. Note that some kinds of information on which the DOM
already relies, e.g., default values for attributes, will finally be given a visible representation here,
however.

1.1.2.Use Cases an®equirements

The content model referenced in these use cases/requirements is an abstraction and does not refer solely to
DTDs or XML Schemas.

For the CM-editing and document-editing worlds, the following use cases and requirements are common
to both and could be labeled as the "Validation and Other Common Functioseditygn:

UseCases:

1. CUL. Associating a content model (external and/or internal) with a document, or changing the current
association.

2. CU2. Using the same external content model with several documents, without having td.reload
Requirements:

CRL1. Validate against the content model.

CR2. Retrieve information from content model.

CR3. Load an existing content model, perhaps independently from a document.
CRA4. Being able to determine if a document has a content model associated with it.
CR5. Associate a CM with a document and make it the aCtive

aprwbd e

Specific to the CM-editing world, the following are use cases and requirements and could be labeled as
the "CM-editing"section:

UseCases:

1. CMUL. Clone/map all or parts of an existing content model to a new or existing content model.

2. CMU2. Save a content model in a separate file. For example, if a DTD can be broken up into

reusable pieces, which are then brought in via entity references, these can then be saved in a separate

file. Note that the external subset of a DTD, which includes both an internal and external subset, is a

special case of dividing a content model into entities.

CMU3. Modify an existing content model.

CMUA4. Create a new content model.

5. CMUS. Partial content model checking. For example, the document need only be validated against a
selected portion of the contembdel.

kW

Requirements:

1. CMRL1. View and modify all parts of the content model.
2. CMR2. Validate the content model itself.
3. CMRS3. Serialize the content model.

10

4.
5.
6.

1.1.2. Use Cases and Requirements

CMR4. Clone all or parts of an existing content model.
CMRS5. Create a new content model object.
CMR6. Validate portions of the XML document against the contertel.

Specific to the document-editing world, the following are use cases and requirements and could be labeled
as the "Document-editingection:

UseCases:

1.

2.

DU1. For editing documents with an associated content model, provide the guidance necessary so
that valid documents can be modified and remain valid.

DU2. For editing documents with an associated content model, provide the guidance necessary to
transform an invalid document into a vatide.

Requirements:

1.

2.

B

DR1. Be able to determine if the document is well-formed, and if not, be given enough guidance to
locate the error.

DR2. Be able to determine if the document is namespace well-formed, and if not, be given enough
guidance to locate the error.

DR3. Be able to determine if the document is valid with respect to its associated content model, and
if not, give enough guidance to locate the error.

DR4. Be able to determine if specific modifications to a document would make it become invalid.
DR5. Retrieve information from all content models. One example might be getting a list of all the
defined element names for document edipagposes.

Generalssues:

1.

I11. Some concerns exist regarding whether a single abstract Content Model structure can successfully
represent both namespace-unaware, e.g., DTD, and namespace-aware, e.g., XML Schema, models of
document’s content. For example, when you ask what elements can be inserted in a specific place,
the former will report the element@ane, e.g.f oo: bar, whereas the latter will report its

namespace and local name, €@+t p: / / my. nanespace} bar . We have added the

i sNanespaceAwar e attribute to the generic CM object to help applications determine which of

these fields are important, but we are still analyzing this challenge.

12. An XML document may be associated with multiple CMs. We have decided that only one of

these is "active" (for validation and guidance) at a time. DOM applications may switch which CM is
active, remove CMs that are no longer relevant, or add CMs to the list. If it becomes necessary to
simultaneously consult more than one CM, it should be possible to write a "union" CM which

provides that capability within this framework.

I3. Content model being able to handle more datatypes than strings. Currently, this functionality is

not available and should be dealt with in the future.

14. Round-trippability for include/ignore statements and other constructs such as parameter entities,
e.g., "'macro-like" constructs, will not be supported since no data representation exists to support
these constructs without having to re-parse them.

. 15. Basic interface for a common error handler for both CM and Load/Save. Agreement has been to

utilize user-registered callbacks but other details to be warked

11

1.2. Content Model and CM-Editing Interfaces

1.2.Content Model and CM-Editing Interfaces

A list of the proposed Content Model data structures and functions follow, starting off with the data
structures and "CM-editinghethods.

Interface CMMode

CWMVvbdel is an abstract object that could map to a DTD, an XML Schema, a database schema, etc.
It's a generalized content model object, that has both an internal and external subset. The internal
subset would always exist, even if empty, with the external subset (if present) being represented as by

an "active'|CVExt er nal Mbdel |[p.16] . Many|CVEXt er nal Model s could exist, but only one

can be specified as "active"; it is also possible that none are "active". The issue of multiple content
models is misleading since in this architecture, only@waébdel exists, with an internal subset that

references the external subset. If the external subset changes to another "acitve"

[CVEXxt er nal Model | the internal subset is "fixed up." The CMModel also contains the factory

methods needed to create a various types of CMNoddSMEeenent Decl ar at i on|[p.20] ,

[CMAt t ri but eDecl ar ati on|[p.23], etc.

IDL Definition

interface CMvbdel : CWNode {
readonly attribute bool ean i sNamespaceAwar e;
attribute CMEl ement Decl aration root El enent Decl ;
DOVSBt ri ng get Location();
nsEl enent get CMNanespace() ;
CWMNanedNodeMap get CMNodes() ;
bool ean renoveNode(i n CMNode node);
bool ean i nsertBefore(in CVNode newNode,

b

in CVMNode ref Node) ;
bool ean val i date();
CMEl enent Decl arati on creat eCVEl enent Decl arati on(i nout DOVString nanespaceURl,
in DOVBtring qualifiedEl enent Nane,
in int content Spec)
rai ses(DOVExcepti on);
CMAt tri buteDecl aration createCVAttri buteDecl arati on(i nout DOMString nanmespaceURl,
in DOVBtring qualifiedNane)
rai ses(DOVException);
CMNot at i onDecl ar ati on creat eCWVNot ati onDecl arati on(in DOVBtring nane,
in DOVBtring system dentifier,
inout DOMVBtring publicldentifier)
rai ses(DOVException);
CMEntityDecl aration createCMVEntityDeclaration(in DOMString nane)
rai ses(DOVExcepti on);
CMChi | dren creat eCMChi I dren(in unsigned | ong m nQccurs,
in unsigned | ong maxQcceurs,
i nout unsigned short operator)
rai ses(DOVExcepti on);

Attributes
i sNanespaceAwar e of typebool ean, readonly

True if this content model defines the document structure in terms of namespaces and local

names; false if the document structure is defined only in teri@slarfes.

12

1.2. Content Model and CM-Editing Interfaces

r oot El enent Decl of typglCMVEl enent Decl ar at i on|[p.20]
The root element declaration for the content model. Although a root element is specified in
the document instance, when a content model is generated, a user should be able to chose
the root element for editing purpose. This is just a placeholder for that element. It could
also be null. For validating an XML document, root element must be defined in its active
content model. CMModel.rootElementDecl provides access to that root element
declaration. This recommendation does not say how to fill in the rootElementdecl. It could
be manually done by the user before validating a document, in some cases where possible,
the CMModle loader may be able to fill it @tc.

Methods

createCMVAt tri but eDecl arati on
Creates an attribute declaration. The returned object implements CMAttributeDeclaration
interface.
Parameters
nanmespaceURl of typeDOVSt ri ng
gual i fi edNare of typeDOVSt ri ng

The name of the attribute beidgclared.

Return Value

[CVAE t ri but eDecl ar ati on| A new CMAttributeDeclaration object with
[p.23] at tri but eNane attribute set to input
qualifiednameparameter.

Exceptions

DOMVException INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegatharacter.

creat eCMChi | dren
Creates a new CMChildren object. The subModels of the CMChildren is build using
CMChildren interface methods.
Parameters
nm nCccur s of typeunsi gned | ong
The minimum occurance for the subModels of idChildren.
maxCccur s of typeunsi gned | ong
The maximum occurance for the subModels of @i4Children.
oper at or of typeunsi gned short
operator of type CHOICE, SEQ NONE
Return Value

[p22] A new CMChildrerobject.

Exceptions

13

1.2. Content Model and CM-Editing Interfaces

DOVExcepti on INVALID CHARACTER_ERR: Raised if the specified name
contains an illegatharacter.

creat eCMVEl enent Decl arati on
Creates an element declaration for the element type specified. The returned object
implements CMElementDeclaration interface.
Parameters
nanespaceURIl of typeDOMSt ri ng
qgual i fi edEl enent Nane of typeDOMSt ri ng
The qualified name of the element type badeglared.
cont ent Spec of typei nt
Constant for MIXED, EMPTY, ANY an€HILDREN.
Return Value

[CVEl enent Decl aration|] A new CMElementDeclaration object wittane

[p.20] attribute set to qualifiedElementName and the
cont ent Type set to contentSpec. Other attributes
of the element declaration are set through
CMElementDeclaration interfageethods.

Exceptions

DOVExcepti on INVALID CHARACTER_ERR: Raised if the specified name
contains an illegatharacter.

DUPLICATE_NAME_ERR:Raised if an element declaration
already exists with the same name for a gi@&fModel.

createCMVENntityDecl arati on
Creates a new entity declaration. The returned object implements CMEntityDeclaration
interface.
Parameters
nane of typeDOVBt ri ng
The name of the entity beimgclared.
Return Value

[CVENnt 1t yDecl ar ati on| A new CMNotationDeclaration object with
[p.24] ent i t yNanme attribute set tmame.
Exceptions

DOVExcepti on INVALID CHARACTER_ERR: Raised if the specified name
contains an illegatharacter.

14

1.2. Content Model and CM-Editing Interfaces

creat eCMNot ati onDecl arati on

Creates a new notation declaration. The returned object implements
CMNotationDeclaration interface.
Parameters
nane of typeDOVBt ri ng

The name of the notation beidgclared.
system denti fi er of typeDOVSt ri ng

The system identifier for the notatideclaration.
publicldentifier oftypeDOVStri ng

The public identifier for the notatiateclaraiton.
Return Value

[C\VNot at i onDecl ar ati on| A new CMNotationDeclaration object with
[p.25] not at i onNamne attribute set tmame.
Exceptions

DOMVException INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegatharacter.

DUPLICATE_NAME_ERR:Raised if a notation declaration
already exists with the same name for a gi@dtModel.

get CMNanespace
Determines namespace@\odel .
Return Value

nsEl emrent Namespace dEvvbdel .

No Parameters
No Exceptions
get CMNodes
ReturngCMNode] [p.17] list of all the constituent nodes in the content model.
Return Value

[CvWNanmedNodeMap][p.18] List of all[CMNodes][p.17] of the contenmodel.

No Parameters
No Exceptions
get Locati on
Location of the document describing the content model defined in this CMModel.
Return Value

15

1.2. Content Model and CM-Editing Interfaces

DOVBt ring This method returns a DOMString defining the absolute location from
which this document is retrieved including the docunmamte.

No Parameters
No Exceptions
i nsertBefore

Inser{CMNode|[p.17] .

Parameters

newNode of typelCVNode][p.17]
[CVNode|to beinserted.

r ef Node of type]lCMNode]
[CVNode]to be insertethefore.

Return Value

bool ean Success or failure..

No Exceptions
r enoveNode
Removes thepecifieCVNode] [p.17] .
Parameters
node of typelCVNode] [p.17]
[CVNode|to beremoved.

Return Value

bool ean Success or failure..

No Exceptions

val i dat e
Determines if a CMModel and CMExternalModel itself is valid, i.e., confirming that it's
well-formed and valid per its own formal grammar. Note that within a CMModel, a pointer
to a CMExternalModel can exist.
Return Value

bool ean Is the CMvalid?

No Parameters
No Exceptions
Interface CMExternalM odel

CMVEXt er nal Model is an abstract object that could map to a DTD, an XML Schema, a database
schema, etc. It's a generalized content model object that is not bound to a particuldoivhent.

IDL Definition

16

1.2. Content Model and CM-Editing Interfaces

i nterface CMExternal Model : CwWWobdel ({
3

Interface CMNode

CMNodeis analogous to Bode in the Core DOM, e.g., an element declaration. This can exist for
both[CVEXt er nal Mbdel [[p.16] andCWvMbdel [[p.12] . It should be able to handle constructs such
as comments and processingtructions.

Opaque.
IDL Definition
i nterface CMNode ({
const unsigned short CM_ELEMENT_DECLARATI ON = 1,
const unsigned short CM_ATTRI BUTE_DECLARATI ON = 2,
const unsigned short CM_NOTATI ON_DECLARATI ON = 3;
const unsigned short CM_ENTI TY_DECLARATI ON = 4
const unsigned short CM_CHI LDREN = b;
const unsigned short CM_MODEL = 6;
const unsigned short CM_EXTERNAL MODEL = 7;
readonly attribute unsigned short cmNodeType;
attribute CMvbdel owner CWWobdel ;
attribute DOVBtring nodeNane;
attribute DOVBtring prefix;
attribute DOVBtring | ocal Nane;
attribute DOVBtring namespaceUR! ;
CWNode cl one();

b

ConstantCM_ELEMENT_DECLARATION
The node is a@MElI enent Decl ar at i on|[p.20] .
ConstantCM_ATTRIBUTE_DECLARATION
The node is a@VAL t r i but eDecl ar at i on|[p.23] .
ConstantCM_NOTATION_DECLARATION
The node is EMNot at i onDecl ar at i on|[p.25] .
ConstantCM_ENTITY_DECLARATION
The node is a@MENt i t yDecl ar ati on|[p.24] .
ConstantCM_CHILDREN
The node is €MChi T dr en|[p.22] .
ConstantCM_MODEL
The node is ©MVbdel |[p.12] .
ConstantCM_EXTERNALMODEL
The node is EVEXt er nal Model |[p.16] .
Attributes
cmNodeType of typeunsi gned short, readonly
A code representing the underlying object as defaimle.
| ocal Nane of typeDOVSt ri ng
Returns the local part of tligual i fi ed nane of thisCMNode.

17

1.2. Content Model and CM-Editing Interfaces

nanespaceURl of typeDOVSt ri ng
The namespace URI of this node, or null if iurspecified.
nodeNane of typeDOVSt r i ng
Thequal i fi ed nanme of this CMNode depending on the CMNagee.
owner CMMbdel of typelCMvbdel][p.12]
The[CWWbdel][p.12] object associated with this CMNode. For a node of GeMODEL,
thisisnul I .
prefi x of typeDOVSt ri ng
The namespace prefix of this node, or null if inmspecified.
Methods
cl one
Creates a copy @@WVNode.
Return Value

[p.17] ClonedCMNode.

No Parameters
No Exceptions
Interface CMNodeList

CMNodelLi st is the CM analogue thodelLi st ; the document order is meaningful, as opposed to
[CVNanedNodeNap] [p.19] .

IDL Definition

interface CMNodeLi st {
b

Interface CMNamedNodeMap

CWNanmedNodeMap is the CM analogue tdamedNodeMap. The order is natheaningful.

IDL Definition

i nterface CMNanedNodeMap {
b

Interface CMDataType

The primitive datatypes supported by base DOM CM implementatisi is: ng typeonly.

IDL Definition

interface CMDataType {
const short STRI NG_DATATYPE = 1;
short getCWPrimtiveType();

}s

18

1.2. Content Model and CM-Editing Interfaces

ConstantSTRING_DATATYPE
code representing thet r i ng data type as defined[KML SchemaDatatypes
Methods
getCMPrinmitiveType
Returns one of the enumerated code representing the primitive data type.
Return Value

short code representing the primitive type of the attachedittata

No Parameters
No Exceptions
Interface CMPrimitiveType

The primitive types supported by optional DOM CM implelementations. A DOM application can use
the hasFeature method of the DOMImplementation interface to determine whether this interface is
supported or not. The feature string for all the interfaces listed in this section is "CMPTYPES" and
the version i$3.0".

IDL Definition
interface CMPrim tiveType : CMDataType {
const short BOOLEAN_DATATYPE = 2;
const short FLOAT_DATATYPE = 3;
const short DOUBLE_DATATYPE = 4;
const short DECI MAL_DATATYPE = b5;
const short HEXBI NARY_DATATYPE = 6;
const short BASE64BI NARY DATATYPE =7;
const short ANYURI _DATATYPE = 8;
const short QNAMVE_DATATYPE = 9;
const short DURATI ON_DATATYPE = 10;
const short DATETI ME_DATATYPE = 11;
const short DATE_DATATYPE = 12;
const short TI ME_DATATYPE = 13;
const short YEARMONTH_DATATYPE = 14;
const short YEAR_DATATYPE = 15;
const short MONTHDAY_DATATYPE = 16;
const short DAY_DATATYPE = 17;
const short MONTH_DATATYPE = 18;
const short NOTATI ON_DATATYPE = 19;
attribute deci mal | owval ue;
attribute deci nmal hi ghVal ue;

}s

ConstantBOOLEAN DATATYPE

code representing thmol ean data type as defined XML SchemaDatatypeps
ConstantFLOAT _DATATYPE

code representing thid oat data type as defined[KML SchemaDatatypeps
Constant DOUBLE_DATATYPE

code representing tloubl e data type as defined[XKML SchemaDatatypes

19

http://www.w3.org/TR/2001/PR-xmlschema-2-20010330/#double
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330/#float
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330/#boolean
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330/#string

1.2. Content Model and CM-Editing Interfaces

ConstantDECIMAL_DATATYPE

code representingageci mal data type as defined XML SchemaDatatypes
ConstantHEXBINARY_DATATYPE

code representingleexbi nar y data type as defined[KML SchemaDatatypes
ConstantBASE64BINARY_DATATYPE

code representinglzase64bi nar y data type as defined[KML SchemaDatatypels
ConstantANYURI_DATATYPE

code representing air i r ef er ence data type as defined in XML Schema Datatypes.

Note: @ @uriReference is no longer part of the XML SchemalfRR.

Constant QNAME_DATATYPE

code representing M. qual i fi ed name data type as defined ML Schemd

Datatypeps
Constant DURATION_DATATYPE

code representingdur at i on data type as defined XML SchemaDatatypefs
ConstantDATETIME_DATATYPE

code representingdat et i me data type as defined XML SchemaDatatypef
ConstantDATE_DATATYPE

code representingdat e data type as defined XML SchemaDatatypeps
Constant TIME_DATATYPE

code representingtd ne data type as defined XML SchemaDatatypefs
Constant YEARMONTH_DATATYPE

code representingyear nont h data type as defined|XIML SchemaDatatypef
Constant YEAR_DATATYPE

code representingyear data type as defined XML SchemaDatatypefs
Constant MONTHDAY_DATATYPE

code representingreont hday data type as defined XML SchemaDatatypefs
ConstantDAY_DATATYPE

code representingday data type as defined[KML SchemaDatatypels
Constant MONTH_DATATYPE

code representingreont h data type as defined XML SchemaDatatypef
ConstantNOTATION_DATATYPE

code representingNOTATI ONdata type as defined (ML SchemaDatatypels
Attributes

hi ghVal ue of typedeci nal

The high value for a primitive DECIMAL_DATATYPE in the valuange.
| owval ue of typedeci mal
The low value for a primitive DECIMAL_DATATYPE in the valuange.
Interface CMElementDeclaration

The element name along with the content specification in the contejdMMade][p.17] .

IDL Definition

20

http://www.w3.org/TR/2001/PR-xmlschema-2-20010330
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330/#QName
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330/#QName
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330
http://www.w3.org/TR/2001/PR-xmlschema-2-20010330/#decimal

1.2. Content Model and CM-Editing Interfaces

i nterface CMEl enent Decl aration : CWNode {

attri bute CMDat aType el ement Type;
readonly attribute bool ean i sSPCDat aOnl y;
attribute DOVBtring t agNane;
i nt get Cont ent Type() ;
CMChi | dr en get CMchi | dren() ;
CWMNanedNodeMap get CMALtri but es();
CWNanedNodeMap get CM& andChi | dren();

}s

Attributes
el ement Type of typelCVDat aType][p.18]
Datatype of thelement.
i sPCDat aOnl y of typebool ean, readonly
Boolean defining whether the element type contains child elements and PCDATA or
PCDATA only for mixed element types. True if the element is of type PCDATA only.
Relevant only for mixed content typéements.
t agNanme of typeDOVBSt ri ng
tagName of the element beidgclared.
Methods
get CMAt tri but es
Returns §CVNanedNodeMap|[p.18] containindCMAL t r i but eDecl ar at i ons|[p.23]
for all the attributes that can appear on this type of element.
Return Value

[CWanedNodeMap|[p.18] Attributes list for thigCVNode][p.17] .

No Parameters
No Exceptions
get CMChi | dren
Gets content model of element.
Return Value

[p.22] Content model oélement.

No Parameters
No Exceptions
get CMa andChi | dren
Returns {CVNanedNodeMap|[p.18] containingCMVElI enent Decl ar at i ons for all the
El enent s that can appear as children of this type of element. Note that which ones can

actually appear, and in what order, is defined bja¥ehi T dr en][p.22] .

Return Value

[CWNanedNodeMap|[p.18] Children list for thigCMNode][p.17] .

21

1.2. Content Model and CM-Editing Interfaces

No Parameters
No Exceptions
get Cont ent Type
Gets content type, e.g., empty, any, mixed, elements, PCDATA, of an element.
Return Value

int Content typeonstant.

No Parameters
No Exceptions
Interface CMChildren

The content model of a declarelgment.

IDL Definition

interface CMChildren : CWNode {

const unsigned | ong UNBOUNDED

const unsigned short NONE

const unsigned short SEQUENCE

const unsigned short CHO CE
attribute unsigned short |'i st Operator;
attribute unsigned | ong m nCccurs;
attribute unsigned | ong maxQccurs;
attri bute CMNodelLi st subMbdel s;

CMNode renoveCMNode(i n unsi gned | ong nodel ndex) ;

i nt i nsert CWNode(i n unsi gned | ong nodel ndex,

i n CWNode newNode);
i nt appendCWNode(i n CMNode newNode) ;

}s

Constant UNBOUNDED
Signifies unbounded upper limit. The MAX_LONG value is the maximum value of an unsigned
long integer for a given language binding.
ConstantNONE
No operators defined on teeibMbdel s. This is usually the case where the subModels contain
a single element declaration.
Constant SEQUENCE
This constant value signifies a sequence operator ",".
Constant CHOI CE
This constant value signifies a choice operator "|".
Attributes
i st OQperator of typeunsi gned short
One of CHOICE or SEQUENCE. The operator is applied to all the components(CMNodes)
in the thesubMbdel s. For example, if the list operator is CHOICE and the components in
subModels are a, b and c then the content model for the element being de¢kdt®d)is
maxQccur s of typeunsi gned | ong
maximum occurrence for this content particle. Valid values are frontdBIBEOUNDED.

MAX_LONG,

22

1.2. Content Model and CM-Editing Interfaces

m nCccur s of typeunsi gned | ong

min occurrence for this content particle. Valid values are fromUNBOUNDED.
subModel s of typelCVNodeLi st][p.18]

Additional[CMNode][p.17] s in which the element can Hefined.

Methods

appendCWvNode

Appends a new node to the end of the list represetitasgibModel s.

Parameters

newNode of typelCMNode][p.17]

The new node to bappended.
Return Value

i nt the length of theubModel s.

No Exceptions
i nsert CMNode
Inserts a new node at a position in the submodel referred to by the nodelndex. Node
already exisiting in the list is moved as needed.
Parameters
nodel ndex of typeunsi gned | ong
The position of where the newNodernserted.
newNode of typelCMNode][p.17]
The new node to heserted.
Return Value

i nt The index value at which it is inserted. If the nodelndex is outside the bound of
thesubMbdel s list, the item is inserted at the back of lisé

No Exceptions
r emoveCMNode
Removes the CMNode at the indicated index position in the submodel.
Parameters
nodel ndex of typeunsi gned | ong
Index of the node beingmoved.
Return Value

CVNode The node removed is returned as a result of this method call. The
[p.17] method returnsul | if the index is outside the bounds of the
subMbdel s list.

No Exceptions
Interface CMAttributeDeclaration

23

1.2. Content Model and CM-Editing Interfaces

An attribute declaration in the context €&Node|[p.17] .

IDL Definition
interface CMAttri buteDecl aration : CwvNode {

const short NO_VALUE_CONSTRAI NT = 0;

const short DEFAULT_VALUE_CONSTRAI NT = 1;

const short FI XED_VALUE_CONSTRAI NT = 2;
attribute DOVSBtring attr Nane;
attri bute CMDat aType attrType;
attribute DOVSBtring attri but eVal ue;
attribute DOVSBtring enumAttr;
attri bute CMNodeli st owner El enent ;
attribute short constrai nt Type;

}s

ConstantNO_VALUE_CONSTRAINT
Describes that the attribute does not have any value constraint.
ConstantDEFAULT_VALUE_CONSTRAINT
Indicates that the there is a default value constraint.
ConstantFIXED_VALUE_CONSTRAINT
Indicates that there is a fixed value constraint for this attribute.
Attributes
at t r Name of typeDOMSt r i ng
Name of theaattribute.
at t r Type of typefCVDat aType][p.18]
Datatype of thattribute.
attri but eVal ue of typeDOVSt ri ng
Defaultvalue.
constrai nt Type of typeshort
Constraint type if any for thiattribute.
enumAt t r of typeDOMSt ri ng
Enumeration ofttribute.
owner El ement of typelCMNodeLi st][p.18]
Owner element CMNode atttribute.
Interface CMEntityDeclaration

Models a general entity declaration in a conteatlel.

(ED: The content model does not handle any parameter entity. It is assumed that the parameter
entiites are expanded by the implementation as the content mbdét.j)s
IDL Definition

24

1.2. Content Model and CM-Editing Interfaces

interface CMEntityDeclaration : CMNode {

const short | NTERNAL_ENTI TY = 1;
const short EXTERNAL_ENTI TY = 2;

attribute short entityType;

attribute DOVBtring entityNane;

attribute DOVBtring entityVal ue;

attribute DOVBtring system d;

attribute DOVBtring publi cl d;

attribute DOVBtring not at i onNane;

}s

ConstantINTERNAL_ENTITY
constant defining an internal entity.
ConstantEXTERNAL_ENTITY
constant defining an external entity.
Attributes
ent i t yName of typeDOVSt ri ng
The name of the declared generatity.
entityType of typeshort
One of the INTERNAL_ENTITY oEXTERNAL_ENTITY.
ent i tyVal ue of typeDOVSt ri ng
The replacement text for the internal entity. The entity references within the replacement
text is kept intact. For entity of type EXTERNAL_ENTITY thisnal | .
not at i onName of typeDOVSt r i ng
For unparsed entities, the name of the notation declaration for the entity. For parsed
entities, this iswul | .
publ i cl d of typeDOVSt ri ng
The public identifier associated with the entity, if specified. If the public identifier was not
specified, this iswul | .
syst em d of typeDOVSt ri ng
The system identifier associated with the entity, if specified. If the system identifier was
not specified, this iaul | .
Interface CMNotationDeclaration

This interface represents a notataetlaration.

IDL Definition
interface CMNot ati onDecl aration : CWNode {
attribute DOVBtring not at i onNane;
attribute DOVBtring system d;
attribute DOVBtring publi cl d;
3
Attributes

not at i onName of typeDOVSt r i ng
The name of this notatiateclaration.
publ i cl d of typeDOVSt ri ng
The string representing the public identifier for this notatiealaration.

25

1.3. Validation and Other Interfaces

syst em d of typeDOVSt r i ng
the URI representing the system identifier for the notation declaration, if present, null
otherwise.

1.3.Validation and Other Interfaces

This section contains "Validation and Other" methods common to both the document-editing and
CM-editing worlds (includeBocunent][p.26] , DOM npl enent at i on, andDOVET r or Handl er]
[p.40] methods).

Interface Document
Theset Er r or Handl er method is off of th&ocunent interface.

IDL Definition

i nterface Docunent {
voi d set Error Handl er (i n DOVError Handl er handl er);

b

Methods
set Error Handl er
Allow an application to register an error event handler.
Parameters
handl er of typgDOVEr r or Handl er |[p.40]
The errothandler
No Return Value
No Exceptions
Interface DocumentCM

This interface extends tfi@cument][p.26] interface with additional methods for both document
and CMediting.
IDL Definition
i nterface Docunent CM : Docurent {
const short WF_CHECK = 1;
const short NS_WF_CHECK = 2;
const short PARTI AL_VALI DI TY_CHECK = 3
const short STRI CT_VALI DI TY_CHECK = 4;
attribute bool ean cont i nuousVal i di t yChecki ng;
attribute short wf Val i di t yCheckLevel ;
i nt nunmCMs () ;
CWodel getlnternal CM);
CMNodeli st get CMs() ;
CW\vbdel get ActiveCM);
voi d addCM i n CMvbdel cm;
voi d renoveCM i n CM\vbdel cm);
bool ean activateCMin CWbdel cm;

26

1.3. Validation and Other Interfaces

ConstantWF_CHECK
Check for well-formedness of the document.

ConstantNS WF_CHECK
Check for namespace well-formedness includes WF_CHECK.

Constant PARTIAL_VALIDITY_CHECK
Checks for whether the document is partially valid. It inclid8sWF_CHECK.
A document is said to hmartially valid if it contains elments/attributes for which an
element/attribute declaration has not been made in the active content model. However, if the
element or the attribute has a declaration in the content model, it must be valid with respect to
those declarations.

ConstantSTRICT_VALIDITY_CHECK
Checks for strict validity of the document with respect to active CM which by defiition includes
NS_WF_CHECK.

Attributes
conti nuousVal i di t yChecki ng of typebool ean

An attribute specifying whether continuous checking for the validity of the document is
enforced or not. When set to true the implementation is free to raise the
VALIDATION_ERR exception on DOM operations that would make the document invalid
with respect to "partial validity". This attribute is false by default.

(ED: Add VALIDATION_ERR code to the list of constantsD©MException.)

wf Val i di t yCheckLevel of typeshort

Methods

This attribute defines the level at which the validity and welformedness testing is done by
thei sVal i d method.

acti vat eCM

add

Make the givefcMVbdel|[p.12] active. Note that if a user wants to activate one CM to get
default attribute values and then activate another to do validation, a user can do that;
however, only one CM is active at a time. In case where an attribute is declared in an
internal subset and correspondmgner El enent points to
[CVEl enrent Decl ar at 1 on|[p.20] defined in an external subset, changing active CM
will cause theowner El errent to be re-computed. If the owner element is not defined in
the newly active CM, thewner El enent will be an empty node list.
Parameters
cmof typelCMvbdeT][p.12]

CM to be active for the document. points to a list of

[CVEXt er nal Model |[p.16] s; with this call, only the specified CM will zetive.

Return Value

bool ean True if thgCMVbdel |has already been associated with the document
usingaddCM) ; false ifnot.

No Exceptions

CcM

Associate {CMVbdel |[p.12] with a document. Can be invoked multiple times to result in a
list of[QVExt er nal Model |[p.16] s. Note that only one sole interf{@Wbdel |is

associated with the document, however, and that only one of the possible list of

27

1.3. Validation and Other Interfaces

[CVEXt er nal Model ks is active at any one time.
Parameters
cmof typelCMvbdeT][p.12]
CM to be associated with tlil®cument.
No Return Value
No Exceptions
get Acti veCM
Find the activgCVEXt er nal Mbdel |[p.16] for a document.
Return Value

with a pointer to the actif@VExt er nal Model|[p.16]
[p.12] of document.

No Parameters
No Exceptions
get CMvs
Obtains list ofCVNodes][p.17] of typeCM_EXTERNALMODEL s associated with the
document.This list arises whaddCM) is invoked.
Return Value

A list of[CMEXt er nal Model |[p.16] s associated with a
[p.18] document.

No Parameters
No Exceptions
getInternal CM
Find the sol{gCMvbdel][p.12] of a document. Only off@vvbdel | may be associated with
the document.
Return Value

[p.12] [CVVbdel

No Parameters
No Exceptions

nunChVs
Determines number VExt er nal Model |[p.16] s associated with the document. Only
oneglCMVbdel] [p.12] can be associated with the document, but it may point to a list of
[CVExt er nal Model k.

Return Value

i nt Non-negative number of external Ghjects.

No Parameters
No Exceptions

28

1.4. Document-Editing Interfaces

renoveCM

Removes a CM associated with a document; actually rem{®eBé er nal Model |

[p.16] . Can be invoked multiple times to remove a number of these in the list of
[CVEXt er nal Model k.

Parameters
cmof typelCMvbdeT][p.12]
CM to beremoved.
No Return Value
No Exceptions
Interface DOMI mplementationCM

This interface extends tH¥M npl enent at i on interface with additionahethods.

IDL Definition
i nterface DOM npl enentati onCM : DOM npl ement ati on {
CM\vbdel createCM);
CMEXt er nal Model createExternal CM);
b
Methods
creat eCM

Creates a CMModel.
Return Value

[p.12] A NULL return indicatedailure.

No Parameters
No Exceptions
cr eat eExt er nal CM
Creates a CMExternalModel.
Return Value

[CMEXt er nal Model [[p.16] A NULL return indicatedailure.

No Parameters
No Exceptions

1.4.Document-Editing Interfaces

This section contains "Document-editing” methods (inclidege, El ement , Text andDocunent]
[p.26] methods).

Interface NodeCM

29

1.4. Document-Editing Interfaces

This interface extends tiNode interface with additional methods for guided docunsetiting.

IDL Definition

interface NodeCM : Node {
bool ean canl nsertBefore(i n Node newChild,
in Node refChild)
rai ses(DOVExcepti on);

bool ean canRenoveChi | d(i n Node ol dChi | d)
rai ses(DOVExcepti on);
bool ean canRepl aceChil d(i n Node newChild,

i n Node ol dChi | d)
rai ses(DOVExcepti on);
bool ean canAppendChi | d(i n Node newChi | d)
rai ses(DOVExcepti on);
bool ean i sValid()
rai ses(DOVExcepti on);
b

Methods
canAppendChi |l d
Has the same args AppendChi | d.
Parameters
newChi | d of typeNode
Node to beappended.
Return Value

bool ean Success ofailure.

Exceptions

DOVExcepti on DOMException.

canl nsert Before
Determines whether thdode: : | nser t Bef or e operation would make this document
invalid with respect to the currently active CM. ISSUE: Describe "valid" when referring to
partially completed documents.
Parameters
newChi | d of typeNode
Node to beinserted.
r ef Chi | d of typeNode
ReferencéNode.
Return Value

bool ean A boolean that is true if thidode: : | nser t Bef or e operation is
allowed.

30

1.4. Document-Editing Interfaces

Exceptions

DOVExcepti on DOMException.

canRenoveChi | d
Has the same args BsnoveChi | d.
Parameters
ol dChi | d of typeNode
Node to beremoved.
Return Value

bool ean Success ofailure.

Exceptions

DOVExcepti on DOMException.

canRepl aceChi l d
Has the same args Bepl aceChi | d.
Parameters
newChi | d of typeNode
New Node.
ol dChi | d of typeNode
Node to bereplaced.
Return Value

bool ean Success odfailure.

Exceptions

DOVExcepti on DOMException.

isvalid
Determines if the Node is valid relative to currently active CM.
Return Value

bool ean True if the node is valid/well-formed in the current context and check
level defined by wfValidityCheckLevel, falsenbt.

Exceptions

31

1.4. Document-Editing Interfaces

DOVExcepti on NO_CM_AVAILABLE: Exception is raised if the DocumentCM
related to this node does not have any activeCM and
wfValidityCheckLevel is set t& TRICT_VALIDITY_CHECK.

No Parameters
Interface ElementCM

This interface extends ti# enent interface with additional methods for guided docunasfiting.
IDL Definition

interface El enentCM : El ement, NodeCM {
i nt cont ent Type();
CMEl enent Decl ar ati on get El enent Decl arati on()
rai ses(DOVExcepti on);

bool ean canSet Attribute(in DOVString attrnane,
in DOMString attrval);

bool ean canSet Attri but eNode(i n Node node);

bool ean canSet Attri but eNodeNS(i n Node node);

bool ean canSet Attri buteNS(in DOVString attrnane,

in DOVBtring attrval,
in DOVBtring nanespaceURl,
in DOVString | ocal Nane);

bool ean canRenoveAttribute(in DOVString attrnamne);
bool ean canRenoveAttri buteNS(in DOVSBtring attrnane,
i nout DOMString nanmespaceURl);
bool ean canRenoveAt tri but eNode(in Node node);
H
Methods

canRenoveAttri bute
Verifies if an attribute by the given name can be removed.
Parameters
at t r name of typeDOVBt r i ng
Name ofattribute.
Return Value

bool ean true orfalse.

No Exceptions
canRenoveAttri but eNS
Verifies if an attribute by the given name and namespace can be removed.
Parameters
at t r nane of typeDOVSt ri ng
Qualified name of the attribute to bemoved.
namespaceURl of typeDOVSt ri ng
The namespace URI of the attributeémove.
Return Value

32

1.4. Document-Editing Interfaces

bool ean true orfalse.

No Exceptions
canRenoveAttri but eNode
Determines if an attribute node can be removed.
Parameters
node of typeNode
TheAt t r node to remove from the attribuist.
Return Value

bool ean true orfalse.

No Exceptions
canSet Attri bute
Determines if the value for specified attribute can be set.
Parameters
at t r nane of typeDOVSt ri ng
Name ofattribute.
attrval oftypeDOVStri ng
Value to be assigned to th#ribute.
Return Value

bool ean true orfalse.

No Exceptions
canSet Attri but eNS
Determines if the attribute with given namespace and local name can be created if not
already present in the attribute list of the element. If the attribute with same local name and
namespaceURI is already present in the elements attribute list it sets the value of the
attribute and its prefix to the new value. See DOM s@eAt t ri but eNS.
Parameters
at t r nane of typeDOVBt r i ng
Name ofattribute.
attrval of typeDOMStri ng
Value to be assigned to th#ribute.
nanespaceURIl of typeDOMSt ri ng
nanespaceURl of namespace.
| ocal Nane of typeDOVSt ri ng
| ocal Nane of namespace.
Return Value

bool ean Success ofailure.

33

1.4. Document-Editing Interfaces

No Exceptions
canSet Attri but eNode
Determines if attribute node can be added.
Parameters
node of typeNode
Node in which the attribute can possibly bet.
Return Value

bool ean Success ofailure.

No Exceptions
canSet Attri but eNodeNS
Determines if the attribute node with the given namespace can be added.
Parameters
node of typeNode
TheAt t r to be added to the attribuist.
Return Value

bool ean Success ofailure.

No Exceptions

cont ent Type
Determines element content type.
Return Value

i nt Constant for mixed, empty, angtc.

No Parameters
No Exceptions
get El ement Decl arati on
gets the CM editing object describing this element
Return Value

[CVEl enent Decl ar at i on|[p.20] CMElementDeclarationbject

Exceptions

DOVExcepti on If no DTD is present raises théxception

No Parameters
Interface CharacterDataCM

34

This interface extends tl@har act er Dat a interface with additional methods for document

editing.

IDL Definition

1.4. Document-Editing Interfaces

i nterface CharacterDataCM: Text, NodeCM {

bool ean
bool ean

i s\Whi tespaceOnl y();
canSet Dat a(i n unsi gned | ong of f set,

}s

Methods

bool ean

bool ean

bool ean

bool ean

in DOVBtring arQ)

rai ses(DOVExcepti on);

canAppendDat a(in DOVBtring arg)

rai ses(DOVExcepti on);

canRepl aceDat a(i n unsi gned | ong of fset,

in unsigned | ong count,
in DOVBtring arQ)

rai ses(DOVExcepti on);

canl nsertData(i n unsigned | ong offset,

in DOVBtring arg)

rai ses(DOVExcepti on);

canDel et eDat a(i n unsi gned | ong of f set,

in DOVBtring arg)

canAppendDat a

Determines if data can be appended.

Parameters

ar g of typeDOMSt ri ng
Argument to beppended.

Return Value

bool ean Success ofailure.

Exceptions

DOVException DOMException.

canDel et eDat a

Determines if data can be deleted.

Parameters

of f set of typeunsi gned | ong
Offset.

ar g of typeDOMSt ri ng
Argument to beset.

Return Value

bool ean Success ofailure.

35

rai ses(DOVExcepti on);

1.4. Document-Editing Interfaces

Exceptions

DOVExcepti on DOMException.

canl nsertDat a

Determines if data can be inserted.

Parameters

of f set of typeunsi gned | ong
Offset.

ar g of typeDOVSt r i ng
Argument to beset.

Return Value

bool ean Success ofailure.

Exceptions

DOVExcepti on DOMException.

canRepl aceDat a

Determines if data can be replaced.

Parameters

of f set of typeunsi gned | ong
Offset.

count of typeunsi gned | ong
Replacement.

ar g of typeDOVSt r i ng
Argument to beset.

Return Value

bool ean Success odfailure.

Exceptions

DOVExcepti on DOMException.

canSet Dat a
Determines if data can be set.
Parameters
of f set of typeunsi gned | ong
Offset.

ar g of typeDOVSt ri ng
Argument to beset.
Return Value

36

1.4. Document-Editing Interfaces

bool ean Success ofailure.

Exceptions

DOVExcepti on DOMException.

i sWhitespaceOnly
Determines if content is only whitespace.
Return Value

bool ean True if content only whitespace; false for non-whitespace if it is a text
node in elementontent.

No Parameters
No Exceptions
Interface DocumentTypeCM

This interface extends tli@cunent Type interface with additional methods for documediting.

IDL Definition
i nterface Docunent TypeCM : Docunent Type, NodeCM {
bool ean i sEl ement Defined(in DOVString el enifypeNane) ;
bool ean i sEl ement Defi nedNS(in DOVBtring el eniTypeNane,

in DOVBtring namespaceUR!,
in DOVBtring | ocal Nane) ;

bool ean i sAttributeDefined(in DOVBtring el enTypeNane,
in DOVBtring attrNane);
bool ean i sAttributeDefinedNS(in DOVBtring el eniTypeNane,

in DOVBtring attrNane,

in DOVBt ri ng namespaceUR!,

in DOMBtring | ocal Nane);
bool ean i sEntityDefined(in DOMString entName);

b

Methods
i SAttri buteDefined
Determines if this attribute is defined for this element in the currently active CM.
Parameters
el enTypeNane of typeDOVSt ri ng
Name of theelement.
at t r Name of typeDOVBt r i ng
Name of theaattribute.
Return Value

bool ean Success ofailure.

37

1.4. Document-Editing Interfaces

No Exceptions
i SAttri but eDefinedNS

Determines if this attribute’s namespace is defined in the currently active CM.

Parameters

el enifypeNane of typeDOVSt r i ng
Name ofelement.

at t r Namre of typeDOMVSt ri ng
Name ofattribute.

namespaceURl of typeDOVSt ri ng
nanmespaceURl of namespace.

| ocal Name of typeDOVSt ri ng
| ocal Name of namespace.

Return Value

bool ean Success ofailure.

No Exceptions
i SEl erent Defi ned
Determines if this element is defined in the currently active CM.
Parameters
el enifypeNane of typeDOVSt r i ng
Name ofelement.
Return Value

bool ean Success ofailure.

No Exceptions
i sEl erent Defi nedNS
Determines if this element’s namespace is defined in the currently active CM.
Parameters
el emTypeNane of typeDOVSt ri ng
Name ofelement.
nanespaceURIl of typeDOMVSt ri ng
namespaceURl of namespace.
| ocal Name of typeDOVSt ri ng
| ocal Name of namespace.
Return Value

bool ean Success ofailure.

No Exceptions
i sentityDefined
Determines if an entity is defined in tdecument.
ISSUE: Should methods be added to the DocumentTypeCM for the complete list of
defined elements and for a particular element type, the complete list of defined attributes.

38

1.4. Document-Editing Interfaces

These two methods might return a list of strings which is a type not yet described in the
DOM spec.

Parameters

ent Nane of typeDOMSt ri ng
Name ofentity.

Return Value

bool ean Success ofailure.

No Exceptions
Interface AttributeCM

This interface extendat t r to provide guided editing of an XMdlocument.
IDL Definition

interface AttributeCM: Attr, NodeCM {
CVAttri buteDecl aration getAttributeDeclaration();
CMNot at i onDecl arati on get Notation()

}s

Methods
get Attri but eDecl arati on

returns the corresponding attribute declaration in the content model.
Return Value

rai ses(DOVExcepti on);

[CMAL t r1 but eDecl ar ati on| The attribute declaration corresponding to this
[p.23] attribute

No Parameters
No Exceptions
get Not ati on

Returns the notation declaration for the attributes defined of type NOTATION.
Return Value

[CVNot at i onDecl ar ati on| Returns the notation declaration for this attribute
[p.25] if the type is of notation type, nuitherwise.
Exceptions

DOVExcepti on DOMException

No Parameters

39

1.5. DOM Error Handler Interfaces

1.5.DOM Error Handler Interfaces

This section contains DOM error handlimgerfaces.

Interface DOMErrorHandler

Basic interface for DOM error handlers. If an application needs to implement customized error
handling for DOM such as CM or Load/Save, it must implement this interface and then register an
instance using theet Er r or Handl er method. All errors and warnings will then be reported

through this interface. Application writers can override the methods in a subclass to take
user-specifiedctions.

IDL Definition

i nterface DOVErrorHandl er {
voi d war ni ng(i n DOMLocat or wher e,
in DOVBtring how,
in DOVBtring why)
rai ses(DOVByst enExcepti on);
voi d fatal Error(in DOMLocat or where,
in DOVBtring how,
in DOVBtring why)
rai ses(DOVByst enExcepti on);
voi d error (i n DOVLocat or where,
in DOVBtring how,
in DOVBtring why)
rai ses(DOVByst enExcepti on);
s

Methods
error
Receive notification of a recoverable error per section 1.2 of the W3C XML 1.0

recommendation. The default behavior if the user doesn’t register a handler is to report
conditions that are not fatal errors, and allow the calling application to continue processing.

Parameters

wher e of typeDOMLocat or][p.41]

Location of the error, which could be either a source position in the case of loading, or
a node reference for later validation. The public ID and system ID for the error

location could be some of tlirformation.
how of typeDOVSt ri ng

How the errooccurred.
why of typeDOMVSt ri ng

Why the erroioccurred.
Exceptions

DOVByst enmExcepti on A subclass oDOMEXxception.

No Return Value

40

1.5. DOM Error Handler Interfaces

fatal Error
Report a fatal, non-recoverable CM or Load/Save error per section 1.2 of the W3C XML
1.0 recommendation. The default behavior if the user doesn't register a handler is to throw
a DOMSystemException and stop all further processing.
Parameters
wher e of typefDOM_ocat or][p.41]
Location of the fatal error, which could be either a source position in the case of
loading, or a node reference for later validation. The public ID and system ID for the
error location could be some of timformation.
how of typeDOVSt ri ng
How the fatal errooccurred.
why of typeDOVSt ri ng
Why the fatal errooccurred.
Exceptions

DOVByst enExcepti on A subclass oDOMEXxception.

No Return Value
war ni ng
Receive notification of a warning per the W3C XML 1.0 recommendation. The default
behavior if the user doesn’t register a handler is to report conditions that are not errors or
fatal errors, and then allow the calling application to continue even after invoking this
method.
Parameters
wher e of typefDOM_ocat or][p.41]
Location of the warning, which could be either a source position in the case of
loading, or a node reference for later validation. The public ID and system ID for the
error location could be some of timformation.
how of typeDOVSt r i ng
How the warningpccurred.
why of typeDOMSt ri ng
Why the warningccurred.
Exceptions

DOMVByst enExcepti on A subclass oDOMEXxception.

No Return Value
Interface DOML ocator

This interface provides document location information and is similar to a SAX |aizéemt.

IDL Definition

41

1.5. DOM Error Handler Interfaces

i nterface DOM.ocat or {

i nt get Col umNunber () ;
i nt get Li neNumber () ;
DOVBt ri ng getPublicl);
DOVBt ri ng get System) ;
Node get Node() ;
3
Methods

get Col umNunber
Return the column number.
Return Value

i nt The column number, or -1 if noneasailable.

No Parameters
No Exceptions
get Li neNunber
Return the line number.
Return Value

i nt The line number, or -1 if none available.

No Parameters

No Exceptions
get Node

Return the Node.

Return Value

Node The NODE, or null if none iavailable.

No Parameters

No Exceptions
getPubliclD

Return the public identifier.

Return Value

DOVBt ri ng A string containing the public identifier, or null if noneaigailable.

No Parameters
No Exceptions
get System D
Return the system identifier.
Return Value

42

1.6. Editing and Generating a Content Model

DOVBt ring A string containing the system identifier, or null if nonavsilable.

No Parameters
No Exceptions

1.6. Editing and Generating a ContentModel

Editing and generating a content model falls in the CM-editing world. The most obvious requirement for
this set of requirements is for tools that author content models, either under user control, i.e., explicitly
designed document types, or generated from other representations. The latter class includes transcoding
tools, e.g., synthesizing an XML representation to match a datstiasma.

It's important to note here that a DTD’s "internal subset" is part of the Content Model, yet is loaded,

stored, and maintained as part of the individual document instance. This implies that even tools which do
not want to let users change the definition of the Document Type may need to support editing operations
upon this portion of the CM. It also means that our representation of the CM must be aware of where each
portion of its content resides, so that when the serializer processes this document it can write out just the
internal subset. A similar issue may arise with external parsed entities, or if schemas introduce the ability

to reference other schemas. Finally, the internal-subset case suggests that we may want at least a two-level
representation of content models, so a single DOM representation of a DTD can be shared among several
documents, each potentially also having its own internal subset; it's possible that entity layering may be
represented the samay.

The API for altering the content model may also be the CM'’s official interface with parsers. One of the
ongoing problems in the DOM is that there is some information which must currently be created via
completely undocumented mechanisms, which limits the ability to mix and match DOMs and parsers.
Given that specialized DOMs are going to become more common (sub-classed, or wrappers around other
kinds of storage, or optimized for specific tasks), we must avoid that situation and provide a "builder"

API. Particular pairs of DOMs and parsers may bypass it, but it's required as a pomadxhtstnism.

Note that several of these applications require that a CM be able to be created, loaded, and manipulated
without/before being bound to a specific Document. A related issue is that we'd want to be able to share a
single representation of a CM among several documents, both for storage efficiency and so that changes in
the CM can quickly be tested by validating it against a set of known-good documents. Similarly, there is a
known problem in DOM Level 2 where we assume that the DocumentType will be created before the
Document, which is fine for newly-constructed documents but not a good match for the order in which an
XML parser encounters this data; being able to "rebind" a Document to a new CM, after it has been
created may bdesirable.

As noted earlier, questions about whether one can alter the content of the CM via its syntax, via
higher-level abstractions, or both, exist. It's also worth noting that many of the editing concepts from the
Document tree still apply; users should probably be able to clone part of a CM, remove and re-insert parts,
and soon.

43

1.7. Content Model-directed Document Manipulation

1.7.Content Model-directed DocumentManipulation

In addition to using the content model to validate a document instance, applications would like to be able
to use it to guide construction and editing of documents, which falls into the document-editing world.
Examples of this sort of guided editing already exist, and are becoming more common. The necessary
queries can be phrased in several ways, the most useful of which may be a combination of "what does the
DTD allow me to insert here" and "if | insert this here, will the document still be valid". The former is

better suited to presentation to humans via a user interface, and when taken together with sub-tree
validation may subsume theatter.

It has been proposed that in addition to asking questions about specific parts of the content model, there
should be a reasonable way to obtain a list of all the defined symbols of a given type (element, attribute,
entity) independent of whether they’re valid in a given location; that might be useful in building a list in a
user-interface, which could then be updated to reflect which of these are relevant for the program’s current
state.

Remember that namespaces also weigh in on this issue, in the case of attributes, a "can-this-go-there" may
prompt a namespace-well-formedness check and warn you if you're about to conflict with or overwrite
another attribute with the same namespaceURI/localName but different prefix... or same nodeName but
differentnamespaceURI.

As mentioned above, we have to deal with the fact that the shortest distance between two valid documents
may be through an invalid one. Users may want to know several levels of detail (all the possible children,
those which would be valid given what precedes this point, those which would be valid given both
preceding and following siblings). Also, once XML Schemas introduce context sensitive validity, we may
have to consider the effect of children as well as the individual nodeibearted.

1.8.Validating a Document Against a ContentModel

The most obvious use for a content model (DTD or XML Schema or any Content Model) is to use it to
validate that a given XML document is in fact a properly constructed instance of the document type
described by this CM. This again falls into the document-editing world. The XML spec only discusses
performing this test at the time the document is loaded into the "processor", which most of us have taken
to mean that this check should be performed at parse time. But it is obviously desirable to be able to
validate again a document -- or selected subtrees -- at other times. One such case would be validating an
edited or newly constructed document before serializing it or otherwise passing it to other users. This
issue also arises if the "internal subset" is altered -- or if the whole Content dhadegles.

In the past, the DOM has allowed users to create invalid documents, and assumed the serializer would
accept the task of detecting problems and announcing/repairing them when the document was written out
in XML syntax... or that they would be checked for validity when read back in. We considered adding
validity checks to the DOM’s existing editing operations to prevent creation of invalid documents, but are
currently inclined against this for several reasons. First, it would impose a significant amount of
computational overhead to the DOM, which might be unnecessary in many situations, e.g., if the change is
occurring in a context where we know the result will be valid. Second, "the shortest distance between two
good documents may be through a bad document"”. Preventing a document from becoming temporarily

44

1.9. Well-formedness Testing

invalid may impose a considerable amount of additional work on higher-level code and users Hence our
current plan is to continue to permit editing to produce invalid DOMs, but provide operations which
permit a user to check the validity of a nodedemand.

Note that validation includes checking that ID attributes are unique, and that IDREFs point to IDs which
actuallyexist.

1.9. Well-formednessTesting

XML defined the "well-formed'(WF) state for documents which are parsed without reference to their
DTDs. Knowing that a document is well-formed may be useful by itself even when a DTD is available.
For example, users may wish to deliberately save an invalid document, perhaps as a checkpoint before
further editing. Hence, the CM feature will permit both full validity checking (see previous section) and
"lightweight" WF checking, as requested by the caller, as well as processing entity declarations in the CM
even if validation is not turned on. This falls within the document-editioidd.

While the DOM inherently enforces some of XML'’s well-formedness conditions (proper nesting of
elements, constraints on which children may be placed within each node), there are some checks that are
not yet performed. Theseclude:

® Character restrictions for text content and attribute values. Some characters aren’t permitted even
when expressed as numeric character entities

® The three-character sequence "]]>" in CDATASections.

® The two-character sequence "--" in comments. (Which, be it noted, some XML validators don'’t
currently remember ttest...)

In addition, Namespaces introduce their own concepts of well-forme@pessfically:

® No two attributes on a single Element may have the same combination of namespaceURI and
localName, even if their prefixes are different and hence they don’t conflict under XML 1.0 rules.

® NamespaceURIs must be legal URI syntax. (Note that once we have this code, it may be reusable for
the URI "datatype" in document content; see discussion of datatypes.)

e The mapping of namespace prefixes to their URIs must be declared and consistent. That isn't
required during normal DOM operation, since we perform "early binding" and thereafter refer to
nodes primarily via their namespaceURIs and localName. But it does become an issue when we want
to serialize the DOM to XML syntax, and may be an issue if an application is assuming that all the
declarations are present and correct. This may imply that we should provide a
nanespaceNor mal i ze operation, which would create the implied declarations and reconcile
conflicts in some reasonably standardized manner. This may be a major undertaking, since some
DOMs may be using the namespace to direct subclassing of the nodes or similar special treatment; as
with the existingnor mal i ze method, you may be left with a different-but-equivalent set of node
objects.

In the past, the DOM has allowed users to create documents which violate these rules, and assumed the
serializer would accept the task of detecting problems and announcing/repairing them when the document
was written out in XML syntax. We considered adding WF checks to the DOM'’s existing editing
operations to prevent WF violations from arising, but are currently inclined against this for two reasons.

45

1.9. Well-formedness Testing

First, it would impose a significant amount of computational overhead to the DOM, which might be
unnecessary in many situations (for example, if the change is occurring in a context where we know the
illegal characters have already been prevented from arising). Second, "the shortest distance between two
good documents may be through a bad document" -- preventing a document from becoming temporarily
ill-formed may impose a considerable amount of additional work on higher-level code and users. (Note
possible issue for Serialization: In some applications, being able to save and reload marginally
poorly-formed DOMs might be useful -- editor checkpoint files, for example.) Hence our current plan is to
continue to permit editing to produce ill-formed DOMs, but provide operations which permit a user to
check the well-formedness of a node on demand, and possibly provide some of the primitive (e.g.,
string-checking) functiondirectly.

46

2. Document Object Model Load and Save

2. Document Object Model Load andSave
Editors

Andy Heninger)BM
2.1.Load and SaveRequirements

DOM Level 3 will provide an API for loading XML source documents into a DOM representation and for
saving a DOM representation as a XMbcument.

Some environments, such as the Java platform or COM, have their own ways to persist objects to streams
and to restore them. There is no direct relationship between these mechanisms and the DOM load/save
mechanism. This specification defines how to serialize documents only to and fronfoXivLt.

2.1.1.General Requirements

Requirements that apply to both loading and sastouments.

2.1.1.1.DocumentSources
Documents must be able to be parsed from and saved to the folEwiraps:

® [nput and Output Streams
® URIs
® Files

Note that Input and Output streams take care of the in memory case. One point of caution is that a stream
doesn’t allow a base URI to be defined against which all relative URIs in the documessadved.

2.1.1.2.Content Model Loading

While creating a new document using the DOM API, a mechanism must be provided to specify that the
new document uses a pre-existing Content Model and to cause that Content Modighdethe

Note that while DOM Level 2 creation can specify a Content Model when creating a document (public
and system IDs for the external subset, and a string for the subset), DOM Level 2 implementations do not
process the Content Model’s content. For DOM Level 3, the Content Model’s content maeed be

2.1.1.3.Content Model Reuse
When processing a series of documents, all of which use the same Content Model, implementations

should be able to reuse the already parsed and loaded Content Model rather than parsing it again for each
newdocument.

47

2.1.2. Load Requirements

This feature may not have an explicit DOM API associated with it, but it does require that nothing in this
section, or the Content Model section, of this specification block it or make it diffidaiplement.

2.1.1.4.Entity Resolution

Some means is required to allow applications to map public and system IDs to the correct document. This
facility should provide sufficient capability to allow the implementation of catalogs, but providing
catalogs themselves is not a requirement. In addition XML Base needaddressed.

2.1.1.5.Error Reporting
Loading a document can cause the generation of énctgling:

e |/O Errors, such as the inability to find or open the specdmiment.
XML well formednesserrors.
Validity errors

Saving a document can cause the generation of énabusling:

® |/O Errors, such as the inability to write to a specified stream, URfileor
Improper constructs, such as ’--’ in comments, in the DOM that cannot be represented as well formed
XML.

This section, as well as the DOM Level 3 Content Model section should use a common error reporting
mechanism. Well-formedness and validity checking are in the domain of the Content Model section, even
though they may be commonly generated in response to an application asking that a docloaéetibe

2.1.2.Load Requirements

The following requirements apply to loadidgcuments.

2.1.2.1.Parser Properties andOptions
Parsers may have properties or options that can be set by applications. Exachjules

® Expansion of entity references.

e Creation of entity ref nodes.

e Handling of white space in element content.
e Enabling of namespace handling.

® Enabling of content modehlidation.

A mechanism to set properties, query the state of properties, and to query the set of properties supported
by a particular DOM implementationiisquired.

48

2.1.3. XML Writer Requirements

2.1.3. XML Writer Requirements

The fundamental requirement is to write a DOM document as XML source. All information to be
serialized should be available via the normal D@RI.

2.1.3.1. XML Writer Properties and Options
There are several options that can be defined when saving an XML document. Someavéthese

Saving to Canonical XML format.

Pretty Printing.

Specify the encoding in which a document is written.
How and when to use character entities.
Namespace prefix handling.

Saving of Content Models.

Handling of externaéntities.

2.1.3.2.Content Model Saving

Requirement from the Content Modgbup.

2.1.4.0ther Items Under Consideration

The following items are not committed to, but are under consideration. Public feedback on these items is
especiallyrequested.

2.1.4.1.Incremental and/or Concurrent Parsing

Provide the ability for a thread that requested the loading of a document to continue execution without
blocking while the document is being loaded. This would require some sort of notification or completion
event when the loading process wase.

Provide the ability to examine the partial DOM representation before it has bedoddibyl.

In one form, a document may be loaded asynchronously while a DOM based application is accessing the
document. In another form, the application may explicitly ask for the next incremental portion of a
document to béaded.

2.1.4.2 Filtered Save

Provide the capability to write out only a part of a document. May be able to leverage TreeWalkers, or the
Filters associated with TreeWalkers, or Ranges as a means of specifying the portion of the document to be
written.

49

2.2. Issue List

2.1.4.3.DocumentFragments

Document fragments, as specified by the XML Fragment specification, should be able to be loaded. This
is useful to applications that only need to process some part of a large document. Because the DOM is
typically implemented as an in-memory representation of a document, fully loading large documents can
require large amounts aiemory.

XPath should also be considered as a way to identify XML Document fragméuwesl to

2.1.4.4.Document Fragments in Context of ExistingpOM

Document fragments, as specified by the XML Fragment specification, should be able to be loaded into
the context of an existing document at a point specified by a node position, or perhaps a range. This is a
separate feature than simply loading document fragments asMaukw

2.2.IssuelList

2.2.1.0penlssues

Issue LS-Issue-10:
Error Reporting. Loading will be reporting well-formedness and validation errors, just like CM. A
common error reporting mechanism needs to be developed.

Issue LS-Issue-16:
Loading and saving of content models - DTDs or Schemas - outside of the context of a document is
not addressed.

Issue LS-Issue-17:
Loading while validating using an already loaded content model is not addressed. Applications
should be able to load a content model (issue 16), and then repeatedly reuse it during the loading of
additional documents.

Issue LS-Issue-20:
Action from September f2f to "add issues raised by schema discussion. What were these?

Issue LS-Issue-22:
What do the bindings for things like InputStream look like in ECMA Script? Tentative resolution -
InputStream will map to a binding dependent class or interface. For environments where nothing
appropriate exists, a new interface will be created. This question is still being discussed.

Issue LS-Issue-27:
How is validation during document loading handled when there are multiple possible content models
associated with the document? How is one selected? The same question exists for documents in
general, outside of the context of loading. Resolving the question for loading probably needs to wait
until the more general question is understood.

Issue LS-Issue-32:
Mimetypes. If the input being parsed is from http or something else that supplies types, and the type
is something other than text/xml, should we parse it anyhow, or should we complain. Should there be
anoption?
Tentative resolution: always parse, never complain. Reasons: 1. This is what all parsers do now, and
no one has ever complained, at least not that I'm aware of. 2. Applications must have a pretty good

50

2.2.2. Resolved Issues

reason to suspect that they’re getting xml or they wouldn’t have invoked the parser. 3. All the test
would do is to take something that might have worked (xml that is not known to the server) and turn
it into an error. Non-xml is exceptionally unlikely to successfully parse (be well formed.)

Issue LS-Issue-34:
Features 2.1.4.1, 2 - XML Fragment Support. Should these be dropped? (Yes!)

Issue LS-Issue-35:
XPath based document load filter. It would be plausible to have a partial (filtered) document load
based on selecting the portion of the document to load with an XPath expression. This facility could
be in addition to the node-by-node filtering currently specified. Or we could drop the efilisting
Implementing an XPath based selective load would require that there be an XPath processor present
in addition to the parsétself.

2.2.2.Resolvedissues

Issue LS-Issue-1:
Should these methods be in a new interface, or should they be added to the existing
DOMImplementation Interface? | think that adding them to the existing interface is cleaner, because
it helps avoid an explosion of nemterfaces.
The methods are in a separate interface in this description for convenience in preparing the doc, so
that | don’t need to edit Core to add the methods. (The same argument could perhaps be made for
implementations.)
Resolution: The methods are in a separate DOMImplementationLS interface. Because Load/Save is
an optional module, we don’t want to add its to the core DOMImplementation interface.

Issue LS-Issue-2:
SAX handles the setting of parser attributes differently. Rather than having distinct getters and setters
for each attribute, it has a generic setter and getter of named properties, where properties are
specified by a URL. This has an advantage in that implementations do not need to extend the
interface when providing additionattributes.
If we choose to use strings, their syntax needs to be chosen. URIs would make sense, except for the
fact that these are just names that do not refer to any resources. Dereferencing them would be
meaningless. Yet the direction of the W3C is that all URIs must be dereferencable, and refer to
something on theveb.
Resolution: Use strings for properties. Use Java package name syntax for the identifying names. The
question was revisited at the July f2f, with the same conclusion. But some discussion of using URLS
continues.
This issue was revisited once again at the 9/2000 meeting. Now all DOM properties or features will
be short, descriptive names, and we will recommend that all vendor-specific extensions be prefixed
to avoid collisions, but will not make specific recommendations for the syntax of the prefix.

Issue LS-Issue-3:
It's not obvious what name to choose for the parser interface. Taking any of the names already in use
by parser implementations would create problems when trying to support both the new APl and the
existing old API. That leaves oDocunent Bui | der (Sun) andDOVPar ser (Xerces).
Resolution: This is issue really just a comment. The "resolution” is in the names appearing in the
API.

51

2.2.2. Resolved Issues

Issue LS-Issue-4:
Question: should ResolveEntity pass a baseURI string back to the application, in addition to the
publicld, systemld, and/or stream? Particularly in the case of anstrpan.
Resolution: No. Sax2 explicitly says that the system ID URI must be fully resolved before passing it
out to the entity resolve. We will follow SAX’s lead on this unless some additional use case surfaces.
This is from the 9/2000 f2f, and reverses an earlier decision.

Issue LS-Issue-5:
When parsing a document that contains errors, should the whole document be decreed unusable, or
should we say that portions prior to the point where the error was detec@idare
Resolution: In the case of errors in the XML source, what, if any, document is returned is
implementation dependent.

Issue LS-Issue-6:
The relationship between SAXExceptions and DOM exceptions semfissing.
Resolution: This issue goes away because we are no longer using SAX. Any exceptions will be
DOM Exceptions.

Issue LS-Issue-7:
Question: In the original Java definition, are the strings returned from the methods
SAXException.toString() andSAXExcepti on. get Message() always the same? If not,
we need to add anothattribute.
Resolution: No longer an issue because we are no longer using SAX.

Issue LS-Issue-8:
JAXP defines a mechanism, based on Java system properties, by which the Document Builder
Factory locates the specific parser implementation to be used. This ability to redirect to different
parsers is a key feature of JAXP. How this redirection works in the context of this design may be
something that needs to be defined separately for each larigjndgey.
This question was discussed at the July f2f, without resolution. Agreed that the feature is not critical
to the rest of the API, and can pestponed.
Resolution: The issue is moving to core, where it is part of the bigger question of where does the
DOM implementation come from, and how do multiple implementations coexist. Allowing separate,
or mix-and-match, specification of the parser and the rest of the DOM is not generally practical
because parsers generally have some degree of private knowledge about their DOMs.

Issue LS-Issue-9:
The use of interfaces from SAX2 raises some questions. The Java bindings for these interfaces need
to be exactly the SAX2 definitions, including the original org.xml.sax package.
The IDL presented here for these interfaces is an attempt to map the Java into IDL, but it will
certainly not round-trip accurately - Java bindings generated from the IDL will not match the original
Java.
The reasons for using the SAX interfaces are that they are well designed, widely implemented and
used, and provide what is needed. Designing something new would create confusion for application
developers (which should be used?) and make extra work for implementers of the DOM, most of
whom probably already provide SAX, all for no rgain.
Resolution: Problem is gone. We are not using SAX2. The design will borrow features and concepts
from SAX2 when it makes sense to do so.

Issue LS-Issue-11:
Another Error Reporting Question. We decided at the June f2f that validity errors should not be
exceptions. This means that a document load operation could encounter multiple errors. Should these

52

2.2.2. Resolved Issues

be collected and delivered as some sort of collection at the (otherwise) successful completion of the
load, or should there be some sort of callback? Callbacks are harder for applicationsvithdeal
Resolution: Provide a callback mechanism. Provide a default error handler that throws an exception
and stops further processing. From July f2f.
Issue LS-Issue-12:
Definition of "Non-validating”. Exactly how much processing is done by "non-validating” parsers is
not fully defined by the XML specification. In particular, they are not required to read any external
entities, but are not prohibited from doisg.
Another common user request: a mode that completely ignores DTDs, both and external. Such a
parser would not conform to XML 1.8pwever.
For the documents produced by a non-validating load to be the same, we need to tie down exactly
what processing must be done. The XML Core WG also has question as an open issue
Some discussion is http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000JanMar/0192.html
Here is proposal: Have three classepaers
e Minimal. No external entities of any type are accessed. DTD subset is processes normally, as
required by XML 1.0, including all entity definitions it contains.
e Non-Validating. All external entities are read. Does everything except validation.
e Validating. As defined by XML 1.@ec.
Resolution: Use the options from SAX2. These provide separate flags for validation, reading of
external general entities and reading of external parameter entities.
Issue LS-Issue-13:
Use of System or Language specific types for Input@umigut
Loading and Saving requires that one of the possible sources or destinations of the XML data be
some sort of stream that can be used with io streams or memory buffers, or anything else that might
take or supply data. The type will vary, depending on the lanchiadmg.
The question is, what should be put into the IDL interfaces for these? Should we define an XML
stream to abstract out the dependency, or use system classes directhiriditigs?
Resolution: Define IDL types for use in the rest of the interface definitions. These types will be
mapped directly to system types for each language binding
Issue LS-Issue-14:
Should there be separate DOM modules for browser or scripting style loading
(document.load("whatever")) and server style parsers? It's probably easy for the server style parsers
to implement the browser style interface, but the reverse may hatebe
Resolution: Yes. A client application style API will be provided.
Issue LS-Issue-15:
System Exceptions. Loading involves file opens and reads, and these can result in a variety of system
errors that may already have associated system exceptions. Should these system exceptions pass
through as is, or should they be some how wrapped in DOMEXxceptions, or should there be a parallel
set DOM Exceptions, avhat?
Resolution: Introduce a new DOMSystemEXxception to standardize the reporting of common 1/O
errors across different DOM environments. Let it wrap an underlying system exception or error code
when appropriate. To be defined in the common ErrorReporting module, to be shared with
ContentModel.
Issue LS-Issue-18:
For the list of parser properties, which must all implementations recognize, which settings must all
implementations support, and which apional?

53

2.2.2. Resolved Issues

Resolution: Done

Issue LS-Issue-19:
DOMOutputStream: should this be an interface with methods, or just an opaque type that maps onto
an appropriate binding-specific stretype?
If we specify an actual interface with methods, applications can implement it to wrap any arbitrary
destination that they may have. If we go with the system type it's simpler to output to that type of
stream, but hardetherwise.
Resolution: Opaque.

Issue LS-Issue-21:
Define exceptions. AOVByst enExcept i on needs to be defined as part of the error handling
module that is to be shared with CM. Common I/O type errors need to be defined for it, so that they
can be reported in a uniform way. A way to embed errors or exceptions from the OS or language
environment is needed, to provide full information to applications thatitvant
Resolution: Duplicate of issue #15

Issue LS-Issue-23:
To Do: Add a method or methods to DOMBuilder that will provide information about a parser
feature - is the name recognized, which (boolean) values are supported - without throwing
exceptions.
Resolution: Done. Added canSetFeature.

Issue LS-Issue-24:
Clearly identify which of the parser properties must be recognized, and which of their settings must
be supported by all conforminignplementations.
Resolution: Done. All must be recognized.

Issue LS-Issue-25:
How does the validation property work in SAX, and how should it work for us? The default value in
SAX2 is "true". Non-validating parsers only support a value of false. Does this mean that the default
depends on the parser, or that some sort of an error happens if a parse is attempted before resetting
the property, owhat?
The same question applies to the External Entities prop&rties
Resolution: Make the default value for the validation property be false.

Issue LS-Issue-26:
Do we want to rename the "auto-validation" property to "validate-if-cm"? Proposed at f2f. Resolution
unclear.
Resolution: Changed the name to "validate-if-cm".

Issue LS-Issue-29:
Should all properties except namespaces default to false? Discussed at f2f. I'm not so sure now.
Some of the properties have somewhat non-standard behavior when false - leaving out ER nodes or
whitespace, for example - and support of false will probably not evesgheed.
Resolution: Not all properties should default to false. But validation should.

Issue LS-Issue-28:
To do: add new parser property "createEntityNodes". default is true. lllegal for it to be false and
createEntityReferenceNodes tothge.
Is this really what wevant?
Resolution: new feature added.

Issue LS-Issue-30:
Possible additional parser features - option to not create CDATA nodes, and to merge CDATA

54

2.3. Interfaces

contents with adjacent TEXT nodes if they exist. Otherwise just create a M&GET
Option to omitComments.
Resolution: new feature added.

Issue LS-Issue-31:
We now have an option for fixing up name space declarations and prefixes on serialization. Should
we specify how this is done, so that the documents from different implementations of serialization
will use the same declarations and prefixes, or should we leave the details uipngéh®entation?
Resolution: The exact form of the name space fixup is implementation dependent. The only
requirement is that all elements and attributes end up with the correct name space URI.

Issue LS-Issue-33:
Unicode Character Normalization Problems. It turns out that for some code pages, normalizing a
Unicode representation, translating to the code page, then translating back to Unicode can result in
un-normalized Unicode. Mark Davis says that this can happen with Viethamese and maybe with
Hebrew.
This means that the suggested W3C model of normalization on serialization (early normalization)
may not work, and that the receiver of the data may need to normalize it againcss.in
Resolution: The scenario described is a quality-of-implementation issue. A transcoder converting
from the one of the troublesome code pages to a Unicode representation should be responsible for
re-normalizing theutput.

2.3.Interfaces

This section defines an API for loading (parsing) XML source documents into a DOM representation and
for saving (serializing) a DOM representation as an Xddcument.

The proposal for loading is influenced by Sun’s JAXP API for XML Parsing in Java,

[http://java.sun.com/xml/download.hin@nd by SAX2, available at
[http://Awww.megginson.com/SAX/index.himl

2.3.1.Interface Summary

Here is a list of each of the interfaces involved with the Loading and Savingdékliments.

e [DOM npl enent at i onLY[p.56] -- A newDOM npl enent at i on interface that provides the
factory methods for creating the objects required for loading and saving.

[p.56] -- A parser interface.

[DOM nput Sour ce|[p.62] -- Encapsulate information about the source of the XML to be loaded.
[DOVENt i t yResol ver|[p.63] -- During loading, provides a way for applications to redirect
references to external entities.

[DOVBuUI | der Fi | t er][p.65] -- Provide the ability to examine and optionally remove Element
nodes as they are being processed during the parsing of a document.

[DOMN 1 t er][p.66] -- An interface for writing out or serializing DOM documents.
[Docunent LY [p.70] -- Provides a client or browser style interface for loading and saving.

[Par ser Er r or Event|[p.71] -- ParserErrorEvent is the event that is fired if there’s an error in the
XML document being parsed using the methoddafumentLS.

55

http://www.megginson.com/SAX/index.html
http://java.sun.com/xml/download.html

2.3.2. Interfaces

2.3.2.Interfaces

Interface DOMImplementationL S

DOM npl enent at i onLS contains the factory methods for creating objects implementing the
[0.56] (parser) anfDOVIW T T er][p.66] interfaces.

An object implementing DOMImplementationLS is obtained by casting from DOMImplementation
to DOMImplementationLS, using the customary casting facilities from the programming language in
use. Implementations supporting the Load and Save feature must implement the
DOMImplementationLS interface on whatever object implements the DOMImplementation

interface.
IDL Definition
i nterface DOM npl enentationLS {
DOVBuUI | der creat eDOVBUI | der () ;
DOWY i t er createDOMWNi ter();
}s
Methods
creat eDOVBUI | der
Create a nef@OVBui I der][p.56] . The newly constructed parser may then be configured

by means of itset Feat ur e() method, and used to parse documents by means of its
par se() method.

Return Value

[p.56] The newly created parsebject.

No Parameters
No Exceptions
createDOMN i ter
Create a nefDOMW 1 t er][p.66] object|DOMN T t erk are used to serialize a DOM tree
back into source XML form.
Return Value

DOV i ter][p.66] The newly creat@OMNT t er]object.

No Parameters
No Exceptions
Interface DOMBuilder

A parselinterface.

DOMBUI | der provides an API for parsing XML documents and building the corresponding DOM
document tree. AOVBUI | der instance is obtained from tfOM npl enent at i onLY[p.56]
interface by invoking iter eat eDOVBUI | der () method.

56

2.3.2. Interfaces

DOMBUI | der s have a number of named properties that can be queried or set. Here is a list of
properties that must be recognized byirapplementations.

namespaces

true: perform Namespageocessing.

false: do not perform name spgwecessing.

default:true.

supported values: true: required; false: optional

namespace-declarations

true: include namespace declarations (xmins attributes) in the df@ment.

false: discard all namespace declarations. In either case, namespace prefixestaihded.
default:true.

supported values: true: required; false: optional

validation

true: report validation errors (setting true also will force the external-general-entities and
external-parameter-entities properties to be set true.) Also note thatltheat e-i f-cm
feature will alter the validation behavior when this feature igrget

false: do not report validaticgrrors.

default:false.

supported values: true: optional; falsequired

external-general-entities

true: include all external general (tegttities.

false: do not include external genegatities.

default:true.

supported values: true: required; falgptional

external-parameter-entities

true: include all external parametattities.

false: do not include external paramedatities.

default:true.

supported values: true: required; false: optional

validate-if-cm

true: when both this feature and validation are true, enable validation only when the document
being processed has a content model. Documents without content models are parsed without
validation.

false: the validation feature alone controls whether the document is checked for validity.
Documents without content models are vaitd.

default:false.

supported values: true: optional; falsequired

create-entity-ref-nodes

true: create entity reference nodes in the DOM document. Setting this value true will also set
create-entity-nodes to lheie

false: omit all entity reference nodes from the DOM document, putting the entity expansions
directly in theirplace.

default:true.

supported values: true: required; false: optional

entity-nodes

57

IDL

2.3.2. Interfaces

true: create entity nodes in the DQMcument.

false: omit all entity nodes from the DOM document. Setting this value false will also set
create-entity-ref-noddalse.

default:true.

supported values: true: required; false: optional

white-space-in-element-content

true: include white space in element content in the DOM document. This is sometimes referred
to as ignorable whitepace

false: omit said white space. Note that white space in element content will only be omitted if it
can be identified as such, and not all parsers may be ablesto do

default:true.

supported values: true: required; false: optional

cdata-nodes

true: Create DOM CDATA nodes in response to the appearance of CDATA sections in the
sourcexXML.

false: Do not create CDATA nodes in the DOM document. The content of any CDATA sections
in the source XML appears in the DOM as if it had been normal (non-CDATA) content. If a
CDATA section is adjacent to other content, the combined content appears in a single TEXT
node. The DOM Document produced by the DOMBUuilder will not have adjacent hieXds.
default:true

supported values: false: optional; true: required

comments

true: Include XML comments in the DONbcument

false: Discard XML comments, do not create Comment nodes in the DOM Document resulting
from aparse.

default:true

supported values: false: required; true: required

charset-overrides-xml-encoding

true: If a higher level protocol such as http provides an indication of the character encoding of
the input stream being processed, that will override any encoding specified in the XML or
TEXT declaration of the XML. Explicitly setting an encoding in the DOMInputSource overrides
encodings from thprotocol.

false: Any character set encoding information from higher level protocols is ignored by the
parser.

default:true

supported values: false: required; trregqquired

Definition

i nterface DOMVBui | der {

attribute DOMVENntityResol ver entityResolver;

attri bute DOVErrorHandl er errorHandl er;

attribute DOVBuilderFilter filter;
voi d set Feature(in DOVString nane,

i n bool ean state)
rai ses(DOVExcepti on);
bool ean support sFeature(in DOVString nane);
bool ean canSet Feature(in DOMString nane,
in boolean state);

58

2.3.2. Interfaces

bool ean get Feature(in DOVBtri ng nane)
rai ses(DOVException);
Docunent parseURI (in DOVBtring uri)

rai ses(DOVExcepti on,
DOVByst enExcept i on) ;
Document par seDOM nput Sour ce(i n DOM nput Source i s)
rai ses(DOVExcepti on,
DOVByst enExcept i on) ;
3
Attributes
entityResol ver of typeDOVENt i t yResol ver|[p.63]
If a[DOMVENt | t yResol ver |[p.63] has been specified, each time a reference to an
external entity is encountered theVBui | der will pass the public and system IDs to the
entity resolver, which can then specify the actual source atity.
error Handl er of typeDOVEr r or Handl er |[p.40]
In the event that an error is encountered in the XML document being parsed, the
DOVDcounent Bui | der will call back to theer r or Handl er with the error
information.

Note: The DOMErrorHandler interface is being developed separately, in conjunction with
the design of the content model and validatimdule.

filter of typgDOMBUI | der Fi | t er|[p.65]
When the application provides a filter, the parser will call out to the filter at the completion
of the construction of eadfi enent node. The filter implementation can choose to

remove the element from the document being constructed or to terminate thegpigrse
Methods

canSet Feat ure
guery whether setting a featuresigoported.
The feature name has the same form as a DOM hasFefinge
It is possible for OVBuI | der to recognize a feature name but to be unable to set its
value.
Parameters
nane of typeDOVBt ri ng
The feature name, which is a DOM has-feature stylag.
st at e of typebool ean
The requested state of the feature (trufaise).
Return Value

bool ean true if the feature could be successfully set to the specified value, or false
if the feature is not recognized or the requested value is not supported.
The value of the feature itself is ratanged.

No Exceptions
get Feature
Look up the value of geature.
The feature name has the same form as a DOM hasFeature string

59

2.3.2. Interfaces

Parameters
nane of typeDOVBt ri ng

The feature name, which is a string with DOM has-feagyrgax.
Return Value

bool ean The current state of the feature (trudaise).

Exceptions

DOVException Raise a NOT_FOUND_ERR When tB&MBui | der does not
recognize the featuregame.

par seDOM nput Sour ce
Parse an XML document from a location identified bJD&W nput Sour cel[p.62] .
Parameters
i s of typeDOM nput Sour ce|[p.62]
The[DOM nput Sour ce]from which the source document is torbad.
Return Value

[Docunent][p.26] The newly created arbpulatefdocunent]

Exceptions

DOVExcepti on Exceptions raised hyar seDOM nput Sour ce()
originate with the installed ErrorHandler, and thus
depend on the implementation of the
[DQVET r or Handl er|[p.40Q] interfaces. The default
ErrorHandlers will raise BOVExcept i on if any form
of XML validation or well formedness error or warning
occurs during the parse, but application defined
errorHandlers are not required to $m

DOVByst enExcepti on Exceptions raised byar seDOM nput Sour ce()
originate with the installed ErrorHandler, and thus
depend on the implementation of the
[DQVET r or Handl er |[p.40Q] interfaces. The default
ErrorHandlers will raise BOVBy st enExcept i on if
any form 1/O or other system error occurs during the
parse, but application defined ErrorHandlers are not
required to dso.

par seURI
Parse an XML document from a location identified by an URI.
Parameters

60

uri of typeDOVSt ri ng

2.3.2. Interfaces

The location of the XML document to bead.

Return Value

[Docunent][p.26] The newly created arbpulatefdocunent]

Exceptions

DOVEXxcept i on

DOVByst enExcepti on

set Feature
Set the state of faature.

Exceptions raised byar seURI () originate with the
installed ErrorHandler, and thus depend on the
implementation of thiPOVEr r or Handl er][p.40]
interfaces. The default error handlers will raise a
DOVEXxcept i on if any form of XML validation or well
formedness error or warning occurs during the parse, but
application defined errorHandlers are not required to do
SO.

Exceptions raised byyar seURI () originate with the
installed ErrorHandler, and thus depend on the
implementation of thiPOVEr r or Handl er][p.40]
interfaces. The default error handlers will raise a
DOMSystemException if any form I/O or other system
error occurs during the parse, but application defined
error handlers are not required tosin

The feature name has the same form as a DOM hasFstainge
It is possible for @OVBui | der to recognize a feature name but to be unable to set its

value.
Parameters
name of typeDOVSt ri ng

The feature name, which is a DOM has-feature stylag.

st at e of typebool ean

The requested state of the feature (truialse).

Exceptions

DOVExcepti on Raise a NOT_SUPPORTED_ERR exception When the
DOMBUI | der recognizes the feature name but cannot set the
requestedalue.

Raise a NOT_FOUND_ERR When tb&VBui | der does not
recognize the featurgame.

61

2.3.2. Interfaces

No Return Value
supportskFeature
guery whether th®OVBuUI | der recognizes a featureame.
The feature name has the same form as a DOM hasFstinge
It is possible for &OVBui | der to recognize a feature name but to be unable to set its
value. For example, a non-validating parser would recognize the feature "validation”,
would report that its value was false, and would raise an exception if an attempt was made
to enable validation by setting the feature to true.
Parameters
nane of typeDOVEt ri ng
The feature name, which has the same syntax as a DOM has-&dhge
Return Value

bool ean true if the feature name is recognized by@@dBui | der . False if the
feature name is noécognized.

No Exceptions
Interface DOMI nputSource

This interface represents a single input source for an Xity.

This interface allows an application to encapsulate information about an input source in a single
object, which may include a public identifier, a system identifier, a byte stream (possibly with a
specified encoding), and/or a charactieeam.

The exact definitions of a byte stream and a character stream are lfegermgent.

There are two places that the application will deliver this input source to the parser: as the argument
to thepar seDOM nput Sour ce method, or as the return value of the
[DOVENt i t yResol ver. resol veEnt i t y|[p.64] method.

The[DOVBuUI I der][p.56] will use theDOM nput Sour ce object to determine how to read XML

input. If there is a character stream available, the parser will read that stream directly; if not, the
parser will use a byte stream, if available; if neither a character stream nor a byte stream is available,
the parser will attempt to open a URI connection to the resource identified by the ig\gsttfier.

An DOM nput Sour ce object belongs to the application: the parser shall never modify it in any
way (it may modify a copy ifiecessary).

IDL Definition

i nterface DOM nput Source {
attri bute DOM nput Stream byteStream

attri bute DOVReader char act er Stream
attribute DOVString encodi ng;
attribute DOVString publi cl d;

attribute DOVString system d;

62

2.3.2. Interfaces

Attributes

byt eSt r eamof typeDOM nput St r eam
An attribute of a language-binding dependent type that represents a stiggssof
The parser will ignore this if there is also a character stream specified, but it will use a byte
stream in preference to opening a URI connedtamsif.
If the application knows the character encoding of the byte stream, it should set the
encoding property. Setting the encoding in this way will override any encoding specified in
the XML declaratioritself.

char act er St r eamof typeDOVReader
An attribute of a language-binding dependent type that represents a stream of 16 bit values
(utf-16 encodeaharacters).
If a character stream is specified, the parser will ignore any byte stream and will not
attempt to open a URI connection to the sysintifier.

encodi ng of typeDOVSt ri ng
The character encoding, if known. The encoding must be a string acceptable for an XML
encoding declaration (see section 4.3.3 of the XMLrdcdmmendation).
This attribute has no effect when the application provides a character stream. For other
sources of input, an encoding specified by means of this attribute will override any
encoding specified in the XML or text declaration of the XML, or an encoding obtained
from a higher level protocol, such lakp.

publ i cl d of typeDOMVSt ri ng
The public identifier for this input source. The public identifier is always optional: if the
application writer includes one, it will be provided as part of the locatfonmation.

system d of typeDOVSt r i ng
The system identifier for this input source. The system identifier is optional if there is a
byte stream or a character stream, but it is still useful to provide one, since the application
can use it to resolve relative URIs and can include it in error messages and warnings (the
parser will attempt to open a connection to the URI only if there is no byte stream or
character streaspecified).
If the application knows the character encoding of the object pointed to by the system
identifier, it can register the encoding by setting the encaatinidpute.
If the system ID is a URL, it must be fullgsolved.

Interface DOMEntityResolver

DOVENt i t yResol ver Provides a way for applications to redirect references to extamtities.

Applications needing to implement customized handling for external entities must implement this
interface and register their implementation by settingetite t yResol ver property of the

[DOVBui T der][p.56] .

ThelDOMVBUI | der |[p.56] will then allow the application to intercept any external entities (including
the external DTD subset and external parameter entities) before indiieing

Many DOM applications will not need to implement this interface, but it will be especially useful for
applications that build XML documents from databases or other specialized input sources, or for
applications that use URI types other thHRLs.

63

2.3.2. Interfaces

DOVEtL i t yResol ver is based on the SAXEnt i t yResol ver interface, described at
|http://www.megginson.com/SAX/Java/javadoc/org/xml/sax/EntityResolvef.html

IDL Definition

interface DOMVENtityResol ver {
DOM nput Sour ce resol veEntity(in DOVBtring publicld,
in DOVBtring systemd)
rai ses(DOVByst enmExcepti on);
b

Methods
resol veentity

Allow the application to resolve exterrettities.
The[DOVBuUI T der][p.56] will call this method before opening any external entity except
the top-level document entity (including the external DTD subset, external entities
referenced within the DTD, and external entities referenced within the document element);
the application may request that resolve the entity itself, that it use an
alternative URI, or that it use an entirely different inpatirce.
Application writers can use this method to redirect external system identifiers to secure
and/or local URIs, to look up public identifiers in a catalogue, or to read an entity from a
database or other input source (including, for example, a dialg

If the system identifier is a URL, tf@OVBui | der][p.56] must resolve it fully before
reporting it to the application through this interface.

Note: See issue #4. An alternative would be to pass the URL out without resolving it, and
to provide a base as an additional parameter. SAX resolves URLSs first, and does not
provide abase.

Parameters

publ i cl d of typeDOMSt ri ng
The public identifier of the external entity being referenced, or null if none was
supplied.

syst em d of typeDOVSt r i ng
The system identifier of the external entity beiaterenced.

Return Value

[DOM nput Sour ce| A|DOM nput Sour ce|object describing the new input
[p.62] source, or null to request that the parser open a regular URI
connection to the systeigentifier.

Exceptions

DOVByst enExcepti on Any DOVByst enExcept i on, possibly wrapping
anotherexception.

64

http://www.megginson.com/SAX/Java/javadoc/org/xml/sax/EntityResolver.html

2.3.2. Interfaces

Interface DOMBuilderFilter

DOMBuUI | der Fi | t er s provide applications the ability to examine Element nodes as they are being
constructed during a parse. As each elements is examined, it may be modified or removed, or the
entire parse may be terminateakly.

At the time any of the filter methods are called by the parser, the owner Document and
DOMImplementation objects exist and aecessible.

All validity checking while reading a document occurs on the source document as it appears on the
input stream, not on the DOM document as it is built in memory. With filters, the document in
memory may be a subset of the document on the stream, and its validity may have been affected by
thefiltering.

IDL Definition
interface DOVBui | derFilter {
bool ean startEl enent (i n El enent el enent);
bool ean endEl ement (in El ement el enent);
}s
Methods
endEl enent

This method will be called by the parser at the completion of the parse of each element.
The element node will exist and be complete, as will all of its children, and their children,
recursively. The element’s parent node will also exist, although that node may be
incomplete, as it may have additional children that have not yetdaesed.
From within this method, the new node may be freely modified - children may be added or
removed, text nodes modified, etc. This node may also be removed from its parent node,
which will prevent it from appearing in the final document at the completion of the parse.
Aside from this one operation on the node’s parent, the state of the rest of the document
outside of this node is not defined, and the affect of any attempt to navigate to or modify
any other part of the documentusdefined.
For validating parsers, the checks are made on the original document, before any
modification by the filter. No validity checks are made on any document modifications
made by the filter.
Parameters
el enent of typeEl enent
The newly constructed element. At the time this method is called, the element is
complete - it has all of its children (and their children, recursively) and attributes, and
is attached as a child to piarent.
Return Value

bool ean returntrue

No Exceptions

65

2.3.2. Interfaces

start El enent
This method will be called by the parser after each Element start tag has been scanned, but
before the remainder of the Element is processed. The intent is to allow the element,
including any children, to be efficientgkipped.
The element node passedstoar t El enent for filtering will include all of the Element’s
attributes, but none of the children nodes. The Element may not yet be in place in the
document being constructed (it may not have a paiate.)
A StartElement filter function may access or change the attributers for the Element.
Changing NameSpace declarations will have no effect on name space resolution by the
parser.
For efficiency, the Element node passed to the filter may not be the same one as is actually
placed in the tree if the node is accepted. And the actual node (node object identity) may be
reused during the process of reading in and filtering a document.
Parameters
el ement of typeEl enment
The newly encountered element. At the time this method is called, the element is
incomplete - it will have its attributes, but obildren.
Return Value

bool ean return true if this Element should be included in the DOM document
being built. Return false if the Element and all of its children should be
skipped.

No Exceptions
Interface DOMWriter

DOMWriter provides an API for serializing (writing) a DOM document out in the form of a source
XML document. The XML data is written to an output stream, the type of which depends on the
specific language bindings use.

Three options are available for the general appearance of the formatted output: As-is, canonical and
reformatted.

® As-is formatting leaves all "white space in element content" and new-lines unchanged. If the
DOM document originated as XML source, and if all white space was retained, this option will
come the closest to recovering the format of the original document. (There may still be
differences due to normalization of attribute values and new-line characters or the handling of
character references.)

e Canonical formatting writes the document according to the rules specified by W3C Canonical
XML Version 1.0}http://www.w3.org/TR/xml-c14n

® Reformatted output has white space and newlines adjusted to produce a pretty-printed, indented,
human-readable form. The exact form of the transformations spectified.

DOWMW i t er accepts any node type for serialization. For nodes of@gpenent][p.26] or
Enti ty, well formed XML will be created. The serialized output for these node types is either as a
Document or an External Entity, respectively, and is acceptable input for an XML parser. For all

66

http://www.w3.org/TR/xml-c14n

2.3.2. Interfaces

other types of nodes the serialized form is not specified, but should be something useful to a human
for debugging or diagnostic purposes. Note: rigorously designing an external (source) form for
stand-alone node types that don't already have one defined by the XML rec seems a bit much to take
onhere.

Within a Document or Entity being serialized, Nodes are processelioass

® Documents are written including an XML declaration and a DTD subset, if one exists in the
DOM. Writing a document node serializes the entire document.

® Entity nodes, when written directly IBOMN i t er . wri t eNode(), output a Text Decl and
the entity expansion. The resulting output will be valid as an extentiay.
No output is generated for any entity nodes when writBgaunment][p.26] .

® Entity References nodes are serializes as an entity reference of tHe%enti t yNane; ") in
the output. Child nodes (the expansion) of the entity reference are ignored.

® CDATA sections containing content characters that can not be represented in the specified
output encoding are handled according to the "split-cdata-sectiptish.
If the option is true, CDATA sections are split, and the unrepresentable characters are serialized
as numeric character references in ordinary content. The exact position and number of splits is
not specified.
If the option is false, unrepresentable characters in a CDATA section are reported as errors. The
error is not recoverable - there is no mechanism for supplying alternative characters and
continuing with the serialization.

e All other node types (Element, Text, etc.) are serialized to their corresponding XML source
form.

Within the character data of a document (outside of markup), any characters that cannot be
represented directly are replaced with character references. Occurrences of '<’ and '&’ are replaced
by the predefined entities < and &. The other predefined entities (>, &apos, etc.) are not
used; these characters can be included directly. Any character that can not be represented directly in
the output character encoding is serialized as a numeric chaedetence.

Attributes not containing quotes are serialized in quotes. Attributes containing quotes but no
apostrophes are serialized in apostrophes (single quotes). Attributes containing both forms of quotes
are serialized in quotes, with quotes within the value represented by the predefined entity ".
Any character that can not be represented directly in the output character encoding is serialized as a
numeric charactaeference.

Within markup, but outside of attributes, any occurrence of a character that cannot be represented in
the output character encoding is reported as an error. An example would be serializing the element
<LaCafada/> with thencoding=US-ASCII

Unicode Character Normalization. When requested by settingotheal i zeChar act er s option

on DOMWriter, all data to be serialized, both markup and character data, is normalized according to
the rules defined by Unicode Canonical Composition, Normalization Form C. The normalization
process affects only the data as it is being written; it does not alter the DOM'’s view of the document
after serialization has completed. The W3C character model and normalization are described at
[http:/iwww.w3.0org/TR/charmod/#TextNormalizatlddnicode normalization forms are described at

67

http://www.w3.org/TR/2001/WD-charmod-20010126/#sec-TextNormalization

2.3.2. Interfaces

[http://www.unicode.org/unicode/reports/tril5/

Name space checking and fixup during serialization is a user option. When the option is selected, the
serialization process will verify that name space declarations, name space prefixes and the name
space URIs associated with Elements and Attributes are consistent. If inconsistencies are found, the
serialized form of the document will be altered to remove them. The exact form of the alterations are
not defined, and are implementatidependent.

Any changes made affect only the name space prefixes and declarations appearing in the serialized
data. The DOM'’s view of the document is not altered by the serialization operation, and does not
reflect any changes made to name space declarations or prefixes in the sexgtiaed

DOMW i t er s have a number of named properties that can be queried or set. Here is a list of
properties that must be recognized byirapplementations.

® normalizeCharacters
true: Perform Unicode Normalization of the characters in document as they are written out.
Only the characters being written are (potentially) altered. The DOM document itself is
unchanged.
false: do not perform charactenrmalization.
default:true.
supported values: true: required; false: required.
® namespaceFixup
true: Check namespace declarations and prefixes for consistency, and fix them in the serialized
data if they arénconsistent.
false: Perform no special checks on name space declarations, prefikelsor
default:true;
supported values: true: required; false: required.
® gsplit-cdata-sections
true: Split CDATA sections containing characters that can not be represented in the output
encoding, and output the characters using numeric charafgegnces.
false: Signal an error if a CDATA section contains an unrepreserfadnacter.
supported values: true: required; falsuired.

IDL Definition
interface DOMWiter {
attribute DOVString encodi ng;
readonly attribute DOVString | ast Encodi ng;

attribute unsigned short format ;
// Modified in DOM Level 3:

attribute DOVString newLi ne;
voi d wri teNode(in DOMOut put St ream desti nati on,
i n Node node)

rai ses(DOVByst emExcepti on);
b

Attributes

68

http://www.unicode.org/unicode/reports/tr15/

2.3.2. Interfaces

encodi ng of typeDOMVSt ri ng
The character encoding in which the output willoéten.
The encoding to use when writing is determined as follows:

e |f the encoding attribute has been set, that value will be used.

e |f the encoding attribute is null or empty, but the item to be written includes an
encoding declaration, that value will be used.

e |[f neither of the above provides an encoding name, a default encoding of "utf-8" will
beused.

The default value isull.

f or mat of typeunsi gned short
As-is, canonical or reformatteNeed to add constants for these.
The default value ias-is.

| ast Encodi ng of typeDOVSt r i ng, readonly
The actual character encoding that was last used by this formatter. This convenience
method allows the encoding that was used when serializing a document to be directly
obtained.

newlLi ne of typeDOVSt r i ng, modified inDOM Level 3
The end-of-line character(s) to be used in the XML being written out. The only permitted
values are these:

e null: Use a default end-of-line sequence. DOM implementations should choose the
default to match the usual convention for text files in the environment being used.
Implementations must choose a default sequence that matches one of those allowed by
the XML Recommendatiofinttp://www.w3.0rg/TR/REC-xml#sec-line-ends

e CR

® CR-LF

e LF

The default value for this attributensill.
Methods
wri t eNode
Write out the specified node as described above in the descripfiVia¥ i t er . Writing
a Document or Entity node produces a serialized form that is well formed XML. Writing
other node types produces a fragment of text in a form that is not fully defined by this
document, but that should be useful to a human for debugging or diagnostic purposes.
Parameters
desti nati on of typeDOMOut put St r eam
The destination for the data to Wwetten.
node of typeNode
The[Docunent][p.26] or Ent i t y node to be written. For other node types,
something sensible should be written, but the exact serialized formspeauitied.
Exceptions

DOVByst enExcepti on This exception will be raised in response to any sort of
IO or system error that occurs while writing to the
destination. It may wrap an underlying systexception.

69

http://www.w3.org/TR/REC-xml#sec-line-ends

2.3.2. Interfaces

No Return Value

Interface DocumentL S

The DocumentLS interface provides a mechanism by which the content of a document can be
replaced with the DOM tree produced when loading a URL, or parsing a string. The expectation is
that an instance of the DocumentLS interface can be obtained by using binding-specific casting
methods on an instance of the Documaetdrface.

IDL Definition

i nterface DocunentLS {

attri bute bool ean async;

voi d abort();

bool ean |l oad(in DOVBtring url);

bool ean | oadXM_(in DOMString source);
DOVSt ri ng saveXM_(i n Node node)

b

rai ses(DOVExcepti on);

Attributes
async of typebool ean

Indicates whether the method load should be synchronous or asynchronous. When the
async attribute is set to true the load method returns control to the caller before the
document has completed loading. The default value of this propémeis

Setting the value of this attribute might throw NOT_SUPPORTED_ERR if the
implementation doesn’t support the mode the attribute is being.set

<< ISSUE >> Should the DOM spec define the default value of this property? What if
implementing both async and sync 10 is impractical in sgysteems?

Methods
abort

If the document is currently being loaded as a result of the methedi() being invoked

the loading and parsing is immediately aborted. The possibly partial result of parsing the
document is discarded and the document is cleared.

No Parameters

No Return Value

No Exceptions

| oad

Replaces the content of the document with the result of parsing the given URL. Invoking
this method will either block the caller or return to the caller immediately depending on the
value of the async attribute. Once the document is fully loaded the document will fire a
"load" event that the caller can register as a listener for. If an error occurs the document
will fire an "error" event so that the caller knows that the load failed (see
[Par ser Err or Event|[p.71]).
Parameters
url of typeDOVSt ri ng

The URL for the XML file to bdoaded.
Return Value

70

2.3.2. Interfaces

bool ean If async is set to true load() returns true if the document load was
successfully initiated. If an error occurred when initiating the document
load load() returnfalse.
If async is set to false load() returns true if the document was successfully
loaded and parsed. If an error occurred when either loading or parsing the
URL load() returngalse.

No Exceptions
| oad XML
Replace the content of the document with the result of parsing the input string, this method
is always synchronous.
Parameters
sour ce of typeDOVSt ri ng
A string containing an XMldocument.
Return Value

bool ean True if parsing the input string succeeded without errors, othefalie

No Exceptions
saveXM

Save the document or the given node to a string (i.e. serialize the document or node).

Parameters

node of typeNode
Specifies what to serialize, if this parameter is null the whole document is serialized, if
it's non-null the given node eerialized.

Return Value

DOVBtring The serialized document node.

Exceptions

DOVExcepti on DOMException WRONG_DOCUMENT_ERR: Raised if the
node passed in as the node parameter is from andutbement.

Interface ParserErrorEvent
ParserErrorEvent is the event that is fired if there’s an error in the XML documenipbesegl.

IDL Definition

71

2.3.2. Interfaces

i nterface ParserErrorEvent {

readonly attribute |ong error Code;
readonly attribute |ong fil epos;
readonly attribute |ong l'ine;
readonly attribute |ong | i nepos;
readonly attribute DOMBtring reason;
readonly attribute DOMBtring srcText;
readonly attribute DOVBtring url;
b
Attributes

er r or Code of typel ong, readonly
An non-zero implementation dependent error code describing the error, or 0 if there is no
error.
fil epos of typel ong, readonly
The byte position in the file where the eromcurred.
| i ne of typel ong, readonly
The line number where the ermecurred.
| i nepos of typel ong, readonly
The number of the character on the line where the ecairrred.
r eason of typeDOMSt r i ng, readonly
An implementation dependent string describing the error, or an empty string if there was no
error.
srcText of typeDOMVSt ri ng, readonly
The source of the line where the error occurredilable.
ur |l of typeDOVSt ri ng, readonly
The normalized URL of the document where the esomurred.

72

Appendix A: IDL Definitions

Appendix A: IDL Definitions

This appendix contains the complete OMG I[@MGIDL] for the Level 3 Document Object Model
Content Model and Load and Sadefinitions.

The IDL files are also available as:
http://www.w3.0rg/TR/2001/WD-DOM-Level-3-CMLS-20010419/idl.zip

content-models.idl

/! File: content-nodels.idl

#i f ndef _ CONTENT- MODELS | DL_
#defi ne _CONTENT- MODELS | DL_

#i ncl ude "domidl"

#pragma prefix "dom w3c. org"
nodul e cont ent - nodel s

{

typedef dom :DOMString DOVBtring;

typedef dom :decimal decinal;

typedef dom:int int;

typedef dom : Node Node;

typedef dom : nsEl enent nsEl enment;

typedef dom : DOM npl enent ati on DOM npl enent ati on;
typedef dom : El enent, NodeCM El enrent , NodeCM

typedef dom : Text, NodeCM Text, NodeCM

typedef dom : Docurnent Type, NodeCM Docunent Type, NodeCM
typedef dom:Attr, NodeCM Attr, NodeCM

i nterface CWbdel ;
interface CMChil dren;

i nterface DOVErrorHandl er;
interface DOVLocat or;

i nterface CMNode ({

const unsi gned short CM_ELEMENT _DECLARATI ON = 1;
const unsi gned short CM_ATTRI BUTE_DECLARATI ON = 2;
const unsi gned short CM_NOTATI ON_DECLARATI ON = 3;
const unsi gned short CM _ENTI TY_DECLARATI ON = 4;
const unsi gned short CM_CHI LDREN = b;
const unsi gned short CM_MODEL = 6;
const unsi gned short CM_EXTERNAL MODEL =7,
readonly attribute unsigned short cmNodeType;

attri bute CMvbdel owner CWWbdel ;

attribute DOVBtring nodeNane;

attribute DOVBtring prefix;

attribute DOVBtring | ocal Nane;

attribute DOVBtring nanespaceURl ;
CMNode clone();

73

content-models.idl:

i nterface CMNodeLi st {

b
i nterface CMNanmedNodeMap {
b
interface CMVDat aType {
const short STRI NG_DATATYPE =
short getCWPrimtiveType();
b
interface CMPrinmitiveType : CMDataType {
const short BOOLEAN_DATATYPE =
const short FLOAT_DATATYPE =
const short DOUBLE_DATATYPE =
const short DECI MAL_DATATYPE =
const short HEXBI NARY_DATATYPE =
const short BASE64BlI NARY_DATATYPE =
const short ANYURI _DATATYPE =
const short QNAVE_DATATYPE =
const short DURATI ON_DATATYPE =
const short DATETI ME_DATATYPE =
const short DATE_DATATYPE =
const short TI ME_DATATYPE =
const short YEARMONTH_DATATYPE =
const short YEAR_DATATYPE =
const short MONTHDAY_DATATYPE =
const short DAY_DATATYPE =
const short MONTH_DATATYPE =
const short NOTATI ON_DATATYPE =
attribute deci mal | owal ue;
attribute deci mal hi ghVal ue;
b
i nterface CMEl ement Decl aration : CWNode {
attribute CMVDat aType el enent Type;
readonly attribute bool ean i sPCDhat aOnl y;
attribute DOMVString t agNane;
i nt get Cont ent Type() ;
CMChi | dren get CMChi | dren();
CWNanedNodeMap getCMAt tri butes();
CWNanedNodeMap get CM& andChi | dren();
b
interface CMChildren : CMNode {
const unsigned | ong UNBQOUNDED =
const unsi gned short NONE =
const unsi gned short SEQUENCE =
const unsi gned short CHO CE =
attribute unsigned short |'i st Operator;
attribute unsigned | ong m nCccurs;
attribute unsigned | ong maxQccurs;
attri bute CMNodeli st subModel s;
CWNode removeCWNode(i n unsi gned | ong nodel ndex) ;
i nt i nsert CWNode(i n unsi gned | ong nodel ndex,
in CMNode newNode) ;
i nt appendCMNode(i n CWNode newNode) ;

74

I

interface

const short NO_VALUE_CONSTRAI NT
const short DEFAULT_VALUE_CONSTRAI NT
const short FI XED_VALUE_CONSTRAI NT

I

interface

const short | NTERNAL_ENTI TY
const short EXTERNAL_ENTI TY

I

interface

I
interface
voi d

h

interface

const short WF_CHECK

const short NS_WF_CHECK

const short PARTI AL_VALI DI TY_CHECK
const short STRI CT_VALI DI TY_CHECK

i nt
CW\vbdel

content-models.idl:

CVAttri buteDecl aration : CWMNode {

nmn
[EEY

attribute DOVBtring att r Nane;
attribute CMDat aType attrType;
attribute DOVBtring attri but eval ue;
attribute DOVBtring enumAttr;

attri bute CMNodelLi st owner El enent ;
attribute short constrai nt Type;

CMEntityDecl aration : CWMNode {

[EEY

attribute short entityType;
attribute DOVBtring entityNane;
attribute DOVBtring entityVal ue;
attribute DOVBtring system d;
attribute DOVBtring publicld;
attribute DOVBtring not ati onNane;

CMNot at i onDecl arati on : CMNode ({
attribute DOVBtring not ati onNane;
attribute DOVBtring system d;
attribute DOVBtring publicld;

Docunent {
set Error Handl er (i n DOVErr or Handl er handl er);

Docunment CM : Docunent {

1
2;
3.

1

-

1

attribute bool ean conti nuousVal i di t yChecki ng;
attribute short wf Val i di t yCheckLevel ;
nunmcvs () ;
getlnternal CM);

CMNodeli st get CMs() ;

CWModel
voi d
voi d
bool ean

I

interface
voi d

voi d

get ActiveCM);

addCM i n CMvbdel cm;
removeCM i n CMvbdel cn);
activateCMin Cvvbdel cm;

DOVEr r or Handl er {
war ni ng(i n DOMLocat or where,
in DOVBtring how,
in DOVBtring why)
rai ses(dom : DOVByst enExcepti on);
fatal Error (i n DOM_Locat or wher e,

75

content-models.idl:

in DOVBtring how,
in DOVBt ring why)
rai ses(dom : DOVByst enExcepti on) ;
voi d error(in DOMLocat or where,
in DOVBtring how,
in DOVBtring why)
rai ses(dom : DOVByst enExcepti on) ;

3
i nterface DOVLocat or ({
i nt get Col utmNurber () ;
i nt get Li neNunber () ;
DOVSt ri ng get Publicl D();
DOVBt ri ng get System) ;
Node get Node() ;
3
interface CMvbdel : CwWNode {
readonly attribute bool ean i sNamespaceAwar e;
attri bute CMEl ement Decl aration rootEl emrent Decl ;
DOVBt ri ng get Location();
nsEl ement get CMNanmespace();
CWNanedNodeMap get CMNodes() ;
bool ean renoveNode(i n CWMNode node);
bool ean i nsertBefore(in CMNode newNode,
i n CMNode r ef Node) ;
bool ean val i date();

CMEl enent Decl arati on creat eCVEl ement Decl arati on(i nout DOMSt ring namespaceUR!,
in DOVBtring qualifiedEl ement Nane,
in int content Spec)
rai ses(dom : DOVExcepti on);
CMAt tri buteDecl aration createCMAttri buteDecl aration(i nout DOVString namespaceURl,
in DOVBtring qualifiedNane)
rai ses(dom : DOVExcepti on);
CMNot at i onDecl arati on creat eCM\ot ati onDecl arati on(in DOVBtring narne,
in DOVBtring systemdentifier,
i nout DOVBtring publicldentifier)
rai ses(dom : DOVExcepti on);
CMENntityDecl aration createCMENntityDecl aration(in DOVBtring nane)
rai ses(dom : DOVExcepti on);
CMChi | dren creat eCMChi I dren(in unsigned | ong m nCccurs,
in unsigned | ong maxCccurs,
i nout unsigned short operator)
rai ses(dom : DOVExcepti on);
3

i nterface CMEXternal Mbdel : CMvbdel {
3

interface DOM npl enent ati onCM : DOM npl enent ati on {
CW\vbdel createCM);
CMEXt er nal Model creat eExternal CM);

H
interface NodeCM : Node {

bool ean canl nsertBefore(in Node newchild,
in Node refChild)

76

content-models.idl:

rai ses(dom : DOVExcepti on);

bool ean canRenoveChi I d(in Node ol dChil d)
rai ses(dom : DOVExcepti on);
bool ean canRepl aceChi Il d(in Node newchil d,

i n Node ol dChi | d)
rai ses(dom : DOVExcepti on);
bool ean canAppendChi | d(i n Node newChi | d)
rai ses(dom : DOVExcepti on);

bool ean i sValid()
rai ses(dom : DOVExcepti on);
3
interface El enentCM : El enent, NodeCM {
i nt cont ent Type();

CMEl enent Decl arati on get El enent Decl arati on()
rai ses(dom : DOVExcepti on);

bool ean canSet Attribute(in DOVString attrnane,
in DOVBtring attrval);

bool ean canSet Attri but eNode(i n Node node);

bool ean canSet Attri but eNodeNS(i n Node node);

bool ean canSet AttributeNS(in DOMString attrnane,

in DOVBtring attrval,
in DOVBt ri ng namespaceUR!,
in DOVSBtring | ocal Nane) ;

bool ean canRenoveAttri bute(in DOVBtring attrnane);
bool ean canRenoveAttri buteNS(in DOVBtring attrnane,
i nout DOVBtring nanmespaceURl);
bool ean canRenoveAt tri but eNode(i n Node node);
3
interface CharacterbDataCM : Text, NodeCM {
bool ean i s\Whi tespaceOnl y();
bool ean canSet Dat a(i n unsigned | ong of fset,
in DOVBtring arQg)
rai ses(dom : DOVExcepti on);
bool ean canAppendDat a(i n DOMString arg)
rai ses(dom : DOVExcepti on);
bool ean canRepl aceDat a(i n unsi gned | ong of fset,

in unsigned | ong count,
in DOVBtring arQg)
rai ses(dom : DOVExcepti on);
bool ean canl nsertData(i n unsigned | ong offset,
in DOVBtring arQg)
rai ses(dom : DOVExcepti on);
bool ean canDel et eDat a(i n unsi gned | ong of fset,
in DOVBtring arQg)
rai ses(dom : DOVExcepti on);

3
i nterface Document TypeCM : Docunent Type, NodeCM {
bool ean i sEl ement Defined(in DOVString el enifypeNane) ;
bool ean i sEl ement Defi nedNS(in DOVBtring el enTypeNane,
in DOVBtri ng nanespaceURl,
in DOVBtring | ocal Nane) ;
bool ean i sAttributeDefined(in DOVBtring el enTypeNane,
in DOVBtring attrNane);
bool ean i sAttributeDefinedNS(in DOVSBtring el emlypeNarne,

7

load-save.idl:

in DOVBtring attrNane,
in DOVBtri ng nanespaceURl,
in DOVBtring | ocal Nane);
bool ean i sentityDefined(in DOVString ent Nane);
3

interface AttributeCM: Attr, NodeCM {
CVAttri buteDecl aration getAttri buteDecl aration();
CWNot at i onDecl arati on getNotation()
rai ses(dom : DOVExcepti on);
3
3

#endif // _CONTENT- MODELS | DL_

load-save.idl

/1l File: |oad-save.idl

#i fndef _LOAD SAVE I DL_
#define _LOAD SAVE |DL_

#i ncl ude "domidl"

#pragma prefix "dom w3c. org"
modul e | oad- save

{

typedef dom : DOVErr or Handl er DOVEr r or Handl er;
typedef dom : DOVString DOMSBtring;

typedef dom : Document Docunent;

typedef dom : DOM nput St r eam DOM nput St r eam
typedef dom : DOVReader DOVReader ;

typedef dom: El ement El enent;

typedef dom : DOMOut put St r eam DOMCut put St r eam
typedef dom : Node Node;

nt erface DOVBui | der;
nterface DOWViter;
nterface DOMVENtityResol ver;
nterface DOVBui l derFil ter;
nt erf ace DOM nput Sour ce;

nt erface DOM npl enentati onLS {
DOVBUI | der creat eDOVBUI | der () ;
DOMWV it er createDOMWYiter();

h

i nterface DOVBuUIi | der {

attribute DOMENtityResol ver entityResol ver;

attri bute DOVErrorHandl er errorHandl er;

attribute DOVBui lderFilter filter;
voi d set Feature(in DOMString nane,

in bool ean state)
rai ses(dom : DOVExcepti on);

bool ean support sFeature(in DOVString nane);

78

bool ean
bool ean

Docurent

Docurent

I

load-save.idl:

canSet Feature(in DOVBtring nane,
in bool ean state);
get Feature(in DOVBtri ng nane)
rai ses(dom : DOVExcepti on);
parseURI (in DOVBtring uri)
rai ses(dom : DOVExcepti on,
dom : DOVByst enExcepti on);
par seDOM nput Sour ce(i n DOM nput Source i s)
rai ses(dom : DOVExcepti on,
dom : DOVByst enExcepti on);

i nterface DOM nput Source {

attribute

DOM nput Stream byt eStream

attri bute DOVReader
attribute DOVBtring
attribute DOVSBtring
attribute DOVBtring

I

interface DOMVENntityResol ver {
DOM nput Sour ce

I

interface DOVBui | derFilter {
bool ean
bool ean

I

interface DOWYiter {

resol veEntity(in

charact er St ream
encodi ng;
publicld;
system d;

DOVBt ring publicld,
DOVBtring systenm d)
rai ses(dom : DOVByst enExcepti on) ;

startEl enent (i n El enent el enent);
endEl ement (i n El ement el enent);

attribute DOVBtring encodi ng;
readonly attribute DOVString | ast Encodi ng;
attribute unsigned short format;
/1 Modified in DOM Level 3:
attribute DOVBtring newLi ne;
voi d writeNode(in DOMOut put St ream destination
i n Node node)

I

interface Docunent LS {
attri bute bool ean
voi d abort ();
bool ean
bool ean
DOVSt ri ng

I

interface ParserErrorEvent {
readonly attribute |ong
readonly attribute |ong
readonly attribute |ong
readonly attribute |ong
readonly attribute DOVString

rai ses(dom : DOVByst enExcepti on) ;

async;

| oad(in DOMBtring url);
| oadXM_(in DOMBtring source)
saveXM.(i n Node node)

rai ses(dom : DOVExcepti on);

error Code
filepos;
i ne;

i nepos;
reason;

79

readonly attribute DOVString
readonly attribute DOVString
b
b

#endif // _LOAD-SAVE |DL_

load-save.idl:

srcText;
url

80

Appendix B: Java Language Binding

Appendix B: Java LanguageBinding

This appendix contains the complete Jfavd bindings for the Level 3 Document Object Model
Content Model and Load arghve.

The Java files are also available as
http://www.w3.0rg/TR/2001/WD-DOM-Level-3-CMLS-20010419/java-binding.zip

org/w3c/dom/contentModel/CMModel.java:

package org.w3c. dom cont ent Mbdel ;

i mport org.w3c.dom nsEl enent;
i mport org.w3c.dom DOVExcepti on;

public interface CMbdel extends CWNode {
publ i ¢ bool ean get| sNanespaceAwar e() ;

publ i ¢ CMElI errent Decl ar ati on get Root El enent Decl () ;
public void set Root El enent Decl (CMEl enent Decl ar ati on root El enent Decl) ;

public String getLocation();

publ i c nsEl enent get CVNanmespace();

publ i ¢ CMNanmedNodeMap get CMNodes();
publ i c bool ean renpveNode(CvMNode node);

publ i ¢ bool ean i nsert Bef or e(CMNode newNode,
CWMNode r ef Node) ;

public bool ean validate();

publ i ¢ CMVElI errent Decl arati on creat eCVEl enent Decl arati on(String namespaceURl,
String qualifiedEl enent Nane,
i nt content Spec)
t hr ows DOMVExcepti on;

public CMAttri buteDeclaration createCVAttri buteDeclaration(String namespaceURl,
String qualifiedNane)
t hrows DOMVExcepti on;

publ i c CMNot ati onDecl arati on creat eCWMNot ati onDecl aration(String naneg,
String systemdentifier,
String publicldentifier)
t hrows DOVExcepti on;

public CMEntityDecl aration createCMENntityDeclaration(String nane)
t hrows DOMVExcepti on;

public CMChildren createCMChildren(int minCccurs,
int maxCccurs,

81

org/w3c/dom/contentModel/CMExternalModel.java:

short operator)
t hrows DOVExcepti on;

org/w3c/dom/contentModel/CMExternalModel.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMEXternal Mbdel extends CwWbdel {
}

org/w3c/dom/contentModel/CMNode.java:

package org.w3c. dom cont ent Mbdel ;

public interface CMNode {

public static final short CM ELEMENT_DECLARATI ON = 1;
public static final short CM ATTRI BUTE_DECLARATION = 2;
public static final short CM NOTATI ON_ DECLARATION = 3;
public static final short CM ENTI TY_DECLARATI ON = 4,
public static final short CM CH LDREN = b5;
public static final short CM MODEL = 6;
public static final short CM EXTERNALMODEL =7,
public short get CnNodeType();

publ i c CMvbdel get Omer CWWbdel () ;
public void set Oaner CWbdel (CMvbdel owner CMVbdel) ;

public String get NodeNane();
public void set NodeNane(String nodeNane);

public String getPrefix();
public void setPrefix(String prefix);

public String getLocal Nane();
public void setLocal Nane(String | ocal Nane);

public String get NamespaceURI ();
public void set NanespaceURI (String namespaceURl);

publ i c CWNode cl one();

org/w3c/dom/contentModel/CMNodelList.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMNodeLi st {
}

82

org/w3c/dom/contentModel/CMNamedNodeMap.java:

org/w3c/dom/contentModel/CMNamedNodeMap.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMNamedNodeMap {
}

org/w3c/dom/contentModel/CMDataType.java:

package org.w3c.dom cont ent Mbdel ;
public interface CWMDataType {

public static final short STRI NG _DATATYPE =1;
public short getCWPrinitiveType();

org/w3c/dom/contentModel/CMPrimitiveType.java:

package org.w3c.dom cont ent Mbdel ;
i mport org.w3c.dom deci nal ;

public interface CMPrimtiveType extends CMDataType {

public static final short BOOLEAN DATATYPE = 2;
public static final short FLOAT_DATATYPE = 3;
public static final short DOUBLE_DATATYPE = 4;
public static final short DECH MAL_DATATYPE = b5;
public static final short HEXBI NARY_DATATYPE = 6;
public static final short BASE64BlI NARY_DATATYPE =7;
public static final short ANYUR _DATATYPE = 8;
public static final short QNAME_DATATYPE =09
public static final short DURATI ON_DATATYPE = 10;
public static final short DATETI ME_DATATYPE = 11;
public static final short DATE DATATYPE = 12;
public static final short TINME DATATYPE = 13;
public static final short YEARMONTH DATATYPE = 14;
public static final short YEAR DATATYPE = 15;
public static final short MONTHDAY_DATATYPE = 16;
public static final short DAY_DATATYPE = 17;
public static final short MONTH _DATATYPE = 18;
public static final short NOTATI ON_DATATYPE = 19;
publ i c deci mal get Lowval ue();

public void setLowval ue(deci mal | owval ue);

publ i c deci mal get H ghVal ue();
public void setH ghVal ue(deci mal hi ghVal ue);

83

org/w3c/dom/contentModel/CMElementDeclaration.java:

org/w3c/dom/contentModel/CMElementDeclaration.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMEl ement Decl arati on extends CMNode ({
publ i c CVDat aType get El enent Type();
public void setEl emrent Type(CVDat aType el enent Type) ;
publ i c bool ean get| sPCDat aOnl y();

public String get TagNane();
public void set TagNane(String tagNane);

public int getContentType();
public CMChil dren get CMChil dren();
publ i c CMNamedNodeMap get CMAttri butes();

publ i c CMNamedNodeMap get CM&G andChi |l dren();

org/w3c/dom/contentModel/CMChildren.java:

package org.w3c. dom cont ent Mbdel ;

public interface CMChildren extends CWMNode {

public static final int UNBOUNDED = MAX_LONG
public static final short NONE = 0;
public static final short SEQUENCE = 1,
public static final short CHO CE = 2;
public short getListOperator();

public void setListQperator(short |istOperator);

public int getMnGCccurs();
public void setM nQccurs(int mnCccurs);

public int getMaxCccurs();
public void set MaxQccurs(int maxCccurs);

publ i ¢ CMNodeLi st get SubMbdel s();
public void set SubModel s(CMNodeLi st subMdel s);

publ i c CMNode renpveCMNode(i nt nodel ndex) ;

public int insertCMNode(int nodel ndex,
CWNode newNode) ;

public int appendCMNode(CMNode newNode);

84

org/w3c/dom/contentModel/CMAttributeDeclaration.java:

org/w3c/dom/contentModel/CMAttributeDeclaration.java:

package org.w3c.dom cont ent Mbdel ;

public interface CVMAttri buteDecl arati on extends CvNode {

public static final short NO VALUE CONSTRAI NT = 0;
public static final short DEFAULT_VALUE CONSTRAINT = 1;
public static final short FIXED VALUE CONSTRAI NT = 2;
public String getAttrName();

public void setAttrName(String attrNane);

publ i c CMVDat aType getAttrType();
public void setAttrType(CVDat aType attrType);

public String getAttributeVal ue();
public void setAttributeValue(String attributeVal ue);

public String get EnumAttr();
public void setEnumAttr(String enumAttr);

publ i c CMNodeLi st get Oaner El enent () ;
public void set Oaner El ement (CMNodeLi st owner El ement) ;

public short getConstraintType();
public void setConstraint Type(short constraintType);

org/w3c/dom/contentModel/CMEntityDeclaration.java:

package org.w3c. dom cont ent Mbdel ;

public interface CMENntityDecl arati on extends CMNode {
public static final short | NTERNAL_ENTITY

public static final short EXTERNAL_ENTI TY

public short getEntityType();

public void setEntityType(short entityType);

=

public String getEntityNanme();
public void setEntityNane(String entityNane);

public String getEntityVal ue();
public void setEntityValue(String entityVal ue);

public String getSystemd();
public void setSystem d(String system d);

public String getPublicld();
public void setPublicld(String publicld);

public String getNotationNane();
public void setNotationName(String notati onNane);

85

org/w3c/dom/contentModel/CMNotationDeclaration.java:

org/w3c/dom/contentModel/CMNotationDeclaration.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMNotationDecl arati on extends CMNode {
public String getNotati onName();
public void setNotationName(String notati onNane);

public String getSystem d();
public void setSystem d(String systemnd);

public String getPublicld();
public void setPublicld(String publicld);

org/w3c/dom/contentModel/Document.java:

package org.w3c.dom cont ent Mbdel ;

public interface Docunent {
public void setErrorHandl er (DOVEr r or Handl er handl er);

org/w3c/dom/contentModel/DocumentCM.java:

package org.w3c.dom cont ent Mbdel ;

public interface Docunent CM extends Document {
public static final short W_CHECK

= 1:
public static final short NS _W_CHECK = 2;
public static final short PARTIAL_VALI D TY_CHECK = 3;
public static final short STRI CT_VALI D TY_CHECK = 4,
publ i ¢ bool ean get Conti nuousVal i di t yChecki ng();
public void set ContinuousVal i di t yChecki ng(bool ean conti nuousVal i di t yChecki ng);

public short getW Vali dityCheckLevel ();
public void setW ValidityCheckLevel (short wfValidityCheckLevel);

public int nunCMs();

public CMvbdel getlnternal CM);
publ i c CWMNodeLi st get CVs();
public CMvbdel getActiveCM);
public void addCM CMvbdel cnj;
public void renoveCM CMvbdel cmj;

publ i c bool ean activat eCM CMvbdel cn;

86

org/w3c/dom/contentModel/DOMImplementationCM.java:

org/w3c/dom/contentModel/DOMImplementationCM.java:
package org.w3c.dom cont ent Mbdel ;
i mport org.w3c.dom DOM npl enent ati on;

public interface DOM npl ement ati onCM ext ends DOM npl enent ati on {
public CMvbdel createCM);

publ i ¢ CMExt er nal Mbdel creat eExternal CM);

org/w3c/dom/contentModel/NodeCM.java:

package org.w3c.dom cont ent Mbdel ;

i mport org.w3c. dom Node;
i mport org.w3c.dom DOVExcepti on;

public interface NodeCM extends Node {
publ i c bool ean canl nsert Bef or e(Node newchil d,
Node ref Chil d)
t hrows DOMVExcepti on;

publ i c bool ean canRenpveChi | d(Node ol dChi | d)
t hrows DOVExcepti on;

publ i ¢ bool ean canRepl aceChi |l d(Node newChi l d,
Node ol dChi | d)
t hrows DOMVExcepti on;

publ i ¢ bool ean canAppendChi | d(Node newChi | d)
t hrows DOVExcepti on;

public bool ean isValid()
t hrows DOVExcepti on;

org/w3c/dom/contentModel/ElementCM.java:

package org.w3c.dom cont ent Mbdel ;
i mport org.w3c. dom Node;

i mport org.w3c.dom El emrent , NodeCM
i mport org.w3c. dom DOVExcepti on;

public interface El enent CM ext ends El enent, NodeCM {
public int contentType();

publ i ¢ CMEl errent Decl ar ati on get El ement Decl ar ati on()
t hrows DOVExcepti on;

publ i c bool ean canSet Attribute(String attrnamne,

87

org/w3c/dom/contentModel/CharacterDataCM.java:

String attrval);
publ i c bool ean canSet Attri but eNode(Node node);
publ i c bool ean canSet Attri but eNodeNS(Node node);
public bool ean canSet Attri buteNS(String attrnane,
String attrval,
String nanespaceURl,
String | ocal Nane) ;

publ i c bool ean canRenopveAttribute(String attrnane);

publ i c bool ean canRenpveAttri buteNS(String attrnane,
String nanespaceURl);

publ i ¢ bool ean canRenpveAttri but eNode(Node node);

org/w3c/dom/contentModel/CharacterDataCM.java:

package org.w3c.dom cont ent Mbdel ;

i mport org.w3c.dom Text, NodeCM
i mport org.w3c. dom DOVExcepti on;

public interface CharacterDataCM ext ends Text, NodeCM {
publ i c bool ean isWitespaceOnly();

publ i c bool ean canSet Dat a(i nt of f set,
String arg)
t hrows DOVExcepti on;

publ i c bool ean canAppendData(String arg)
t hrows DOVExcepti on;

publ i ¢ bool ean canRepl aceDat a(i nt of fset,
int count,
String arg)
t hrows DOVExcepti on;

publ i c bool ean canl nsertData(int offset,
String arg)
t hrows DOVExcepti on;

publ i c bool ean canDel et eDat a(i nt of fset,

String arg)
t hrows DOVExcepti on;

88

org/w3c/dom/contentModel/DocumentTypeCM java:

org/w3c/dom/contentModel/DocumentTypeCM.java:

package org.w3c.dom cont ent Mbdel ;
i mport org.w3c. dom Docunent Type, NodeCM

public interface Docunent TypeCM ext ends Documnent Type, NodeCM {
publ i c bool ean i sEl enent Defi ned(String el enTypeNane) ;

publ i c bool ean i sEl enent Defi nedNS(String el eniTypeNane,
String nanespaceURl,
String | ocal Nane);

public bool ean isAttributeDefined(String el eniTypeNane,
String attrNane);

public bool ean isAttri buteDefinedNS(String el enifypeNamne,
String attrNane,
String nanespaceURl,
String | ocal Nane);

publ i c bool ean isEntityDefined(String entNane);

org/w3c/dom/contentModel/AttributeCM.java:

package org.w3c.dom cont ent Mbdel ;

i mport org.w3c.dom Attr, NodeCM
i mport org.w3c.dom DOVExcepti on;

public interface AttributeCM extends Attr, NodeCM {
public CMAttri buteDeclaration getAttributeDeclaration();

public CWMNot ati onDecl arati on getNotation()
t hrows DOVExcepti on;

org/w3c/dom/contentModel/DOMErrorHandler.java:

package org.w3c.dom cont ent Mbdel ;
i mport org.w3c. dom DOVByst enExcepti on;

public interface DOVErrorHandl er {
public void warni ng(DOM_ocat or wher e,
String how,
String why)
t hrows DOVByst enExcepti on;

public void fatal Error (DOVM_ocat or where,

String how,
String why)

89

org/w3c/dom/contentModel/DOMLocator.java:

t hrows DOMSyst enExcepti on;
public void error(DOVML.ocat or where,
String how,

String why)
t hrows DOVSyst enExcepti on;

org/w3c/dom/contentModel/DOMLocator.java:

package org.w3c.dom cont ent Mbdel ;
i mport org.w3c. dom Node;

public interface DOMLocator {
public int getCol umNumnber();

public int getLineNunber();
public String getPubliclD();
public String getSystem I();

publ i c Node get Node();

org/w3c/dom/loadSave/DOMImplementationLS.java:

package org.w3c. dom | oadSave;

public interface DOM npl enentationLS {
publ i c DOMBuI | der creat eDOVBUI | der () ;

public DOWVYiter createDOMNiter();

org/w3c/dom/loadSave/DOMBuilder.java:

package org.w3c. dom | oadSave;

i mport org.w3c. dom DOVErr or Handl er;

i mport org.w3c.dom Docunent ;

i mport org.w3c. dom DOVByst enExcepti on;
i mport org.w3c. dom DOVExcepti on;

public interface DOVBuIi | der {
public DOMENntityResol ver getEntityResol ver();
public void setEntityResol ver (DOVEntityResol ver entityResolver);

publ i ¢ DOVError Handl er get ErrorHandl er () ;
public void setErrorHandl er (DOVEr r or Handl er errorHandl er);

90

publ i
publ i

publ i

publi

publ i

publ i

publ i

publ i

org/w3c/dom/loadSave/DOMInputSource.java:

DOMVBui | derFilter getFilter();
void setFilter(DOVBuilderFilter filter);

voi d set Feature(String naneg,
bool ean state)
t hrows DOVExcepti on;

bool ean supportsFeature(String nane);

bool ean canSet Feature(String nane,
bool ean state);

bool ean get Feature(String nane)
t hrows DOVExcepti on;

Document parseURI (String uri)
t hrows DOMExcepti on, DOVByst enExcepti on;

Docunment par seDOM nput Sour ce(DOM nput Sour ce is)
t hrows DOVExcepti on, DOVSyst enExcepti on;

org/w3c/dom/loadSave/DOMInputSource.java:

package org.w3c. dom | oadSave;

public interface DOM nput Source {

publ i
publ i

publ i
publ i

publ i
publ i

publ i
publ i

publ i
publ i

C
C

java.io. |l nputStream getByteStrean();
voi d setByteStrean(java.io. |l nputStream byteStrean;

java.io. Reader getCharacterStrean();
voi d set Character Strean(java.i o. Reader characterStreamn;

String get Encodi ng();
voi d set Encodi ng(String encoding);

String getPublicld();
voi d setPublicld(String publicld);

String getSystem d();
voi d set System d(String system d);

org/w3c/dom/loadSave/DOMEntityResolver.java:

package org.w3c. dom | oadSave;

i mport org.w3c. dom DOVByst enExcepti on;

public interface DOMENntityResol ver {
publ i c DOM nput Source resol veEntity(String publicld,

91

org/w3c/dom/loadSave/DOMBuilderFilter.java:

String systemd)
t hrows DOVSyst enExcepti on;

org/w3c/dom/loadSave/DOMBuilderFilter.java:
package org.w3c.dom | oadSave;
i mport org.w3c. dom El enent ;

public interface DOVBui | derFilter {
publ i c bool ean startEl enent (El enent el ement);

publ i c bool ean endEl enent (El ement el enent);

org/w3c/dom/loadSave/DOMWriter.java:

package org.w3c. dom | oadSave;

i mport org.w3c. dom Node;
i mport org.w3c. dom DOVByst enExcepti on;

public interface DOMViter {
public String getEncodi ng();
public void setEncodi ng(String encoding);

public String getLastEncodi ng();

public short getFormat();
public void setFormat(short fornat);

public String getNewLine();
public void setNewLi ne(String newLine);

public void witeNode(java.io.QutputStream destination,

Node node)
t hrows DOVSyst enExcepti on;

org/w3c/dom/loadSave/DocumentLS.java:

package org.w3c. dom | oadSave;

i mport org.w3c. dom Node;
i mport org.w3c. dom DOVExcepti on;

public interface DocumentLS {
publ i c bool ean get Async();
public void set Async(bool ean async);

public void abort();

92

org/w3c/dom/loadSave/ParserErrorEvent.java:

public boolean load(String url);
public bool ean | cadXM.(String source);

public String saveXM.(Node node)
t hrows DOVExcepti on;

org/w3c/dom/loadSave/ParserErrorEvent.java:

package org.w3c. dom | oadSave;

public interface ParserErrorEvent {
public int getErrorCode();

public int getFilepos();
public int getlLine();
public int getLinepos();
public String getReason();
public String getSrcText();

public String getUrl ();

93

org/w3c/dom/loadSave/ParserErrorEvent.java:

94

Appendix C: ECMA Script Language Binding

Appendix C: ECMA Script Language Binding

This appendix contains the complete ECMA SdgEMAScrip{ binding for the Level 3 Document
Object Model Content Model and Load and Sde#nitions.

ObjectCMModel
CMModel has the all the properties and methods ofXkNode object as well as the properties and
methods defined below.
The CMModel object has the following properties:
isNamespaceAware
This read-only property is of tyg&oolean
rootElementDecl
This property is £&MElementDeclaration object.
The CMModel object has the following methods:
getLocation()
This method returns &tring.
getCMNamespace()
This method returnsssElementobject.
getCMNodes()
This method returns @MNamedNodeMap object.
removeNode(node)
This method returnsBoolean
Thenode parameter is @MNode object.
insertBefore(newNode refNode)
This method returnsBoolean
ThenewNodeparameter is @MNode object.
TherefNode parameter is @MNode object.
validate()
This method returnsBoolean
createCMElementDeclaration(namespaceURI, qualifiedElementNamepntentSpec)
This method returns @MElementDeclaration object.
ThenamespaceURIparameter is of typ8tring.
ThequalifiedElementNameparameter is of typ8tring.
ThecontentSpecparameter is at object.
This method can raiseEOMException object.
createCMAttributeDeclaration(namespaceURI,qualifiedName)
This method returns @MAttributeDeclaration object.
ThenamespaceURIparameter is of typ8tring.
ThequalifiedName parameter is of typ8tring.
This method can raiseEOMException object.
createCMNotationDeclaration(name, systemldentifier publicldentifier)
This method returns @MNotationDeclaration object.
Thename parameter is of typ8tring.
The systemldentifier parameter is of typ8tring.
Thepublicldentifier parameter is of typ8tring.
This method can raiseEOMException object.

95

Appendix C: ECMA Script Language Binding

createCMEntityDeclaration(name)
This method returns @MEntityDeclaration object.
Thename parameter is of typ8tring.
This method can raiseOMEXxception object.
createCMChildren(minOccurs, maxOccurs,operator)
This method returns @MChildren object.
TheminOccurs parameter is of typdumber.
The maxOccurs parameter is of typsumber.
Theoperator parameter is of typumber.
This method can raiseZXOMEXxception object.
ObjectCMExternalModel
CMExternalModel has the all the properties and methods ofahBModel object as well as the
properties and methods defineelow.
Prototype ObjecCMNode
TheCMNode class has the following constants:
CMNode.CM_ELEMENT_DECLARATION
This constant is of typdumber and its value i4.
CMNode.CM_ATTRIBUTE_DECLARATION
This constant is of typdumber and its value i&.
CMNode.CM_NOTATION_DECLARATION
This constant is of typdumber and its value i8.
CMNode.CM_ENTITY_DECLARATION
This constant is of typdumber and its value ig.
CMNode.CM_CHILDREN
This constant is of typdumber and its value i$.
CMNode.CM_MODEL
This constant is of typdumber and its value i§.
CMNode.CM_EXTERNALMODEL
This constant is of typdumber and its value i§.

ObjectCMNode
The CMNode object has the following properties:

cmNodeType

This read-only property is of typéumber.
ownerCMModel

This property is & MModel object.
nodeName

This property is of typ&tring.
prefix

This property is of typ&tring.
localName

This property is of typ&tring.
namespaceURI

This property is of typ&tring.
The CMNode object has the following methods:
clone()
This method returns @MNode object.

96

Appendix C: ECMA Script Language Binding

ObjectCMNodeList
ObjectCMNamedNodeMap
Prototype ObjecCMDataType
The CMDataType class has the following constants:
CMDataType.STRING_DATATYPE
This constant is of typshort and its value i4.
ObjectCMDataType
The CMDataType object has the following methods:
getCMPrimitiveType()
This method returns hort object.
Prototype ObjecCMPrimitiveType
The CMPrimitiveType class has the following constants:
CMPrimitiveType.BOOLEAN_DATATYPE
This constant is of typshort and its value i2.
CMPrimitiveType.FLOAT_DATATYPE
This constant is of typshort and its value i8.
CMPrimitiveType.DOUBLE_DATATYPE
This constant is of typshort and its value i4.
CMPrimitiveType.DECIMAL_DATATYPE
This constant is of typshort and its value i§.
CMPrimitiveType.HEXBINARY_DATATYPE
This constant is of typshort and its value i$.
CMPrimitiveType.BASE64BINARY_DATATYPE
This constant is of typshort and its value ig.
CMPrimitiveType.ANYURI_DATATYPE
This constant is of typshort and its value i8.
CMPrimitiveType.QNAME_DATATYPE
This constant is of typshort and its value i8.
CMPrimitiveType.DURATION_DATATYPE
This constant is of typghort and its value i40.
CMPrimitiveType.DATETIME_DATATYPE
This constant is of typghort and its value i41.
CMPrimitiveType.DATE_DATATYPE
This constant is of typghort and its value i42.
CMPrimitiveType.TIME_DATATYPE
This constant is of typghort and its value i43.
CMPrimitiveType.YEARMONTH_DATATYPE
This constant is of typghort and its value i44.
CMPrimitiveType.YEAR_DATATYPE
This constant is of typghort and its value i45.
CMPrimitiveType. MONTHDAY_DATATYPE
This constant is of typghort and its value i46.
CMPrimitiveType.DAY_DATATYPE
This constant is of typghort and its value i47.
CMPrimitiveType.MONTH_DATATYPE
This constant is of typghort and its value i48.

97

Appendix C: ECMA Script Language Binding

CMPrimitiveType.NOTATION_DATATYPE
This constant is of typghort and its value i49.
ObjectCMPrimitiveType
CMPrimitiveType has the all the properties and methods ofdhktataType object as well as the
properties and methods defined below.
The CMPrimitiveType object has the following properties:
lowValue
This property is @ecimal object.
highValue
This property is @ecimal object.
ObjectCMElementDeclaration
CMElementDeclaration has the all the properties and methods ofdhNode object as well as the
properties and methods defined below.
The CMElementDeclaration object has the following properties:
elementType
This property is £&MDataType object.
isPCDataOnly
This read-only property is of tyg&oolean
tagName
This property is of typ&tring.
The CMElementDeclaration object has the following methods:
getContentType()
This method returnsiat object.
getCMChildren()
This method returns @MChildren object.
getCMAttributes()
This method returns @MNamedNodeMap object.
getCMGrandChildren()
This method returns @MNamedNodeMap object.
Prototype Objec€MChildren
TheCMChildren class has the following constants:
CMChildren.UNBOUNDED
This constant is of typdumber and its value i$JAX_LONG .
CMChildren.NONE
This constant is of typdumber and its value i§.
CMChildren.SEQUENCE
This constant is of typdumber and its value i4.
CMChildren.CHOICE
This constant is of typdumber and its value i&.
ObjectCMChildren
CMChildren has the all the properties and methods ofdkNode object as well as the properties
and methods defined below.
TheCMChildren object has the following properties:
listOperator
This property is of typ&lumber.

98

Appendix C: ECMA Script Language Binding

minOccurs
This property is of typ&lumber.
maxOccurs
This property is of typ&lumber.
subModels
This property is & MNodeList object.
The CMChildren object has the following methods:
removeCMNode(nodelndex)
This method returns @MNode object.
Thenodelndexparameter is of typdumber.
insertCMNode(nodelndex,newNode)
This method returnsiat object.
Thenodelndexparameter is of typdumber.
ThenewNodeparameter is @MNode object.
appendCMNode(newNode)
This method returnsiat object.
ThenewNodeparameter is @MNode object.
Prototype ObjecCMAttributeDeclaration
The CMAttributeDeclaration class has the following constants:
CMAttributeDeclaration.NO_VALUE_CONSTRAINT
This constant is of typshort and its value i§.
CMAttributeDeclaration.DEFAULT_VALUE_CONSTRAINT
This constant is of typshort and its value i4.
CMAttributeDeclaration.FIXED_VALUE_CONSTRAINT
This constant is of typshort and its value i2.
ObjectCMAttributeDeclaration
CMAttributeDeclaration has the all the properties and methods ofakENode object as well as
the properties and methods defined below.
The CMAttributeDeclaration object has the following properties:
attrName
This property is of typ&tring.
attrType
This property is £&MDataType object.
attributeValue
This property is of typ&tring.
enumaAttr
This property is of typ&tring.
ownerElement
This property is & MNodeList object.
constraintType
This property is @&hort object.
Prototype ObjecCMEntityDeclaration
The CMEntityDeclaration class has the following constants:
CMEntityDeclaration.INTERNAL_ENTITY
This constant is of typshort and its value i4.

99

Appendix C: ECMA Script Language Binding

CMEntityDeclaration.EXTERNAL_ENTITY
This constant is of typshort and its value i2.
ObjectCMEntityDeclaration
CMEntityDeclaration has the all the properties and methods oflENode object as well as the
properties and methods defined below.
The CMEntityDeclaration object has the following properties:
entityType
This property is ahort object.
entityName
This property is of typ&tring.
entityValue
This property is of typ&tring.
systemld
This property is of typ&tring.
publicld
This property is of typ&tring.
notationName
This property is of typ&tring.
ObjectCMNotationDeclaration
CMNotationDeclaration has the all the properties and methods ofdkiNode object as well as
the properties and methods defined below.
The CMNotationDeclaration object has the following properties:
notationName
This property is of typ&tring.
systemld
This property is of typ&tring.
publicld
This property is of typ&tring.
ObjectDocument
The Documentobject has the following methods:
setErrorHandler(handler)
This method has no retuvalue.
Thehandler parameter is BOMErrorHandler object.
Prototype ObjecDocumentCM
TheDocumentCM class has the following constants:
DocumentCM.WF_CHECK
This constant is of typshort and its value i4.
DocumentCM.NS_WF_CHECK
This constant is of typshort and its value i2.
DocumentCM.PARTIAL_VALIDITY_CHECK
This constant is of typshort and its value i8.
DocumentCM.STRICT_VALIDITY_CHECK
This constant is of typshort and its value i4.
ObjectDocumentCM
DocumentCM has the all the properties and methods ofXbeumentobject as well as the
properties and methods defined below.

100

Appendix C: ECMA Script Language Binding

The DocumentCM object has the following properties:
continuousValidityChecking
This property is of typ8oolean
wifValidityCheckLevel
This property is &hort object.
The DocumentCM object has the following methods:
numCMs()
This method returnsiat object.
getinternalCM()
This method returns @MModel object.
getCMs()
This method returns @MNodeList object.
getActiveCM()
This method returns @MModel object.
addCM(cm)
This method has no retuvalue.
Thecm parameter is @MModel object.
removeCM(cm)
This method has no retuvalue.
Thecm parameter is @MModel object.
activateCM(cm)
This method returnsBoolean
Thecm parameter is @MModel object.
ObjectDOMImplementationCM
DOMImplementationCM has the all the properties and methods oD@ Implementation
object as well as the properties and methods defined below.
TheDOMImplementationCM object has the following methods:
createCM()
This method returns @MModel object.
createExternalCM()
This method returns @MExternalModel object.
ObjectNodeCM
NodeCM has the all the properties and methods of\tbée object as well as the properties and
methods defined below.
TheNodeCM object has the following methods:
caninsertBefore(newChild,refChild)
This method returnsBoolean
ThenewChild parameter is Blode object.
TherefChild parameter is Blodeobject.
This method can raiseOMEXxception object.
canRemoveChild(oldChild)
This method returnsBoolean
TheoldChild parameter is Blode object.
This method can raise@OMEXxception object.
canReplaceChild(newChild,oldChild)
This method returnsBoolean

101

Appendix C: ECMA Script Language Binding

ThenewChild parameter is Blode object.
TheoldChild parameter is Blode object.
This method can raise@OMEXxception object.
canAppendChild(newChild)
This method returnsBoolean
ThenewChild parameter is Blode object.
This method can raiseOMEXxception object.
isValid()
This method returnsBoolean
This method can raiseZXOMEXxception object.
ObjectElementCM
ElementCM has the all the properties and methods oBleenent,NodeCMaobject as well as the
properties and methods defined below.
TheElementCM object has the following methods:
contentType()
This method returnsiat object.
getElementDeclaration()
This method returns @MElementDeclaration object.
This method can raise@OMEXxception object.
canSetAttribute(attrname, attrval)
This method returnsBoolean
Theattrname parameter is of typ8tring.
Theattrval parameter is of typ8tring.
canSetAttributeNode(node)
This method returnsBoolean
Thenode parameter is Alode object.
canSetAttributeNodeNS(node)
This method returnsBoolean
Thenode parameter is Alode object.
canSetAttributeNS(attrname, attrval, namespaceURIJocalName)
This method returnsBoolean
Theattrname parameter is of typ8tring.
Theattrval parameter is of typ8tring.
ThenamespaceURIparameter is of typ8tring.
ThelocalNameparameter is of typ8tring.
canRemoveAttribute(attrname)
This method returnsBoolean
Theattrname parameter is of typ8tring.
canRemoveAttributeNS(attrname,namespaceURI)
This method returnsBoolean
Theattrname parameter is of typ8tring.
ThenamespaceURIparameter is of typ8tring.
canRemoveAttributeNode(node)
This method returnsBoolean
Thenode parameter is Alode object.

102

Appendix C: ECMA Script Language Binding

ObjectCharacterDataCM
CharacterDataCM has the all the properties and methods ofigd,NodeCM object as well as the
properties and methods defined below.
The CharacterDataCM object has the following methods:
isWhitespaceOnly()
This method returnsBoolean
canSetData(offsetarg)
This method returnsBoolean
Theoffset parameter is of typumber.
Thearg parameter is of typ8tring.
This method can raiseOMEXxception object.
canAppendData(arg)
This method returnsBoolean
Thearg parameter is of typ8tring.
This method can raiseOMEXxception object.
canReplaceData(offset, coung&rg)
This method returnsBoolean
Theoffset parameter is of typRumber.
Thecount parameter is of typRumber.
Thearg parameter is of typ8tring.
This method can raiseOMEXxception object.
caninsertData(offset,arg)
This method returnsBoolean
Theoffset parameter is of typumber.
Thearg parameter is of typ8tring.
This method can raiseOMEXxception object.
canDeleteData(offsetarg)
This method returnsBoolean
Theoffset parameter is of typumber.
Thearg parameter is of typ8tring.
This method can raiseZXOMEXxception object.
ObjectDocumentTypeCM
DocumentTypeCM has the all the properties and methods ofXbeumentType,NodeCMobject
as well as the properties and methods defined below.
The DocumentTypeCM object has the following methods:
isElementDefined(elemTypeName)
This method returnsBoolean
TheelemTypeNameparameter is of typ8tring.
isElementDefinedNS(elemTypeName, namespaceURicalName)
This method returnsBoolean
TheelemTypeNameparameter is of typ8tring.
ThenamespaceURIparameter is of typ8tring.
ThelocalNameparameter is of typ8tring.
isAttributeDefined(elemTypeName attrName)
This method returnsBoolean
TheelemTypeNameparameter is of typ8tring.

103

Appendix C: ECMA Script Language Binding

TheattrName parameter is of typ8tring.
isAttributeDefinedNS(elemTypeName, attrName, namespaceURIpcalName)
This method returnsBoolean
TheelemTypeNameparameter is of typ8tring.
TheattrName parameter is of typ8tring.
ThenamespaceURIparameter is of typ8tring.
ThelocalNameparameter is of typ8tring.
isEntityDefined(entName)
This method returnsBoolean
TheentNameparameter is of typ8tring.
ObjectAttributeCM
AttributeCM has the all the properties and methods ofAiieNodeCM object as well as the
properties and methods defined below.
TheAttributeCM object has the following methods:
getAttributeDeclaration()
This method returns @MAttributeDeclaration object.
getNotation()
This method returns @MNotationDeclaration object.
This method can raiseZXOMEXxception object.
ObjectDOMErrorHandler
TheDOMErrorHandler object has the following methods:
warning(where, how,why)
This method has no retuvalue.
Thewhere parameter is BOMLocator object.
Thehow parameter is of typ8tring.
Thewhy parameter is of typ8tring.
This method can raiseEOMSystemExceptionobject.
fatalError(where, how, why)
This method has no retuvalue.
Thewhere parameter is BOMLocator object.
Thehow parameter is of typ8tring.
Thewhy parameter is of typ8tring.
This method can raiseEOMSystemExceptionobject.
error(where, how, why)
This method has no retuvalue.
Thewhere parameter is BOMLocator object.
Thehow parameter is of typ8tring.
Thewhy parameter is of typ8tring.
This method can raiseOMSystemExceptionobject.
ObjectDOMLocator
TheDOMLocator object has the following methods:
getColumnNumber()
This method returnsiat object.
getLineNumber()
This method returnsiat object.

104

Appendix C: ECMA Script Language Binding

getPubliclD()

This method returns &tring.
getSystemID()

This method returns &tring.
getNode()

This method returnsldodeobject.

ObjectDOMImplementationLS
TheDOMImplementationLS object has the following methods:
createDOMBuilder()
This method returns @OMBuilder object.
createDOMWriter()
This method returns ROMWriter object.
ObjectDOMBuilder
TheDOMBUuilder object has the following properties:
entityResolver
This property is @ OMEntityResolver object.
errorHandler
This property is @ OMErrorHandler object.
filter
This property is &@OMBuilderFilter object.
TheDOMBuilder object has the following methods:
setFeature(namestate)
This method has no retuvalue.
Thename parameter is of typ8tring.
Thestate parameter is of typBoolean
This method can raiseEOMException object.
supportsFeature(name)
This method returnsBoolean
Thename parameter is of typ8tring.
canSetFeature(namestate)
This method returnsBoolean
Thename parameter is of typ8tring.
Thestate parameter is of typBoolean
getFeature(name)
This method returnsBoolean
Thename parameter is of typ8tring.
This method can raiseEOMException object.
parseURI(uri)
This method returns @ocumentobject.
Theuri parameter is of typ8tring.
This method can raiseZXOMEXxception object or EDOMSystemExceptionobject.
parseDOMInputSource(is)
This method returns @ocumentobject.
Theis parameter is BOMInputSource object.
This method can raiseEOMEXxception object or EDOMSystemExceptionobject.

105

Appendix C: ECMA Script Language Binding

ObjectDOMInputSource
The DOMInputSource object has the following properties:
byteStream
This property is ®OMInputStream object.
characterStream
This property is ® OMReader object.
encoding
This property is of typ&tring.
publicld
This property is of typ&tring.
systemld
This property is of typ&tring.
ObjectDOMERntityResolver
The DOMEntityResolver object has the following methods:
resolveEntity(publicld, systemid)
This method returns ROMInputSource object.
Thepublicld parameter is of typ8tring.
Thesystemld parameter is of typ8tring.
This method can raiseOMSystemExceptionobject.
ObjectDOMBUuilderFilter
The DOMBuilderFilter object has the following methods:
startElement(element)
This method returnsBoolean
Theelementparameter is Blement object.
endElement(element)
This method returnsBoolean
Theelementparameter is Blement object.
ObjectDOMWriter
The DOMWriter object has the following properties:
encoding
This property is of typ&tring.
lastEncoding
This read-only property is of tytring.
format
This property is of typ&lumber.
newLine
This property is of typ&tring.
The DOMWriter object has the following methods:
writeNode(destination,node)
This method has no retuvalue.
Thedestination parameter is BOMOutputStream object.
Thenode parameter is Alode object.
This method can raiseOMSystemExceptionobject.
ObjectDocumentLS
The DocumentLS object has the following properties:

106

Appendix C: ECMA Script Language Binding

async
This property is of typ8oolean
The DocumentLS object has the following methods:
abort()
This method has no return value.
load(url)
This method returnsBoolean
Theurl parameter is of typ8tring.
loadXML(source)
This method returnsBoolean
Thesourceparameter is of typ8tring.
saveXML(nhode)
This method returns @tring.
Thenode parameter is Alode object.
This method can raiseZXOMEXxception object.
ObjectParserErrorEvent

TheParserErrorEvent object has the following properties:

errorCode

This read-only property islang object.
filepos

This read-only property islang object.
line

This read-only property islang object.
linepos

This read-only property islang object.
reason

This read-only property is of tytring.
srcText

This read-only property is of tytring.
url

This read-only property is of tytring.

107

Appendix C: ECMA Script Language Binding

108

References

References

For the latest version of any W3C specification please consult the[l8GfTechnicaReportkavailable
athttp://www.w3.0rg/TR.

D.1: Normative references

ECMAScript
ECMA (European Computer Manufacturers Associaff@MAScript Languag&pecificatioh
Available at http://www.ecma.ch/ecmal/STAND/ECMA-262.HTM

Java
Sun Microsystems Infthe Java Languagdgpecificatioh James Gosling, Bill Joy, and Guy Steele,
September 1996. Available at http://java.sun.com/docs/booksl/jls

OMGIDL
OMG (Object Managemertiroup) IDL (Interface Definition Language) defined in The Common
Object Request Broker: Architecture and Specification, version 2.3.1, October 1999. Available from
http://www.omg.org

109

http://www.omg.org/
http://java.sun.com/docs/books/jls
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR

D.1: Normative references

110

Index

bor
[BNYURT DATATYPE]
AttributeCM

[BASE64BINARY _DATATYPH

Index

aninsertBefole
lcanRemoveAttributeNofle
canReplaceChild
[canSetAttributeNode

kanSetDala

characterStredm
[EM_ATTRIBUTE_DECLARATION

[EM_ENTITY DECLARATION

[ICM_NOTATION DECLARATION

CMDataTyp¢
ICMExternalModd|

CMNode
ICMNotationDeclaration

contentType

lcreate CMAttributeDeclaratipn

lcreateCMEntityDeclaratipn
reateDOMWritgr

[DATE DATATYPH
[DECIMAL DATATYPE]

aDD de Syt

[BOOLEAN DATATYPH
canAppendDafa [canDeleteDaja
[caninseriDaia [canRemoveAitribuje
[canRemoveAitributeNS [canRemoveChild
kanReplaceData
lcanSetAttributeNodeNS [canSetAttributeNIS
fcanSetFeatufe
CHOICH lone
[EM_CHILDREN [CM_ELEMENT_DECLARATION
[CM_EXTERNALMODEL
[EMAttributeDeclaratioh
[ICMElementDeclaratign [CMEntityDeclaratiop
[EMNamedNodeMdp
[continuousValidityCheckirg
[createCMChildren [createCMElementDeclaration
[createCMNotationDeclaratipn [createDOMBuildgr
[DATETIME_DATATYPH| [DAY _DATATYPE]
[DEFAULT VALUE CONSTRAINT [Document
DocumentL$ [DocumentTypeCM
[DOMBuilderFiltet [DOMEntityResolvedr

111

IDOMErrorHandlgr

DOMInputSourcg
IDOUBLE DATATYPH

ECMASCrIp
[encoding6s, 69
r

enumaAitt|

errorHandlgr

fatalErro

[FIXED_VALUE_CONSTRAINT

Index

IDOMImplementationCW
DOMLocato

[DURATION DATATYPH

endElement

erro

[EXTERNAL _ENTITY]

i

[FLOAT DATATYPH

getActiveC

{@]
)

getCMNodes

lgetColumnNumbér

getFeature

D [)

I

HEXBINARY DATATYPE

nsertBeforg

sPCDataOnl)

av

astEncodin

(®,

@] [B] B
o (%
o 1=
3| |5
] B =Y
2 |3
Ol |O
al %
3| IS
o| |@
o] =
| Z]
wn

loetAttributeDeclaratign
loetCMGrandChildrgn

loetCMPrimitive Typg
getContentTyge

getinternalC
getNodé

nsertCMNodg

= (O
o)

—

2

u

[}

S 3

O

lisAttributeDefinedN$
sEntityDefined

|

8 Bl

112

IDOMImplementationLB

OMWrite

entityName

errorCodg

O‘ = D D [w)
= — >
2 <

QD

c

& S

getCMAttributep

o
getNotatio

[NTERNAL ENTITY]
iIsElementDefingd

liIsNamespaceAware

isWhitespaceOnly

18

Index

ocalName owValug

maxOccurs minOccurp [MONTH DATATYPH
[MONTHDAY_ _DATATYPE]

hamespaceURI ewLing INO VALUE CONSTRAINT
hodeNam NONE
[NOTATION DATATYPH notationNamg5, 25 NS WF CHEC
OMGIDL ownerCMModé| lownerElement
[parseDOMInputSourg¢e t parseUR]
[PARTIAL VALIDITY CHECK] [Partiallyvalid [prefix
[publicid 25, 25, 63

[ONAME DATATYPH

removeCMNode
removeNode [ootElementDet!
SEQUENCH SetErrorHandgr
[setFeatule [startElemert
[STRICT VALIDITY CHECK [STRING DATATYPE subModelk
[supportsFeature Systemiips, 26, 63

[[IME_DATATYPE|

UNBOUNDED

alidatg

113

Index

F_CHECK wiValidityCheckLevel

[YEAR_DATATYPH [FEARMONTH_DATATYPH

114

	Document Object Model †DOM‡ Level 3 Content Models and Load and Save Specification
	Version 1.0
	W3C Working Draft 19 April 2001
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	1. Content Models and Validation
	1.1. Overview
	1.1.1. General Characteristics
	1.1.2. Use Cases and Requirements

	1.2. Content Model and CM-Editing Interfaces
	1.3. Validation and Other Interfaces
	1.4. Document-Editing Interfaces
	1.5. DOM Error Handler Interfaces
	1.6. Editing and Generating a Content Model
	1.7. Content Model-directed Document Manipulation
	1.8. Validating a Document Against a Content Model
	1.9. Well-formedness Testing

	2. Document Object Model Load and Save
	2.1. Load and Save Requirements
	2.1.1. General Requirements
	2.1.1.1. Document Sources
	2.1.1.2. Content Model Loading
	2.1.1.3. Content Model Reuse
	2.1.1.4. Entity Resolution
	2.1.1.5. Error Reporting

	2.1.2. Load Requirements
	2.1.2.1. Parser Properties and Options

	2.1.3. XML Writer Requirements
	2.1.3.1. XML Writer Properties and Options
	2.1.3.2. Content Model Saving

	2.1.4. Other Items Under Consideration
	2.1.4.1. Incremental and/or Concurrent Parsing
	2.1.4.2. Filtered Save
	2.1.4.3. Document Fragments
	2.1.4.4. Document Fragments in Context of Existing DOM

	2.2. Issue List
	2.2.1. Open Issues
	2.2.2. Resolved Issues

	2.3. Interfaces
	2.3.1. Interface Summary
	2.3.2. Interfaces

	Appendix A: IDL Definitions
	
	content-models.idl:
	load-save.idl:

	Appendix B: Java Language Binding
	
	org/w3c/dom/contentModel/CMModel.java:
	org/w3c/dom/contentModel/CMExternalModel.java:
	org/w3c/dom/contentModel/CMNode.java:
	org/w3c/dom/contentModel/CMNodeList.java:
	org/w3c/dom/contentModel/CMNamedNodeMap.java:
	org/w3c/dom/contentModel/CMDataType.java:
	org/w3c/dom/contentModel/CMPrimitiveType.java:
	org/w3c/dom/contentModel/CMElementDeclaration.java:
	org/w3c/dom/contentModel/CMChildren.java:
	org/w3c/dom/contentModel/CMAttributeDeclaration.java:
	org/w3c/dom/contentModel/CMEntityDeclaration.java:
	org/w3c/dom/contentModel/CMNotationDeclaration.java:
	org/w3c/dom/contentModel/Document.java:
	org/w3c/dom/contentModel/DocumentCM.java:
	org/w3c/dom/contentModel/DOMImplementationCM.java:
	org/w3c/dom/contentModel/NodeCM.java:
	org/w3c/dom/contentModel/ElementCM.java:
	org/w3c/dom/contentModel/CharacterDataCM.java:
	org/w3c/dom/contentModel/DocumentTypeCM.java:
	org/w3c/dom/contentModel/AttributeCM.java:
	org/w3c/dom/contentModel/DOMErrorHandler.java:
	org/w3c/dom/contentModel/DOMLocator.java:
	org/w3c/dom/loadSave/DOMImplementationLS.java:
	org/w3c/dom/loadSave/DOMBuilder.java:
	org/w3c/dom/loadSave/DOMInputSource.java:
	org/w3c/dom/loadSave/DOMEntityResolver.java:
	org/w3c/dom/loadSave/DOMBuilderFilter.java:
	org/w3c/dom/loadSave/DOMWriter.java:
	org/w3c/dom/loadSave/DocumentLS.java:
	org/w3c/dom/loadSave/ParserErrorEvent.java:

	Appendix C: ECMA Script Language Binding
	References
	D.1: Normative references

	Index

