
Document Object Model (DOM) Level 2 Specification

Version 1.0

W3C Candidate Recommendation 07 March, 2000
This version:

http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307
(PostScript file, PDF file, plain text, ZIP file)

Latest version:
http://www.w3.org/TR/DOM-Level-2

Previous versions:
http://www.w3.org/TR/1999/CR-DOM-Level-2-19991210
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923

Editors:
Lauren Wood, SoftQuad Software Inc., chair
Arnaud Le Hors, W3C, staff contact (until October 1999)
Vidur Apparao, Netscape Communications Corporation
Laurence Cable, Sun
Mike Champion, Arbortext and Software AG
Mark Davis, IBM
Joe Kesselman, IBM
Philippe Le Hégaret, W3C, staff contact (from November 1999)
Tom Pixley, Netscape Communications Corporation
Jonathan Robie, Texcel Research and Software AG
Peter Sharpe, SoftQuad Software Inc.
Chris Wilson, Microsoft

Copyright © 2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Level 2, a platform- and language-neutral interface
that allows programs and scripts to dynamically access and update the content, structure and style of
documents. The Document Object Model Level 2 builds on the Document Object Model Level 1.

1

Document Object Model (DOM) Level 2 Specification

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923
http://www.w3.org/TR/1999/CR-DOM-Level-2-19991210
http://www.w3.org/TR/DOM-Level-2
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307/DOM2.zip
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307/DOM2.txt
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307/DOM2.pdf
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307/DOM2.ps
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307
http://www.w3.org/

The DOM Level 2 is made of a set of core interfaces to create and manipulate the structure and contents of
a document and a set of optional modules. These modules contain specialized interfaces dedicated to
XML, HTML, an abstract view, generic stylesheets, Cascading Style Sheets, Events, traversing the
document structure, and a Range object.

Status of this document
This specification is still in the Candidate Recommendation phase. This means the specification is stable,
and the period to allow implementation of the specification is extended. The new Candidate
Recommendation period ends the 20 March 2000.

Comments on this document are invited and are to be sent to the public mailing list www-dom@w3.org.
An archive is available at http://lists.w3.org/Archives/Public/www-dom/.

Should this specification prove impossible or very difficult to implement, the necessary changes to make it
implementable will be made. If this specification is possible to implement, the only changes which will be
made to this specification are minor editorial changes and clarifications.

This document has been produced as part of the W3C DOM Activity . The authors of this document are
the DOM WG members. Different modules of the Document Object Model have different editors.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Table of contents
................ 5Expanded Table of Contents
................... 9Copyright Notice
.............. 13What is the Document Object Model?

............. 19Chapter 1: Document Object Model Core

............. 75Chapter 2: Document Object Model HTML

............. 127Chapter 3: Document Object Model Views

............ 129Chapter 4: Document Object Model StyleSheets

............. 135Chapter 5: Document Object Model CSS

............. 221Chapter 6: Document Object Model Events

............ 245Chapter 7: Document Object Model Traversal

............. 267Chapter 8: Document Object Model Range

................. 291Appendix A: Changes

............ 293Appendix B: Accessing code point boundaries

................ 295Appendix C: IDL Definitions

.............. 333Appendix D: Java Language Binding

............ 397Appendix E: ECMA Script Language Binding

.................. 447Acknowledgments

2

Status of this document

http://www.w3.org/TR
http://www.w3.org/DOM/Activity.html
http://lists.w3.org/Archives/Public/www-dom/

.................... 449Glossary

.................... 455References

................... 457Objects Index

..................... 461Index

3

Table of contents

4

Table of contents

Expanded Table of Contents
................ 5Expanded Table of Contents
................... 9Copyright Notice
........... 9W3C Document Copyright Notice and License
........... 10W3C Software Copyright Notice and License
.............. 13What is the Document Object Model?
................... 13Introduction
............. 13What the Document Object Model is
............ 15What the Document Object Model is not
........... 15Where the Document Object Model came from
............... 15Entities and the DOM Core
................... 16Compliance
............ 17DOM Interfaces and DOM Implementations

............. 19Chapter 1: Document Object Model Core

............ 191.1. Overview of the DOM Core Interfaces

............. 191.1.1. The DOM Structure Model

.............. 201.1.2. Memory Management

.............. 201.1.3. Naming Conventions

......... 211.1.4. Inheritance vs. Flattened Views of the API

.............. 211.1.5. The DOMString type

............. 221.1.6. The DOMTimeStamp type

............ 221.1.7. String comparisons in the DOM

............... 231.1.8. XML Namespaces

............... 241.2. Fundamental Interfaces

................ 691.3. Extended Interfaces

............. 75Chapter 2: Document Object Model HTML

.................. 752.1. Introduction

............. 762.2. HTML Application of Core DOM

.............. 762.2.1. Naming Conventions

............. 762.3. Miscellaneous Object Definitions

............ 782.4. Objects related to HTML documents

................. 812.5. HTML Elements

............... 812.5.1. Property Attributes

.............. 822.5.2. Naming Exceptions

......... 822.5.3. Exposing Element Type Names (tagName)

............ 822.5.4. The HTMLElement interface

............... 832.5.5. Object definitions

............. 127Chapter 3: Document Object Model Views

.................. 1273.1. Introduction

.................. 1273.2. Interfaces

............ 129Chapter 4: Document Object Model StyleSheets

5

Expanded Table of Contents

.................. 1294.1. Introduction

................ 1294.2. Style Sheet Interfaces

............... 1334.3. Document Extensions

......... 1344.4. Association between a style sheet and a document.

............. 135Chapter 5: Document Object Model CSS

.......... 1355.1. Overview of the DOM Level 2 CSS Interfaces

.............. 1355.2. CSS Fundamental Interfaces

........... 1585.2.1. Override and computed style sheet

.............. 1605.2.2. Style sheet creation

............ 1615.2.3. Element with CSS inline style

............... 1615.3. CSS Extended Interfaces

............. 221Chapter 6: Document Object Model Events

.......... 2216.1. Overview of the DOM Level 2 Event Model

................ 2216.1.1. Terminology

............... 2226.2. Description of event flow

............... 2226.2.1. Basic event flow

................ 2226.2.2. Event capture

............... 2236.2.3. Event bubbling

............... 2236.2.4. Event cancelation

............... 2246.3. Event listener registration

............. 2246.3.1. Event registration interfaces

.......... 2276.3.2. Interaction with HTML 4.0 event listeners

................. 2276.4. Event interface

............... 2316.5. DocumentEvent interface

................ 2326.6. Event set definitions

............. 2326.6.1. User Interface event types

............... 2346.6.2. Mouse event types

................ 2386.6.3. Key events

.............. 2386.6.4. Mutation event types

............... 2426.6.5. HTML event types

............ 245Chapter 7: Document Object Model Traversal

.................. 2457.1. Overview

................. 2457.1.1. Iterators

................. 2497.1.2. Filters

................ 2517.1.3. TreeWalker

.............. 2547.2. Formal Interface Definition

............. 267Chapter 8: Document Object Model Range

.................. 2678.1. Introduction

............... 2678.2. Definitions and Notation

................. 2678.2.1. Position

............ 2698.2.2. Selection and Partial Selection

................. 2698.2.3. Notation

................ 2708.3. Creating a Range

6

Expanded Table of Contents

.............. 2708.4. Changing a Range’s Position

............ 2718.5. Comparing Range Boundary-Points

............. 2728.6. Deleting Content with a Range

................ 2738.7. Extracting Content

................. 2738.8. Cloning Content

................ 2738.9. Inserting Content

............... 2748.10. Surrounding Content

............... 2748.11. Miscellaneous Members

.......... 2758.12. Range modification under document mutation

................ 2758.12.1. Insertions

................. 2768.12.2. Deletions

........... 2788.13. Formal Description of the Range Interface

................. 291Appendix A: Changes

......... 291A.1. Changes between DOM Level 1 and DOM Level 2

....... 291A.1.1. Changes to DOM Level 1 interfaces and exceptions

................ 291A.1.2. New features

............ 293Appendix B: Accessing code point boundaries

.................. 293B.1. Introduction

.................. 293B.2. Methods

................ 295Appendix C: IDL Definitions

.............. 295C.1. Document Object Model Core

............. 300C.2. Document Object Model HTML

............. 310C.3. Document Object Model Views

............ 310C.4. Document Object Model StyleSheets

.............. 311C.5. Document Object Model CSS

............. 325C.6. Document Object Model Events

............ 327C.7. Document Object Model Traversal

............. 329C.8. Document Object Model Range

.............. 333Appendix D: Java Language Binding

............. 333D.1. Document Object Model Core

............. 341D.2. Document Object Model HTML

............. 366D.3. Document Object Model Views

............ 366D.4. Document Object Model StyleSheets

.............. 367D.5. Document Object Model CSS

............. 388D.6. Document Object Model Events

............ 391D.7. Document Object Model Traversal

............. 393D.8. Document Object Model Range

............ 397Appendix E: ECMA Script Language Binding

.............. 397E.1. Document Object Model Core

............. 403E.2. Document Object Model HTML

............. 423E.3. Document Object Model Views

............ 424E.4. Document Object Model StyleSheets

.............. 425E.5. Document Object Model CSS

7

Expanded Table of Contents

............. 440E.6. Document Object Model Events

............. 443E.7. Document Object Model Traversal

............. 444E.8. Document Object Model Range

.................. 447Acknowledgments

.................... 449Glossary

.................... 455References

................... 457Objects Index

..................... 461Index

8

Expanded Table of Contents

Copyright Notice
Copyright © 2000 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.

This document is published under the W3C Document Copyright Notice and License [p.9] . The bindings
within this document are published under the W3C Software Copyright Notice and License [p.10] . The
software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL binding, the pragma prefix can no longer be
’w3c.org’; in the case of the Java binding, the package names can no longer be in the ’org.w3c’ package.

W3C Document Copyright Notice and License
Note: This section is a copy of the W3C Document Notice and License and could found be at
http://www.w3.org/Consortium/Legal/copyright-documents-19990405.

Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
Software Notice. By using and/or copying this document, or the W3C document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice of the form:

"Copyright © [$date-of-document] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

9

Copyright Notice

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C Software Copyright Notice and License
Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/."

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We

10

W3C Software Copyright Notice and License

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

11

W3C Software Copyright Notice and License

12

W3C Software Copyright Notice and License

What is the Document Object Model?
Editors

Jonathan Robie, Software AG

Introduction
The Document Object Model (DOM) is an application programming interface (API) for HTML and XML
documents. It defines the logical structure of documents and the way a document is accessed and
manipulated. In the DOM specification, the term "document" is used in the broad sense - increasingly,
XML is being used as a way of representing many different kinds of information that may be stored in
diverse systems, and much of this would traditionally be seen as data rather than as documents.
Nevertheless, XML presents this data as documents, and the DOM may be used to manage this data.

With the Document Object Model, programmers can build documents, navigate their structure, and add,
modify, or delete elements and content. Anything found in an HTML or XML document can be accessed,
changed, deleted, or added using the Document Object Model, with a few exceptions - in particular, the
DOM interfaces for the XML internal and external subsets have not yet been specified.

As a W3C specification, one important objective for the Document Object Model is to provide a standard
programming interface that can be used in a wide variety of environments and applications. The DOM is
designed to be used with any programming language. In order to provide a precise, language-independent
specification of the DOM interfaces, we have chosen to define the specifications in Object Management
Group (OMG) IDL, as defined in the CORBA 2.2 specification [CORBA]. In addition to the OMG IDL
specification, we provide language bindings for Java and ECMAScript (an industry-standard scripting
language based on JavaScript and JScript) [Java] [ECMAScript].

Note: OMG IDL is used only as a language-independent and implementation-neutral way to specify
interfaces. Various other IDLs could have been used. In general, IDLs are designed for specific computing
environments. The Document Object Model can be implemented in any computing environment, and does
not require the object binding runtimes generally associated with such IDLs.

What the Document Object Model is
The DOM is a programming API for documents. It is based on an object structure that closely resembles
the structure of the documents it models. For instance, consider this table, taken from an HTML
document:

 <TABLE>
 <TBODY>
 <TR>
 <TD>Shady Grove</TD>
 <TD>Aeolian</TD>
 </TR>
 <TR>
 <TD>Over the River, Charlie</TD>

13

What is the Document Object Model?

 <TD>Dorian</TD>
 </TR>
 </TBODY>
 </TABLE>

The DOM represents this table like this:

DOM representation of the example table

In the DOM, documents have a logical structure which is very much like a tree; to be more precise, which
is like a "forest" or "grove", which can contain more than one tree. Each document contains zero or one
doctype nodes, one root element node, and zero or more comments or processing instructions; the root
element serves as the root of the element tree for the document. However, the DOM does not specify that
documents must be implemented as a tree or a grove, nor does it specify how the relationships among
objects be implemented. The DOM is a logical model that may be implemented in any convenient manner.
In this specification, we use the term structure model to describe the tree-like representation of a
document. We also use the term "tree" when referring to the arrangement of those information items
which can be reached by using "tree-walking" methods; (this does not include attributes). One important
property of DOM structure models is structural isomorphism: if any two Document Object Model
implementations are used to create a representation of the same document, they will create the same
structure model, in accordance with the XML Information Set [Infoset].

Note: There may be some variations depending on the parser being used to build the DOM. For instance,
the DOM may not contain whitespaces in element content if the parser discards them.

The name "Document Object Model" was chosen because it is an "object model" in the traditional object
oriented design sense: documents are modeled using objects, and the model encompasses not only the
structure of a document, but also the behavior of a document and the objects of which it is composed. In
other words, the nodes in the above diagram do not represent a data structure, they represent objects,
which have functions and identity. As an object model, the DOM identifies:

14

What the Document Object Model is

the interfaces and objects used to represent and manipulate a document
the semantics of these interfaces and objects - including both behavior and attributes
the relationships and collaborations among these interfaces and objects

The structure of SGML documents has traditionally been represented by an abstract data model, not by an
object model. In an abstract data model, the model is centered around the data. In object oriented
programming languages, the data itself is encapsulated in objects that hide the data, protecting it from
direct external manipulation. The functions associated with these objects determine how the objects may
be manipulated, and they are part of the object model.

What the Document Object Model is not
This section is designed to give a more precise understanding of the DOM by distinguishing it from other
systems that may seem to be like it.

The Document Object Model is not a binary specification. DOM programs written in the same
language binding will be source code compatible across platforms, but the DOM does not define any
form of binary interoperability.
The Document Object Model is not a way of persisting objects to XML or HTML. Instead of
specifying how objects may be represented in XML, the DOM specifies how XML and HTML
documents are represented as objects, so that they may be used in object oriented programs.
The Document Object Model is not a set of data structures; it is an object model that specifies
interfaces. Although this document contains diagrams showing parent/child relationships, these are
logical relationships defined by the programming interfaces, not representations of any particular
internal data structures.
The Document Object Model does not define what information in a document is relevant or how
information in a document is structured. For XML, this is specified by the W3C XML Information
Set [Infoset]. The DOM is simply an API to this information set.
The Document Object Model, despite its name, is not a competitor to the Component Object Model
(COM). COM, like CORBA, is a language independent way to specify interfaces and objects; the
DOM is a set of interfaces and objects designed for managing HTML and XML documents. The
DOM may be implemented using language-independent systems like COM or CORBA; it may also
be implemented using language-specific bindings like the Java or ECMAScript bindings specified in
this document.

Where the Document Object Model came from
The DOM originated as a specification to allow JavaScript scripts and Java programs to be portable
among Web browsers. "Dynamic HTML" was the immediate ancestor of the Document Object Model,
and it was originally thought of largely in terms of browsers. However, when the DOM Working Group
was formed at W3C, it was also joined by vendors in other domains, including HTML or XML editors and
document repositories. Several of these vendors had worked with SGML before XML was developed; as a
result, the DOM has been influenced by SGML Groves and the HyTime standard. Some of these vendors
had also developed their own object models for documents in order to provide an API for SGML/XML
editors or document repositories, and these object models have also influenced the DOM.

15

What the Document Object Model is not

Entities and the DOM Core
In the fundamental DOM interfaces, there are no objects representing entities. Numeric character
references, and references to the pre-defined entities in HTML and XML, are replaced by the single
character that makes up the entity’s replacement. For example, in:

 <p>This is a dog & a cat</p>

the "&" will be replaced by the character "&", and the text in the P element will form a single
continuous sequence of characters. Since numeric character references and pre-defined entities are not
recognized as such in CDATA sections, or in the SCRIPT and STYLE elements in HTML, they are not
replaced by the single character they appear to refer to. If the example above were enclosed in a CDATA
section, the "&" would not be replaced by "&"; neither would the <p> be recognized as a start tag.
The representation of general entities, both internal and external, are defined within the extended (XML)
interfaces of DOM Level 1 [DOM-Level-1].

Note: When a DOM representation of a document is serialized as XML or HTML text, applications will
need to check each character in text data to see if it needs to be escaped using a numeric or pre-defined
entity. Failing to do so could result in invalid HTML or XML. Also, implementations should be aware of
the fact that serialization into a character encoding ("charset") that does not fully cover ISO 10646 may
fail if there are characters in markup or CDATA sections that are not present in the encoding.

Compliance
The Document Object Model level 2 consists of several modules: Core, HTML, Views, StyleSheets, CSS,
Events, Traversal, and Range. The DOM Core represents the functionality used for XML documents, and
also serves as the basis for DOM HTML.

A compliant implementation of the DOM must implement all of the fundamental interfaces in the Core
chapter with the semantics as defined. Further, it must implement at least one of the HTML DOM and the
extended (XML) interfaces with the semantics as defined. The other modules are optional.

A DOM application can use the hasFeature method of the DOMImplementation [p.26] interface to
determine whether the module is supported or not. The feature strings for all modules in DOM Level 2 are
listed in the following table; (strings are case-insensitive):

16

Entities and the DOM Core

Module Feature String

XML XML

HTML HTML

Views Views

StyleSheets StyleSheets

CSS CSS

CSS (extended interfaces) CSS2

Events Events

User Interface Events (UIEvent [p.232] interface) UIEvents

Mouse Events (MouseEvents [p.234] interface) MouseEvents

Mutation Events (MutationEvent [p.239] interface) MutationEvents

HTML Events HTMLEvents

Traversal Traversal

Range Range

The following table contains all dependencies between modules:

Module Implies

Views XML or HTML

StyleSheets StyleSheets and XML or HTML

CSS StyleSheets, Views and XML or HTML

CSS2 CSS, StyleSheets, Views and XML or HTML

Events XML or HTML

UIEvents Views, Events and XML or HTML

MouseEvents UIEvents, Views, Events and XML or HTML

MutationEvents Events and XML or HTML

HTMLEvents Events and XML or HTML

17

Compliance

DOM Interfaces and DOM Implementations
The DOM specifies interfaces which may be used to manage XML or HTML documents. It is important
to realize that these interfaces are an abstraction - much like "abstract base classes" in C++, they are a
means of specifying a way to access and manipulate an application’s internal representation of a
document. Interfaces do not imply a particular concrete implementation. Each DOM application is free to
maintain documents in any convenient representation, as long as the interfaces shown in this specification
are supported. Some DOM implementations will be existing programs that use the DOM interfaces to
access software written long before the DOM specification existed. Therefore, the DOM is designed to
avoid implementation dependencies; in particular,

1. Attributes defined in the IDL do not imply concrete objects which must have specific data members -
in the language bindings, they are translated to a pair of get()/set() functions, not to a data member.
Read-only attributes have only a get() function in the language bindings.

2. DOM applications may provide additional interfaces and objects not found in this specification and
still be considered DOM compliant.

3. Because we specify interfaces and not the actual objects that are to be created, the DOM cannot know
what constructors to call for an implementation. In general, DOM users call the createX() methods on
the Document class to create document structures, and DOM implementations create their own
internal representations of these structures in their implementations of the createX() functions.

The Level 1 interfaces were extended to provide both Level 1 and Level 2 functionality.

DOM implementations in languages other than Java or ECMA Script may choose bindings that are
appropriate and natural for their language and run time environment. For example, some systems may
need to create a Document2 class which inherits from Document and contains the new methods and
attributes.

18

DOM Interfaces and DOM Implementations

1. Document Object Model Core
Editors

Arnaud Le Hors, W3C
Mike Champion, ArborText (for DOM Level 1 from November 20, 1997)
Steve Byrne, JavaSoft (for DOM Level 1 until November 19, 1997)
Gavin Nicol, Inso EPS (for DOM Level 1)
Lauren Wood, SoftQuad, Inc. (for DOM Level 1)

1.1. Overview of the DOM Core Interfaces
This section defines a set of objects and interfaces for accessing and manipulating document objects. The
functionality specified in this section (the Core functionality) is sufficient to allow software developers
and web script authors to access and manipulate parsed HTML and XML content inside conforming
products. The DOM Core API also allows creation and population of a Document [p.29] object using
only DOM API calls; loading a Document and saving it persistently is left to the product that
implements the DOM API.

1.1.1. The DOM Structure Model

The DOM presents documents as a hierarchy of Node [p.39] objects that also implement other, more
specialized interfaces. Some types of nodes may have child nodes of various types, and others are leaf
nodes that cannot have anything below them in the document structure. For XML and HTML, the node
types, and which node types they may have as children, are as follows:

Document [p.29] -- Element [p.59] (maximum of one), ProcessingInstruction [p.73] ,
Comment [p.68] , DocumentType [p.69] (maximum of one)
DocumentFragment [p.29] -- Element [p.59] , ProcessingInstruction [p.73] ,
Comment [p.68] , Text [p.67] , CDATASection [p.69] , EntityReference [p.72]
DocumentType [p.69] -- no children
EntityReference [p.72] -- Element [p.59] , ProcessingInstruction [p.73] , Comment
[p.68] , Text [p.67] , CDATASection [p.69] , EntityReference
Element [p.59] -- Element, Text [p.67] , Comment [p.68] , ProcessingInstruction
[p.73] , CDATASection [p.69] , EntityReference [p.72]
Attr [p.57] -- Text [p.67] , EntityReference [p.72]
ProcessingInstruction [p.73] -- no children
Comment [p.68] -- no children
Text [p.67] -- no children
CDATASection [p.69] -- no children
Entity [p.71] -- Element [p.59] , ProcessingInstruction [p.73] , Comment [p.68] ,
Text [p.67] , CDATASection [p.69] , EntityReference [p.72]
Notation [p.71] -- no children

19

1. Document Object Model Core

The DOM also specifies a NodeList [p.48] interface to handle ordered lists of Nodes [p.39] , such as
the children of a Node [p.39] , or the elements returned by the getElementsByTagName method of
the Element [p.59] interface, and also a NamedNodeMap [p.49] interface to handle unordered sets of
nodes referenced by their name attribute, such as the attributes of an Element. NodeList [p.48] and
NamedNodeMap [p.49] objects in the DOM are live; that is, changes to the underlying document
structure are reflected in all relevant NodeList and NamedNodeMap objects. For example, if a DOM
user gets a NodeList object containing the children of an Element [p.59] , then subsequently adds
more children to that element (or removes children, or modifies them), those changes are automatically
reflected in the NodeList, without further action on the user’s part. Likewise, changes to a Node [p.39]
in the tree are reflected in all references to that Node in NodeList and NamedNodeMap objects.

Finally, the interfaces Text [p.67] , Comment [p.68] , and CDATASection [p.69] all inherit from the
CharacterData [p.53] interface.

1.1.2. Memory Management

Most of the APIs defined by this specification are interfaces rather than classes. That means that an
implementation need only expose methods with the defined names and specified operation, not implement
classes that correspond directly to the interfaces. This allows the DOM APIs to be implemented as a thin
veneer on top of legacy applications with their own data structures, or on top of newer applications with
different class hierarchies. This also means that ordinary constructors (in the Java or C++ sense) cannot be
used to create DOM objects, since the underlying objects to be constructed may have little relationship to
the DOM interfaces. The conventional solution to this in object-oriented design is to define factory
methods that create instances of objects that implement the various interfaces. Objects implementing some
interface "X" are created by a "createX()" method on the Document [p.29] interface; this is because all
DOM objects live in the context of a specific Document.

The DOM Level 2 API does not define a standard way to create DOMImplementation [p.26] objects;
DOM implementations must provide some proprietary way of bootstrapping these DOM interfaces, and
then all other objects can be built from there.

The Core DOM APIs are designed to be compatible with a wide range of languages, including both
general-user scripting languages and the more challenging languages used mostly by professional
programmers. Thus, the DOM APIs need to operate across a variety of memory management
philosophies, from language bindings that do not expose memory management to the user at all, through
those (notably Java) that provide explicit constructors but provide an automatic garbage collection
mechanism to automatically reclaim unused memory, to those (especially C/C++) that generally require
the programmer to explicitly allocate object memory, track where it is used, and explicitly free it for
re-use. To ensure a consistent API across these platforms, the DOM does not address memory
management issues at all, but instead leaves these for the implementation. Neither of the explicit language
bindings devised by the DOM Working Group (for ECMAScript and Java) require any memory
management methods, but DOM bindings for other languages (especially C or C++) may require such
support. These extensions will be the responsibility of those adapting the DOM API to a specific
language, not the DOM Working Group.

20

1.1.2. Memory Management

1.1.3. Naming Conventions

While it would be nice to have attribute and method names that are short, informative, internally
consistent, and familiar to users of similar APIs, the names also should not clash with the names in legacy
APIs supported by DOM implementations. Furthermore, both OMG IDL and ECMAScript have
significant limitations in their ability to disambiguate names from different namespaces that make it
difficult to avoid naming conflicts with short, familiar names. So, some DOM names tend to be long and
quite descriptive in order to be unique across all environments.

The Working Group has also attempted to be internally consistent in its use of various terms, even though
these may not be common distinctions in other APIs. For example, we use the method name "remove"
when the method changes the structural model, and the method name "delete" when the method gets rid of
something inside the structure model. The thing that is deleted is not returned. The thing that is removed
may be returned, when it makes sense to return it.

1.1.4. Inheritance vs. Flattened Views of the API

The DOM Core APIs present two somewhat different sets of interfaces to an XML/HTML document: one
presenting an "object oriented" approach with a hierarchy of inheritance, and a "simplified" view that
allows all manipulation to be done via the Node [p.39] interface without requiring casts (in Java and other
C-like languages) or query interface calls in COM environments. These operations are fairly expensive in
Java and COM, and the DOM may be used in performance-critical environments, so we allow significant
functionality using just the Node interface. Because many other users will find the inheritance hierarchy
easier to understand than the "everything is a Node" approach to the DOM, we also support the full
higher-level interfaces for those who prefer a more object-oriented API.

In practice, this means that there is a certain amount of redundancy in the API. The Working Group
considers the "inheritance" approach the primary view of the API, and the full set of functionality on
Node [p.39] to be "extra" functionality that users may employ, but that does not eliminate the need for
methods on other interfaces that an object-oriented analysis would dictate. (Of course, when the O-O
analysis yields an attribute or method that is identical to one on the Node interface, we don’t specify a
completely redundant one.) Thus, even though there is a generic nodeName attribute on the Node
interface, there is still a tagName attribute on the Element [p.59] interface; these two attributes must
contain the same value, but the Working Group considers it worthwhile to support both, given the
different constituencies the DOM API must satisfy.

1.1.5. The DOMString type

To ensure interoperability, the DOM specifies the following:

Type Definition DOMString

A DOMString [p.21] is a sequence of 16-bit units [p.449] .
IDL Definition

21

1.1.3. Naming Conventions

typedef sequence<unsigned short> DOMString;

Applications must encode DOMString [p.21] using UTF-16 (defined in [Unicode] and Amendment
1 of [ISO/IEC 10646]).
The UTF-16 encoding was chosen because of its widespread industry practice. Note that for both
HTML and XML, the document character set (and therefore the notation of numeric character
references) is based on UCS [ISO-10646]. A single numeric character reference in a source
document may therefore in some cases correspond to two 16-bit units in a DOMString [p.21] (a
high surrogate and a low surrogate).

Note: Even though the DOM defines the name of the string type to be DOMString [p.21] , bindings
may use different names. For example for Java, DOMString is bound to the String type because
it also uses UTF-16 as its encoding.

Note: As of August 1998, the OMG IDL specification included a wstring type. However, that
definition did not meet the interoperability criteria of the DOM API since it relied on negotiation to decide
the width and encoding of a character.

1.1.6. The DOMTimeStamp type

To ensure interoperability, the DOM specifies the following:

Type Definition DOMTimeStamp

A DOMTimeStamp [p.22] represents a number of milliseconds.
IDL Definition

typedef unsigned long long DOMTimeStamp;

Note: Even though the DOM uses the type DOMTimeStamp [p.22] , bindings may use different
types. For example for Java, DOMTimeStamp is bound to the long type. In ECMAScript, because
TimeStamp is bound to the Date type because the range of the integer type is too small.

1.1.7. String comparisons in the DOM

The DOM has many interfaces that imply string matching. HTML processors generally assume an
uppercase (less often, lowercase) normalization of names for such things as elements, while XML is
explicitly case sensitive. For the purposes of the DOM, string matching is performed purely by binary
comparison of the 16-bit units [p.449] of the DOMString [p.21] . In addition, the DOM assumes that any
case normalizations take place in the processor, before the DOM structures are built.

Note: Besides case folding, there are additional normalizations that can be applied to text. The W3C I18N
Working Group is in the process of defining exactly which normalizations are necessary, and where they
should be applied. The W3C I18N Working Group expects to require early normalization, which means
that data read into the DOM is assumed to already be normalized. The DOM and applications built on top
of it in this case only have to assure that text remains normalized when being changed. For further details,
please see [Charmod].

22

1.1.6. The DOMTimeStamp type

1.1.8. XML Namespaces

The DOM Level 2 supports XML namespaces [Namespaces] by augmenting several interfaces of the
DOM Level 1 Core to allow creating and manipulating elements and attributes associated to a namespace.

As far as the DOM is concerned, special attributes used for declaring XML namespaces are still exposed
and can be manipulated just like any other attribute. However, nodes are permanently bound to namespace
URIs [p.452] as they get created. Consequently, moving a node within a document, using the DOM, in no
case results in a change of its namespace prefix [p.452] or namespace URI. Similarly, creating a node with
a namespace prefix and namespace URI, or changing the namespace prefix of a node, does not result in
any addition, removal, or modification of any special attributes for declaring the appropriate XML
namespaces. Namespace validation is not enforced; the DOM application is responsible. In particular,
since the mapping between prefixes and namespace URIs is not enforced, in general, the resulting
document cannot be serialized naively. For example, applications may have to declare every namespace in
use when serializing a document.

Note: In the DOM, all namespace declaration attributes are by definition bound to the namespace URI:
"http://www.w3.org/2000/xmlns/". These are the attributes whose namespace prefix [p.452] or qualified
name [p.452] is "xmlns". Although, at the time of writing, this is not part of the XML Namespaces
[Namespaces], it is planned to be incorporated in a future revision.

In a document with no namespaces, the child list of an EntityReference [p.72] node is always the
same as that of the corresponding Entity [p.71] . This is not true in a document where an entity contains
unbound namespace prefixes [p.452] . In such a case, the descendants of the corresponding
EntityReference nodes may be bound to different namespace URIs [p.452] , depending on where the
entity references are. Also, because, in the DOM, nodes always remain bound to the same namespace
URI, moving such EntityReference nodes can lead to documents that cannot be serialized. This is
also true when the DOM Level 1 method createEntityReference of the Document [p.29]
interface is used to create entity references that correspond to such entities, since the descendants of the
returned EntityReference are unbound. The DOM Level 2 does not support any mechanism to
resolve namespace prefixes. For all of these reasons, use of such entities and entity references should be
avoided or used with extreme care. A future level of the DOM may include some additional support for
handling these.

The new methods, such as createElementNS and createAttributeNS of the Document [p.29]
interface, are meant to be used by namespace aware applications. Simple applications that do not use
namespaces can use the DOM Level 1 methods, such as createElement and createAttribute.
Elements and attributes created in this way do not have any namespace prefix, namespace URI, and local
name.

Note: DOM Level 1 methods are namespaces ignorant. Therefore, while it is safe to use these methods
when not dealing with namespaces, using them and the new ones at the same time should be avoided.
DOM Level 1 methods solely identify attribute nodes by their nodeName. On the contrary, the DOM
Level 2 methods related to namespaces, identify attribute nodes by their namespaceURI and
localName. Because of this fundamental difference, mixing both sets of methods can lead to
unpredictable results. In particular, using setAttributeNS, one can set on an element two attributes
(or more) that have the same nodeName, but different namespaceURIs. Calling getAttribute

23

1.1.8. XML Namespaces

with that nodeName could then return any of those attributes. The result is implementation dependent.
Similarly, using setAttributeNode, one can set two attributes (or more) that have different
nodeNames but the same prefix and namespaceURI. In this case getAttributeNodeNS will
return one or the other, in an implementation dependent manner. The only guarantee in such cases, is that
setAttribute and setAttributeNS affect the node that, respectively, getAttribute and
getAttributeNS return.

1.2. Fundamental Interfaces
The interfaces within this section are considered fundamental, and must be fully implemented by all
conforming implementations of the DOM, including all HTML DOM implementations, unless otherwise
specified.

Exception DOMException

DOM operations only raise exceptions in "exceptional" circumstances, i.e., when an operation is
impossible to perform (either for logical reasons, because data is lost, or because the implementation
has become unstable). In general, DOM methods return specific error values in ordinary processing
situations, such as out-of-bound errors when using NodeList [p.48] .

Implementations may raise other exceptions under other circumstances. For example,
implementations may raise an implementation-dependent exception if a null argument is passed.

Some languages and object systems do not support the concept of exceptions. For such systems, error
conditions may be indicated using native error reporting mechanisms. For some bindings, for
example, methods may return error codes similar to those listed in the corresponding method
descriptions.
IDL Definition

exception DOMException {
 unsigned short code;
};

// ExceptionCode
const unsigned short INDEX_SIZE_ERR = 1;
const unsigned short DOMSTRING_SIZE_ERR = 2;
const unsigned short HIERARCHY_REQUEST_ERR = 3;
const unsigned short WRONG_DOCUMENT_ERR = 4;
const unsigned short INVALID_CHARACTER_ERR = 5;
const unsigned short NO_DATA_ALLOWED_ERR = 6;
const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
const unsigned short NOT_FOUND_ERR = 8;
const unsigned short NOT_SUPPORTED_ERR = 9;
const unsigned short INUSE_ATTRIBUTE_ERR = 10;
// Introduced in DOM Level 2:
const unsigned short INVALID_STATE_ERR = 11;
// Introduced in DOM Level 2:
const unsigned short SYNTAX_ERR = 12;
// Introduced in DOM Level 2:
const unsigned short INVALID_MODIFICATION_ERR = 13;

24

1.2. Fundamental Interfaces

// Introduced in DOM Level 2:
const unsigned short NAMESPACE_ERR = 14;
// Introduced in DOM Level 2:
const unsigned short INVALID_ACCESS_ERR = 15;

Definition group ExceptionCode

An integer indicating the type of error generated.

Note: Other numeric codes are reserved for W3C for possible future use.

Defined Constants

DOMSTRING_SIZE_ERR If the specified range of text does not
fit into a DOMString

HIERARCHY_REQUEST_ERR If any node is inserted somewhere it
doesn’t belong

INDEX_SIZE_ERR If index or size is negative, or greater
than the allowed value

INUSE_ATTRIBUTE_ERR If an attempt is made to add an
attribute that is already in use
elsewhere

INVALID_ACCESS_ERR Introduced in DOM Level 2.
If a parameter or an operation is not
supported by the underlying object.

INVALID_CHARACTER_ERR If an invalid or illegal character is
specified, such as in a name. See
production 2 in the XML specification
for the definition of a legal character,
and production 5 for the definition of a
legal name character.

INVALID_MODIFICATION_ERR Introduced in DOM Level 2.
If an attempt is made to modify the
type of the underlying object.

INVALID_STATE_ERR Introduced in DOM Level 2.
If an attempt is made to use an object
that is not, or is no longer, usable.

NAMESPACE_ERR Introduced in DOM Level 2.
If an attempt is made to create or
change an object in a way which is
incorrect with regard to namespaces.

25

1.2. Fundamental Interfaces

http://www.w3.org/TR/REC-xml#NT-Name
http://www.w3.org/TR/REC-xml#NT-Char

NOT_FOUND_ERR If an attempt is made to reference a
node in a context where it does not
exist

NOT_SUPPORTED_ERR If the implementation does not support
the type of object requested

NO_DATA_ALLOWED_ERR If data is specified for a node which
does not support data

NO_MODIFICATION_ALLOWED_ERR If an attempt is made to modify an
object where modifications are not
allowed

SYNTAX_ERR Introduced in DOM Level 2.
If an invalid or illegal string is
specified.

WRONG_DOCUMENT_ERR If a node is used in a different
document than the one that created it
(that doesn’t support it)

Interface DOMImplementation

The DOMImplementation interface provides a number of methods for performing operations that
are independent of any particular instance of the document object model.
IDL Definition

interface DOMImplementation {
 boolean hasFeature(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 DocumentType createDocumentType(in DOMString qualifiedName,
 in DOMString publicId,
 in DOMString systemId)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Document createDocument(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DocumentType doctype)
 raises(DOMException);
};

Methods
createDocument introduced in DOM Level 2

Creates an XML Document [p.29] object of the specified type with its document element.
HTML-only DOM implementations do not need to implement this method.
Parameters

26

1.2. Fundamental Interfaces

DOMString
[p.21]

namespaceURI The namespace URI [p.452] of the
document element to create, or
null.

DOMString qualifiedName The qualified name [p.452] of the
document element to be created.

DocumentType
[p.69]

doctype The type of document to be
created or null.

When doctype is not null, its
Node.ownerDocument
attribute is set to the document
being created.

Return Value

Document [p.29] A new Document object.

Exceptions

DOMException
[p.24]

INVALID_CHARACTER_ERR: Raised if the specified
qualified name contains an illegal character.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed, or if the qualifiedName has a prefix that is
"xml" and the namespaceURI is different from
"http://www.w3.org/XML/1998/namespace".

WRONG_DOCUMENT_ERR: Raised if doctype has
already been used with a different document.

createDocumentType introduced in DOM Level 2
Creates an empty DocumentType [p.69] node. Entity declarations and notations are not
made available. Entity reference expansions and default attribute additions do not occur. It
is expected that a future version of the DOM will provide a way for populating a
DocumentType.
HTML-only DOM implementations do not need to implement this method.
Parameters

27

1.2. Fundamental Interfaces

DOMString
[p.21]

qualifiedName The qualified name [p.452] of the
document type to be created.

DOMString publicId The external subset public identifier.

DOMString systemId The external subset system
identifier.

Return Value

DocumentType
[p.69]

A new DocumentType node with
Node.ownerDocument set to null.

Exceptions

DOMException
[p.24]

INVALID_CHARACTER_ERR: Raised if the specified
qualified name contains an illegal character.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed.

hasFeature
Test if the DOM implementation implements a specific feature.
Parameters

DOMString
[p.21]

feature The name of the feature to test
(case-insensitive). The legal values are defined
throughout this specification and listed in the
Compliance [p.16] section. The name must be an
XML name [p.453] . To avoid possible conflicts,
as a convention, names referring to features
defined outside the DOM spec should be made
unique by reversing the name of the Internet
domain name of the person (or the organization
that person belongs to) who defines the feature,
component by component, and use this as a
prefix. For instance, the W3C SYMM Working
Group defines the feature "org.w3c.dom.smil".

DOMString version This is the version number of the feature to test.
In Level 2, this is the string "2.0". If the version
is not specified, supporting any version of the
feature causes the method to return true.

28

1.2. Fundamental Interfaces

Return Value

boolean true if the feature is implemented in the specified version, false
otherwise.

No Exceptions

Interface DocumentFragment

DocumentFragment is a "lightweight" or "minimal" Document [p.29] object. It is very common
to want to be able to extract a portion of a document’s tree or to create a new fragment of a
document. Imagine implementing a user command like cut or rearranging a document by moving
fragments around. It is desirable to have an object which can hold such fragments and it is quite
natural to use a Node for this purpose. While it is true that a Document object could fulfill this role,
a Document object can potentially be a heavyweight object, depending on the underlying
implementation. What is really needed for this is a very lightweight object. DocumentFragment
is such an object.

Furthermore, various operations -- such as inserting nodes as children of another Node [p.39] -- may
take DocumentFragment objects as arguments; this results in all the child nodes of the
DocumentFragment being moved to the child list of this node.

The children of a DocumentFragment node are zero or more nodes representing the tops of any
sub-trees defining the structure of the document. DocumentFragment nodes do not need to be
well-formed XML documents (although they do need to follow the rules imposed upon well-formed
XML parsed entities, which can have multiple top nodes). For example, a DocumentFragment
might have only one child and that child node could be a Text [p.67] node. Such a structure model
represents neither an HTML document nor a well-formed XML document.

When a DocumentFragment is inserted into a Document [p.29] (or indeed any other Node
[p.39] that may take children) the children of the DocumentFragment and not the
DocumentFragment itself are inserted into the Node. This makes the DocumentFragment
very useful when the user wishes to create nodes that are siblings; the DocumentFragment acts as
the parent of these nodes so that the user can use the standard methods from the Node interface, such
as insertBefore and appendChild.
IDL Definition

interface DocumentFragment : Node {
};

Interface Document

The Document interface represents the entire HTML or XML document. Conceptually, it is the root
of the document tree, and provides the primary access to the document’s data.

Since elements, text nodes, comments, processing instructions, etc. cannot exist outside the context
of a Document, the Document interface also contains the factory methods needed to create these
objects. The Node [p.39] objects created have a ownerDocument attribute which associates them

29

1.2. Fundamental Interfaces

with the Document within whose context they were created.
IDL Definition

interface Document : Node {
 readonly attribute DocumentType doctype;
 readonly attribute DOMImplementation implementation;
 readonly attribute Element documentElement;
 Element createElement(in DOMString tagName)
 raises(DOMException);
 DocumentFragment createDocumentFragment();
 Text createTextNode(in DOMString data);
 Comment createComment(in DOMString data);
 CDATASection createCDATASection(in DOMString data)
 raises(DOMException);
 ProcessingInstruction createProcessingInstruction(in DOMString target,
 in DOMString data)
 raises(DOMException);
 Attr createAttribute(in DOMString name)
 raises(DOMException);
 EntityReference createEntityReference(in DOMString name)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString tagname);
 // Introduced in DOM Level 2:
 Node importNode(in Node importedNode,
 in boolean deep)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Element createElementNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr createAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Element getElementById(in DOMString elementId);
};

Attributes
doctype of type DocumentType [p.69] , readonly

The Document Type Declaration (see DocumentType [p.69]) associated with this
document. For HTML documents as well as XML documents without a document type
declaration this returns null. The DOM Level 2 does not support editing the Document
Type Declaration, therefore docType cannot be altered in any way, including through the
use of methods, such as insertNode or removeNode, inherited from Node [p.39] .

documentElement of type Element [p.59] , readonly
This is a convenience attribute that allows direct access to the child node that is the root
element of the document. For HTML documents, this is the element with the tagName
"HTML".

30

1.2. Fundamental Interfaces

implementation of type DOMImplementation [p.26] , readonly
The DOMImplementation [p.26] object that handles this document. A DOM
application may use objects from multiple implementations.

Methods
createAttribute

Creates an Attr [p.57] of the given name. Note that the Attr instance can then be set on
an Element [p.59] using the setAttributeNode method.
To create an attribute with a qualified name and namespace URI, use the
createAttributeNS method.
Parameters

DOMString [p.21] name The name of the attribute.

Return Value

Attr
[p.57]

A new Attr object with the nodeName attribute set to name, and
localName, prefix, and namespaceURI set to null.

Exceptions

DOMException
[p.24]

INVALID_CHARACTER_ERR: Raised if the specified
name contains an illegal character.

createAttributeNS introduced in DOM Level 2
Creates an attribute of the given qualified name and namespace URI. HTML-only DOM
implementations do not need to implement this method.
Parameters

DOMString
[p.21]

namespaceURI The namespace URI [p.452] of the
attribute to create.

DOMString qualifiedName The qualified name [p.452] of the
attribute to instantiate.

Return Value

31

1.2. Fundamental Interfaces

Attr
[p.57]

A new Attr object with the following attributes:

Attribute Value

Node.nodeName qualifiedName

Node.namespaceURI namespaceURI

Node.prefix prefix, extracted from qualifiedName,
or null if there is no prefix

Node.localName local name [p.452] , extracted from
qualifiedName

Attr.name qualifiedName

Exceptions

DOMException
[p.24]

INVALID_CHARACTER_ERR: Raised if the specified
qualified name contains an illegal character.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed, if the qualifiedName has a prefix and the
namespaceURI is null or an empty string, if the
qualifiedName has a prefix that is "xml" and the
namespaceURI is different from
"http://www.w3.org/XML/1998/namespace", if the
qualifiedName has a prefix that is "xmlns" and the
namespaceURI is different from
"http://www.w3.org/2000/xmlns/", or if the
qualifiedName is "xmlns" and the namespaceURI is
different from "http://www.w3.org/2000/xmlns/".

createCDATASection
Creates a CDATASection [p.69] node whose value is the specified string.
Parameters

DOMString
[p.21]

data The data for the CDATASection [p.69]
contents.

Return Value

CDATASection [p.69] The new CDATASection object.

32

1.2. Fundamental Interfaces

Exceptions

DOMException
[p.24]

NOT_SUPPORTED_ERR: Raised if this document is an
HTML document.

createComment
Creates a Comment [p.68] node given the specified string.
Parameters

DOMString [p.21] data The data for the node.

Return Value

Comment [p.68] The new Comment object.

No Exceptions

createDocumentFragment
Creates an empty DocumentFragment [p.29] object.
Return Value

DocumentFragment [p.29] A new DocumentFragment.

No Parameters
No Exceptions

createElement
Creates an element of the type specified. Note that the instance returned implements the
Element [p.59] interface, so attributes can be specified directly on the returned object.
In addition, if there are known attributes with default values, Attr [p.57] nodes
representing them are automatically created and attached to the element.
To create an element with a qualified name and namespace URI, use the
createElementNS method.
Parameters

DOMString
[p.21]

tagName The name of the element type to instantiate. For
XML, this is case-sensitive. For HTML, the
tagName parameter may be provided in any
case, but it must be mapped to the canonical
uppercase form by the DOM implementation.

Return Value

33

1.2. Fundamental Interfaces

Element
[p.59]

A new Element object with the nodeName attribute set to
tagName, and localName, prefix, and namespaceURI set
to null.

Exceptions

DOMException
[p.24]

INVALID_CHARACTER_ERR: Raised if the specified
name contains an illegal character.

createElementNS introduced in DOM Level 2
Creates an element of the given qualified name and namespace URI. HTML-only DOM
implementations do not need to implement this method.
Parameters

DOMString
[p.21]

namespaceURI The namespace URI [p.452] of the
element to create.

DOMString qualifiedName The qualified name [p.452] of the
element type to instantiate.

Return Value

Element
[p.59]

A new Element object with the following attributes:

Attribute Value

Node.nodeName qualifiedName

Node.namespaceURI namespaceURI

Node.prefix prefix, extracted from
qualifiedName, or null if there
is no prefix

Node.localName local name [p.452] , extracted from
qualifiedName

Element.tagName qualifiedName

Exceptions

34

1.2. Fundamental Interfaces

DOMException
[p.24]

INVALID_CHARACTER_ERR: Raised if the specified
qualified name contains an illegal character.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed, if the qualifiedName has a prefix and the
namespaceURI is null or an empty string, or if the
qualifiedName has a prefix that is "xml" and the
namespaceURI is different from
"http://www.w3.org/XML/1998/namespace" [Namespaces].

createEntityReference
Creates an EntityReference [p.72] object. In addition, if the referenced entity is
known, the child list of the EntityReference node is made the same as that of the
corresponding Entity [p.71] node.

Note: If any descendant of the Entity [p.71] node has an unbound namespace prefix
[p.452] , the corresponding descendant of the created EntityReference [p.72] node is
also unbound; (its namespaceURI is null). The DOM Level 2 does not support any
mechanism to resolve namespace prefixes.

Parameters

DOMString [p.21] name The name of the entity to reference.

Return Value

EntityReference [p.72] The new EntityReference object.

Exceptions

DOMException
[p.24]

INVALID_CHARACTER_ERR: Raised if the specified
name contains an illegal character.

NOT_SUPPORTED_ERR: Raised if this document is an
HTML document.

createProcessingInstruction
Creates a ProcessingInstruction [p.73] node given the specified name and data
strings.
Parameters

DOMString [p.21] target The target part of the processing instruction.

DOMString data The data for the node.

35

1.2. Fundamental Interfaces

Return Value

ProcessingInstruction
[p.73]

The new ProcessingInstruction
object.

Exceptions

DOMException
[p.24]

INVALID_CHARACTER_ERR: Raised if the specified
target contains an illegal character.

NOT_SUPPORTED_ERR: Raised if this document is an
HTML document.

createTextNode
Creates a Text [p.67] node given the specified string.
Parameters

DOMString [p.21] data The data for the node.

Return Value

Text [p.67] The new Text object.

No Exceptions

getElementById introduced in DOM Level 2
Returns the Element [p.59] whose ID is given by elementId. If no such element
exists, returns null. Behavior is not defined if more than one element has this ID.

Note: The DOM implementation must have information that says which attributes are of
type ID. Attributes with the name "ID" are not of type ID unless so defined.
Implementations that do not know whether attributes are of type ID or not are expected to
return null.

Parameters

DOMString [p.21] elementId The unique id value for an element.

Return Value

Element [p.59] The matching element.

36

1.2. Fundamental Interfaces

No Exceptions

getElementsByTagName
Returns a NodeList [p.48] of all the Elements [p.59] with a given tag name in the
order in which they would be encountered in a preorder traversal of the Document tree.
Parameters

DOMString
[p.21]

tagname The name of the tag to match on. The special
value "*" matches all tags.

Return Value

NodeList
[p.48]

A new NodeList object containing all the matched
Elements [p.59] .

No Exceptions

getElementsByTagNameNS introduced in DOM Level 2
Returns a NodeList [p.48] of all the Elements [p.59] with a given local name [p.452]
and namespace URI in the order in which they would be encountered in a preorder
traversal of the Document tree.
Parameters

DOMString
[p.21]

namespaceURI The namespace URI [p.452] of the
elements to match on. The special
value "*" matches all namespaces.

DOMString localName The local name [p.452] of the elements
to match on. The special value "*"
matches all local names.

Return Value

NodeList
[p.48]

A new NodeList object containing all the matched
Elements [p.59] .

No Exceptions

importNode introduced in DOM Level 2
Imports a node from another document to this document. The returned node has no parent;
(parentNode is null). The source node is not altered or removed from the original
document; this method creates a new copy of the source node.
For all nodes, importing a node creates a node object owned by the importing document,
with attribute values identical to the source node’s nodeName and nodeType, plus the
attributes related to namespaces (prefix, localName, and namespaceURI). As in the

37

1.2. Fundamental Interfaces

cloneNode operation on a Node [p.39] , the source node is not altered.
Additional information is copied as appropriate to the nodeType, attempting to mirror the
behavior expected if a fragment of XML or HTML source was copied from one document
to another, recognizing that the two documents may have different DTDs in the XML case.
The following list describes the specifics for every type of node.
ATTRIBUTE_NODE

The specified flag is set to true on the generated Attr [p.57] . The descendants
of the source Attr are recursively imported and the resulting nodes reassembled to
form the corresponding subtree.
Note that the deep parameter does not apply to Attr [p.57] nodes; they always carry
their children with them when imported.

DOCUMENT_FRAGMENT_NODE
If the deep option was set true, the descendants of the source element will be
recursively imported and the resulting nodes reassembled to form the corresponding
subtree. Otherwise, this simply generates an empty DocumentFragment [p.29] .

DOCUMENT_NODE
Document nodes cannot be imported.

DOCUMENT_TYPE_NODE
DocumentType [p.69] nodes cannot be imported.

ELEMENT_NODE
Specified attribute nodes of the source element are imported, and the generated Attr
[p.57] nodes are attached to the generated Element [p.59] . Default attributes are not
copied, though if the document being imported into defines default attributes for this
element name, those are assigned. If the importNode deep parameter was set to
true, the descendants of the source element will be recursively imported and the
resulting nodes reassembled to form the corresponding subtree.

ENTITY_NODE
Entity [p.71] nodes can be imported, however in the current release of the DOM the
DocumentType [p.69] is readonly. Ability to add these imported nodes to a
DocumentType will be considered for addition to a future release of the DOM.
On import, the publicId, systemId, and notationName attributes are copied.
If a deep import is requested, the descendants of the the source Entity [p.71] is
recursively imported and the resulting nodes reassembled to form the corresponding
subtree.

ENTITY_REFERENCE_NODE
Only the EntityReference [p.72] itself is copied, even if a deep import is
requested, since the source and destination documents might have defined the entity
differently. If the document being imported into provides a definition for this entity
name, its value is assigned.

NOTATION_NODE
Notation [p.71] nodes can be imported, however in the current release of the DOM
the DocumentType [p.69] is readonly. Ability to add these imported nodes to a
DocumentType will be considered for addition to a future release of the DOM.
On import, the publicId and systemId attributes are copied.
Note that the deep parameter does not apply to Notation [p.71] nodes since they
never have any children.

38

1.2. Fundamental Interfaces

PROCESSING_INSTRUCTION_NODE
The imported node copies its target and data values from those of the source
node.

TEXT_NODE, CDATA_SECTION_NODE, COMMENT_NODE
These three types of nodes inheriting from CharacterData [p.53] copy their data
and length attributes from those of the source node.

Parameters

Node
[p.39]

importedNode
The node to import.

boolean deep If true, recursively import the subtree
under the specified node; if false, import
only the node itself, as explained above.
This does not apply to Attr [p.57] ,
EntityReference [p.72] , and
Notation [p.71] nodes.

Return Value

Node [p.39] The imported node that belongs to this Document.

Exceptions

DOMException
[p.24]

NOT_SUPPORTED_ERR: Raised if the type of node
being imported is not supported.

Interface Node

The Node interface is the primary datatype for the entire Document Object Model. It represents a
single node in the document tree. While all objects implementing the Node interface expose methods
for dealing with children, not all objects implementing the Node interface may have children. For
example, Text [p.67] nodes may not have children, and adding children to such nodes results in a
DOMException [p.24] being raised.

The attributes nodeName, nodeValue and attributes are included as a mechanism to get at
node information without casting down to the specific derived interface. In cases where there is no
obvious mapping of these attributes for a specific nodeType (e.g., nodeValue for an Element
[p.59] or attributes for a Comment [p.68]), this returns null. Note that the specialized
interfaces may contain additional and more convenient mechanisms to get and set the relevant
information.
IDL Definition

39

1.2. Fundamental Interfaces

interface Node {
 // NodeType
 const unsigned short ELEMENT_NODE = 1;
 const unsigned short ATTRIBUTE_NODE = 2;
 const unsigned short TEXT_NODE = 3;
 const unsigned short CDATA_SECTION_NODE = 4;
 const unsigned short ENTITY_REFERENCE_NODE = 5;
 const unsigned short ENTITY_NODE = 6;
 const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
 const unsigned short COMMENT_NODE = 8;
 const unsigned short DOCUMENT_NODE = 9;
 const unsigned short DOCUMENT_TYPE_NODE = 10;
 const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
 const unsigned short NOTATION_NODE = 12;

 readonly attribute DOMString nodeName;
 attribute DOMString nodeValue;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned short nodeType;
 readonly attribute Node parentNode;
 readonly attribute NodeList childNodes;
 readonly attribute Node firstChild;
 readonly attribute Node lastChild;
 readonly attribute Node previousSibling;
 readonly attribute Node nextSibling;
 readonly attribute NamedNodeMap attributes;
 // Modified in DOM Level 2:
 readonly attribute Document ownerDocument;
 Node insertBefore(in Node newChild,
 in Node refChild)
 raises(DOMException);
 Node replaceChild(in Node newChild,
 in Node oldChild)
 raises(DOMException);
 Node removeChild(in Node oldChild)
 raises(DOMException);
 Node appendChild(in Node newChild)
 raises(DOMException);
 boolean hasChildNodes();
 Node cloneNode(in boolean deep);
 // Introduced in DOM Level 2:
 void normalize();
 // Introduced in DOM Level 2:
 boolean supports(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 readonly attribute DOMString namespaceURI;
 // Introduced in DOM Level 2:
 attribute DOMString prefix;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute DOMString localName;
};

40

1.2. Fundamental Interfaces

Definition group NodeType

An integer indicating which type of node this is.

Note: Numeric codes up to 200 are reserved to W3C for possible future use.

Defined Constants

ATTRIBUTE_NODE The node is an Attr [p.57] .

CDATA_SECTION_NODE The node is a CDATASection [p.69] .

COMMENT_NODE The node is a Comment [p.68] .

DOCUMENT_FRAGMENT_NODE The node is a DocumentFragment
[p.29] .

DOCUMENT_NODE The node is a Document [p.29] .

DOCUMENT_TYPE_NODE The node is a DocumentType [p.69] .

ELEMENT_NODE The node is an Element [p.59] .

ENTITY_NODE The node is an Entity [p.71] .

ENTITY_REFERENCE_NODE The node is an EntityReference
[p.72] .

NOTATION_NODE The node is a Notation [p.71] .

PROCESSING_INSTRUCTION_NODE The node is a
ProcessingInstruction [p.73] .

TEXT_NODE The node is a Text [p.67] node.

The values of nodeName, nodeValue, and attributes vary according to the node type as
follows:

41

1.2. Fundamental Interfaces

nodeName nodeValue attributes

Attr name of attribute value of attribute null

CDATASection #cdata-section content of the CDATA
Section

null

Comment #comment content of the comment null

Document #document null null

DocumentFragment #document-fragment null null

DocumentType document type name null null

Element tag name null NamedNodeMap

Entity entity name null null

EntityReference name of entity
referenced

null null

Notation notation name null null

ProcessingInstructiontarget entire content excluding
the target

null

Text #text content of the text node null

Attributes
attributes of type NamedNodeMap [p.49] , readonly

A NamedNodeMap [p.49] containing the attributes of this node (if it is an Element
[p.59]) or null otherwise.

childNodes of type NodeList [p.48] , readonly
A NodeList [p.48] that contains all children of this node. If there are no children, this is
a NodeList containing no nodes.

firstChild of type Node [p.39] , readonly
The first child of this node. If there is no such node, this returns null.

lastChild of type Node [p.39] , readonly
The last child of this node. If there is no such node, this returns null.

localName of type DOMString [p.21] , readonly, introduced in DOM Level 2
Returns the local part of the qualified name [p.452] of this node.
For nodes created with a DOM Level 1 method, such as createElement from the
Document [p.29] interface, it is null.

42

1.2. Fundamental Interfaces

namespaceURI of type DOMString [p.21] , readonly, introduced in DOM Level 2
The namespace URI [p.452] of this node, or null if it is unspecified.
This is not a computed value that is the result of a namespace lookup based on an
examination of the namespace declarations in scope. It is merely the namespace URI given
at creation time.
For nodes of any type other than ELEMENT_NODE and ATTRIBUTE_NODE and nodes
created with a DOM Level 1 method, such as createElement from the Document
[p.29] interface, this is always null.

Note: Per the Namespaces in XML Specification [Namespaces] an attribute does not inherit
its namespace from the element it is attached to. If an attribute is not explicitly given a
namespace, it simply has no namespace.

nextSibling of type Node [p.39] , readonly
The node immediately following this node. If there is no such node, this returns null.

nodeName of type DOMString [p.21] , readonly
The name of this node, depending on its type; see the table above.

nodeType of type unsigned short, readonly
A code representing the type of the underlying object, as defined above.

nodeValue of type DOMString [p.21]
The value of this node, depending on its type; see the table above. When it is defined to be
null, setting it has no effect.
Exceptions on setting

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised when
the node is readonly.

Exceptions on retrieval

DOMException
[p.24]

DOMSTRING_SIZE_ERR: Raised when it would return
more characters than fit in a DOMString [p.21] variable on
the implementation platform.

ownerDocument of type Document [p.29] , readonly, modified in DOM Level 2
The Document [p.29] object associated with this node. This is also the Document object
used to create new nodes. When this node is a Document or a DocumentType [p.69]
which is not used with any Document yet, this is null.

parentNode of type Node [p.39] , readonly
The parent of this node. All nodes, except Attr [p.57] , Document [p.29] ,
DocumentFragment [p.29] , Entity [p.71] , and Notation [p.71] may have a
parent. However, if a node has just been created and not yet added to the tree, or if it has
been removed from the tree, this is null.

43

1.2. Fundamental Interfaces

prefix of type DOMString [p.21] , introduced in DOM Level 2
The namespace prefix [p.452] of this node, or null if it is unspecified.
Note that setting this attribute, when permitted, changes the nodeName attribute, which
holds the qualified name [p.452] , as well as the tagName and name attributes of the
Element [p.59] and Attr [p.57] interfaces, when applicable.
Note also that changing the prefix of an attribute that is known to have a default value, does
not make a new attribute with the default value and the original prefix appear, since the
namespaceURI and localName do not change.
Exceptions on setting

DOMException
[p.24]

INVALID_CHARACTER_ERR: Raised if the specified
prefix contains an illegal character.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

NAMESPACE_ERR: Raised if the specified prefix is
malformed, if the namespaceURI of this node is null, if
the specified prefix is "xml" and the namespaceURI of this
node is different from
"http://www.w3.org/XML/1998/namespace", if this node is an
attribute and the specified prefix is "xmlns" and the
namespaceURI of this node is different from
"http://www.w3.org/2000/xmlns/", or if this node is an
attribute and the qualifiedName of this node is "xmlns"
[Namespaces].

previousSibling of type Node [p.39] , readonly
The node immediately preceding this node. If there is no such node, this returns null.

Methods
appendChild

Adds the node newChild to the end of the list of children of this node. If the newChild
is already in the tree, it is first removed.
Parameters

Node
[p.39]

newChild The node to add.

If it is a DocumentFragment [p.29] object, the
entire contents of the document fragment are moved
into the child list of this node

Return Value

Node [p.39] The node added.

44

1.2. Fundamental Interfaces

Exceptions

DOMException
[p.24]

HIERARCHY_REQUEST_ERR: Raised if this node is of a
type that does not allow children of the type of the
newChild node, or if the node to append is one of this
node’s ancestors.

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created
this node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node or the node being appended is readonly.

cloneNode
Returns a duplicate of this node, i.e., serves as a generic copy constructor for nodes. The
duplicate node has no parent; (parentNode is null.).
Cloning an Element [p.59] copies all attributes and their values, including those
generated by the XML processor to represent defaulted attributes, but this method does not
copy any text it contains unless it is a deep clone, since the text is contained in a child
Text [p.67] node. Cloning an Attribute directly, as opposed to be cloned as part of an
Element cloning operation, returns a specified attribute (specified is true). Cloning
any other type of node simply returns a copy of this node.
Note that cloning an immutable subtree results in a mutable copy, but the children of an
EntityReference [p.72] clone are readonly.
Parameters

boolean deep If true, recursively clone the subtree under the
specified node; if false, clone only the node itself
(and its attributes, if it is an Element [p.59]).

Return Value

Node [p.39] The duplicate node.

No Exceptions

hasChildNodes
This is a convenience method to allow easy determination of whether a node has any
children.
Return Value

boolean true if the node has any children, false if the node has no
children.

45

1.2. Fundamental Interfaces

No Parameters
No Exceptions

insertBefore
Inserts the node newChild before the existing child node refChild. If refChild is
null, insert newChild at the end of the list of children.
If newChild is a DocumentFragment [p.29] object, all of its children are inserted, in
the same order, before refChild. If the newChild is already in the tree, it is first
removed.
Parameters

Node
[p.39]

newChild
The node to insert.

Node refChild The reference node, i.e., the node before which the
new node must be inserted.

Return Value

Node [p.39] The node being inserted.

Exceptions

DOMException
[p.24]

HIERARCHY_REQUEST_ERR: Raised if this node is of a
type that does not allow children of the type of the
newChild node, or if the node to insert is one of this node’s
ancestors.

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created
this node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node or the node being inserted is readonly.

NOT_FOUND_ERR: Raised if refChild is not a child of
this node.

normalize introduced in DOM Level 2
Puts all Text [p.67] nodes in the full depth of the sub-tree underneath this Node,
including attribute nodes, into a "normal" form where only markup (e.g., tags, comments,
processing instructions, CDATA sections, and entity references) separates Text nodes,
i.e., there are neither adjacent Text nodes nor empty Text nodes. This can be used to
ensure that the DOM view of a document is the same as if it were saved and re-loaded, and
is useful when operations (such as XPointer lookups) that depend on a particular document
tree structure are to be used.

46

1.2. Fundamental Interfaces

Note: In cases where the document contains CDATASections [p.69] , the normalize
operation alone may not be sufficient, since XPointers do not differentiate between Text
[p.67] nodes and CDATASection [p.69] nodes.

No Parameters
No Return Value
No Exceptions

removeChild
Removes the child node indicated by oldChild from the list of children, and returns it.
Parameters

Node [p.39] oldChild The node being removed.

Return Value

Node [p.39] The node removed.

Exceptions

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

NOT_FOUND_ERR: Raised if oldChild is not a child
of this node.

replaceChild
Replaces the child node oldChild with newChild in the list of children, and returns the
oldChild node.
If newChild is a DocumentFragment [p.29] object, oldChild is replaced by all of
the DocumentFragment children, which are inserted in the same order. If the
newChild is already in the tree, it is first removed.
Parameters

Node [p.39] newChild The new node to put in the child list.

Node oldChild The node being replaced in the list.

Return Value

Node [p.39] The node replaced.

Exceptions

47

1.2. Fundamental Interfaces

DOMException
[p.24]

HIERARCHY_REQUEST_ERR: Raised if this node is of a
type that does not allow children of the type of the
newChild node, or if the node to put in is one of this node’s
ancestors.

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created
this node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node or the new node is readonly.

NOT_FOUND_ERR: Raised if oldChild is not a child of
this node.

supports introduced in DOM Level 2
Tests whether the DOM implementation implements a specific feature and that feature is
supported by this node.
Parameters

DOMString
[p.21]

feature The name of the feature to test. This is the same
name which can be passed to the method
hasFeature on DOMImplementation
[p.26] .

DOMString version This is the version number of the feature to test.
In Level 2, version 1, this is the string "2.0". If
the version is not specified, supporting any
version of the feature will cause the method to
return true.

Return Value

boolean Returns true if the specified feature is supported on this node,
false otherwise.

No Exceptions

Interface NodeList

The NodeList interface provides the abstraction of an ordered collection of nodes, without
defining or constraining how this collection is implemented. NodeList objects in the DOM are live
[p.20] .

48

1.2. Fundamental Interfaces

The items in the NodeList are accessible via an integral index, starting from 0.
IDL Definition

interface NodeList {
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
};

Attributes
length of type unsigned long, readonly

The number of nodes in the list. The range of valid child node indices is 0 to length-1
inclusive.

Methods
item

Returns the indexth item in the collection. If index is greater than or equal to the
number of nodes in the list, this returns null.
Parameters

unsigned long index Index into the collection.

Return Value

Node
[p.39]

The node at the indexth position in the NodeList, or null if that
is not a valid index.

No Exceptions

Interface NamedNodeMap

Objects implementing the NamedNodeMap interface are used to represent collections of nodes that
can be accessed by name. Note that NamedNodeMap does not inherit from NodeList [p.48] ;
NamedNodeMaps are not maintained in any particular order. Objects contained in an object
implementing NamedNodeMap may also be accessed by an ordinal index, but this is simply to allow
convenient enumeration of the contents of a NamedNodeMap, and does not imply that the DOM
specifies an order to these Nodes.

NamedNodeMap objects in the DOM are live [p.20] .
IDL Definition

interface NamedNodeMap {
 Node getNamedItem(in DOMString name);
 Node setNamedItem(in Node arg)
 raises(DOMException);
 Node removeNamedItem(in DOMString name)
 raises(DOMException);
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
 // Introduced in DOM Level 2:

49

1.2. Fundamental Interfaces

 Node getNamedItemNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Node setNamedItemNS(in Node arg)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Node removeNamedItemNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
};

Attributes
length of type unsigned long, readonly

The number of nodes in this map. The range of valid child node indices is 0 to length-1
inclusive.

Methods
getNamedItem

Retrieves a node specified by name.
Parameters

DOMString [p.21] name The nodeName of a node to retrieve.

Return Value

Node
[p.39]

A Node (of any type) with the specified nodeName, or null if it
does not identify any node in this map.

No Exceptions

getNamedItemNS introduced in DOM Level 2
Retrieves a node specified by local name and namespace URI. HTML-only DOM
implementations do not need to implement this method.
Parameters

DOMString
[p.21]

namespaceURI The namespace URI [p.452] of the
node to retrieve.

DOMString localName The local name [p.452] of the node
to retrieve.

Return Value

Node
[p.39]

A Node (of any type) with the specified local name and namespace
URI, or null if they do not identify any node in this map.

50

1.2. Fundamental Interfaces

No Exceptions

item
Returns the indexth item in the map. If index is greater than or equal to the number of
nodes in this map, this returns null.
Parameters

unsigned long index Index into this map.

Return Value

Node
[p.39]

The node at the indexth position in the map, or null if that is not
a valid index.

No Exceptions

removeNamedItem
Removes a node specified by name. A removed attribute may be known to have a default
value when this map contains the attributes attached to an element, as returned by the
attributes attribute of the Node [p.39] interface. If so, an attribute immediately appears
containing the default value as well as the corresponding namespace URI, local name, and
prefix when applicable.
Parameters

DOMString [p.21] name The nodeName of the node to remove.

Return Value

Node [p.39] The node removed from this map if a node with such a name exists.

Exceptions

DOMException
[p.24]

NOT_FOUND_ERR: Raised if there is no node named
name in this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
map is readonly.

removeNamedItemNS introduced in DOM Level 2
Removes a node specified by local name and namespace URI. A removed attribute may be
known to have a default value when this map contains the attributes attached to an element,
as returned by the attributes attribute of the Node [p.39] interface. If so, an attribute
immediately appears containing the default value as well as the corresponding namespace
URI, local name, and prefix when applicable.

51

1.2. Fundamental Interfaces

HTML-only DOM implementations do not need to implement this method.
Parameters

DOMString
[p.21]

namespaceURI The namespace URI [p.452] of the
node to remove.

DOMString localName The local name [p.452] of the node
to remove.

Return Value

Node
[p.39]

The node removed from this map if a node with such a local name
and namespace URI exists.

Exceptions

DOMException
[p.24]

NOT_FOUND_ERR: Raised if there is no node with the
specified namespaceURI and localName in this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
map is readonly.

setNamedItem
Adds a node using its nodeName attribute. If a node with that name is already present in
this map, it is replaced by the new one.
As the nodeName attribute is used to derive the name which the node must be stored
under, multiple nodes of certain types (those that have a "special" string value) cannot be
stored as the names would clash. This is seen as preferable to allowing nodes to be aliased.
Parameters

Node
[p.39]

arg A node to store in this map. The node will later be
accessible using the value of its nodeName attribute.

Return Value

Node
[p.39]

If the new Node replaces an existing node the replaced Node is
returned, otherwise null is returned.

Exceptions

52

1.2. Fundamental Interfaces

DOMException
[p.24]

WRONG_DOCUMENT_ERR: Raised if arg was created
from a different document than the one that created this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
map is readonly.

INUSE_ATTRIBUTE_ERR: Raised if arg is an Attr
[p.57] that is already an attribute of another Element [p.59]
object. The DOM user must explicitly clone Attr nodes to
re-use them in other elements.

setNamedItemNS introduced in DOM Level 2
Adds a node using its namespaceURI and localName. If a node with that namespace
URI and that local name is already present in this map, it is replaced by the new one.
HTML-only DOM implementations do not need to implement this method.
Parameters

Node
[p.39]

arg A node to store in this map. The node will later be
accessible using the value of its namespaceURI and
localName attributes.

Return Value

Node
[p.39]

If the new Node replaces an existing node the replaced Node is
returned, otherwise null is returned.

Exceptions

DOMException
[p.24]

WRONG_DOCUMENT_ERR: Raised if arg was created
from a different document than the one that created this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
map is readonly.

INUSE_ATTRIBUTE_ERR: Raised if arg is an Attr
[p.57] that is already an attribute of another Element [p.59]
object. The DOM user must explicitly clone Attr nodes to
re-use them in other elements.

Interface CharacterData

The CharacterData interface extends Node with a set of attributes and methods for accessing
character data in the DOM. For clarity this set is defined here rather than on each object that uses
these attributes and methods. No DOM objects correspond directly to CharacterData, though
Text [p.67] and others do inherit the interface from it. All offsets in this interface start from 0.

53

1.2. Fundamental Interfaces

As explained in the DOMString [p.21] interface, text strings in the DOM are represented in
UTF-16, i.e. as a sequence of 16-bit units. In the following, the term 16-bit units [p.449] is used
whenever necessary to indicate that indexing on CharacterData is done in 16-bit units.
IDL Definition

interface CharacterData : Node {
 attribute DOMString data;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned long length;
 DOMString substringData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void appendData(in DOMString arg)
 raises(DOMException);
 void insertData(in unsigned long offset,
 in DOMString arg)
 raises(DOMException);
 void deleteData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void replaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg)
 raises(DOMException);
};

Attributes
data of type DOMString [p.21]

The character data of the node that implements this interface. The DOM implementation
may not put arbitrary limits on the amount of data that may be stored in a
CharacterData node. However, implementation limits may mean that the entirety of a
node’s data may not fit into a single DOMString [p.21] . In such cases, the user may call
substringData to retrieve the data in appropriately sized pieces.
Exceptions on setting

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised when
the node is readonly.

Exceptions on retrieval

DOMException
[p.24]

DOMSTRING_SIZE_ERR: Raised when it would return
more characters than fit in a DOMString [p.21] variable on
the implementation platform.

length of type unsigned long, readonly
The number of 16-bit units [p.449] that are available through data and the
substringData method below. This may have the value zero, i.e., CharacterData
nodes may be empty.

54

1.2. Fundamental Interfaces

Methods
appendData

Append the string to the end of the character data of the node. Upon success, data
provides access to the concatenation of data and the DOMString [p.21] specified.
Parameters

DOMString [p.21] arg The DOMString to append.

Exceptions

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value

deleteData
Remove a range of 16-bit units [p.449] from the node. Upon success, data and length
reflect the change.
Parameters

unsigned
long

offset
The offset from which to start removing.

unsigned
long

count The number of 16-bit units to delete. If the sum of
offset and count exceeds length then all
16-bit units from offset to the end of the data
are deleted.

Exceptions

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data,
or if the specified count is negative.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value

insertData
Insert a string at the specified character offset.
Parameters

55

1.2. Fundamental Interfaces

unsigned long offset The character offset at which to insert.

DOMString [p.21] arg The DOMString to insert.

Exceptions

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value

replaceData
Replace the characters starting at the specified 16-bit unit [p.449] offset with the specified
string.
Parameters

unsigned
long

offset
The offset from which to start replacing.

unsigned
long

count The number of 16-bit units to replace. If the sum
of offset and count exceeds length, then
all 16-bit units to the end of the data are replaced;
(i.e., the effect is the same as a remove method
call with the same range, followed by an
append method invocation).

DOMString
[p.21]

arg The DOMString with which the range must be
replaced.

Exceptions

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data,
or if the specified count is negative.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value

substringData
Extracts a range of data from the node.
Parameters

56

1.2. Fundamental Interfaces

unsigned long offset Start offset of substring to extract.

unsigned long count The number of 16-bit units to extract.

Return Value

DOMString
[p.21]

The specified substring. If the sum of offset and count
exceeds the length, then all 16-bit units to the end of the data
are returned.

Exceptions

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data,
or if the specified count is negative.

DOMSTRING_SIZE_ERR: Raised if the specified range of
text does not fit into a DOMString [p.21] .

Interface Attr

The Attr interface represents an attribute in an Element [p.59] object. Typically the allowable
values for the attribute are defined in a document type definition.

Attr objects inherit the Node [p.39] interface, but since they are not actually child nodes of the
element they describe, the DOM does not consider them part of the document tree. Thus, the Node
attributes parentNode, previousSibling, and nextSibling have a null value for Attr
objects. The DOM takes the view that attributes are properties of elements rather than having a
separate identity from the elements they are associated with; this should make it more efficient to
implement such features as default attributes associated with all elements of a given type.
Furthermore, Attr nodes may not be immediate children of a DocumentFragment [p.29] .
However, they can be associated with Element [p.59] nodes contained within a
DocumentFragment. In short, users and implementors of the DOM need to be aware that Attr
nodes have some things in common with other objects inheriting the Node interface, but they also
are quite distinct.

The attribute’s effective value is determined as follows: if this attribute has been explicitly assigned
any value, that value is the attribute’s effective value; otherwise, if there is a declaration for this
attribute, and that declaration includes a default value, then that default value is the attribute’s
effective value; otherwise, the attribute does not exist on this element in the structure model until it
has been explicitly added. Note that the nodeValue attribute on the Attr instance can also be used
to retrieve the string version of the attribute’s value(s).

In XML, where the value of an attribute can contain entity references, the child nodes of the Attr
node provide a representation in which entity references are not expanded. These child nodes may be
either Text [p.67] or EntityReference [p.72] nodes. Because the attribute type may be

57

1.2. Fundamental Interfaces

unknown, there are no tokenized attribute values.
IDL Definition

interface Attr : Node {
 readonly attribute DOMString name;
 readonly attribute boolean specified;
 attribute DOMString value;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute Element ownerElement;
};

Attributes
name of type DOMString [p.21] , readonly

Returns the name of this attribute.

ownerElement of type Element [p.59] , readonly, introduced in DOM Level 2
The Element [p.59] node this attribute is attached to or null if this attribute is not in
use.

specified of type boolean, readonly
If this attribute was explicitly given a value in the original document, this is true;
otherwise, it is false. Note that the implementation is in charge of this attribute, not the
user. If the user changes the value of the attribute (even if it ends up having the same value
as the default value) then the specified flag is automatically flipped to true. To
re-specify the attribute as the default value from the DTD, the user must delete the
attribute. The implementation will then make a new attribute available with specified
set to false and the default value (if one exists).
In summary:

If the attribute has an assigned value in the document then specified is true, and
the value is the assigned value.
If the attribute has no assigned value in the document and has a default value in the
DTD, then specified is false, and the value is the default value in the DTD.
If the attribute has no assigned value in the document and has a value of #IMPLIED in
the DTD, then the attribute does not appear in the structure model of the document.

value of type DOMString [p.21]
On retrieval, the value of the attribute is returned as a string. Character and general entity
references are replaced with their values. See also the method getAttribute on the
Element [p.59] interface.
On setting, this creates a Text [p.67] node with the unparsed contents of the string. I.e.
any characters that an XML processor would recognize as markup are instead treated as
literal text. See also the method setAttribute on the Element [p.59] interface.
Exceptions on setting

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised when
the node is readonly.

58

1.2. Fundamental Interfaces

Interface Element

The Element interface represents an element in an HTML or XML document. Elements may have
attributes associated with them; since the Element interface inherits from Node [p.39] , the generic
Node interface attribute attributes may be used to retrieve the set of all attributes for an
element. There are methods on the Element interface to retrieve either an Attr [p.57] object by
name or an attribute value by name. In XML, where an attribute value may contain entity references,
an Attr object should be retrieved to examine the possibly fairly complex sub-tree representing the
attribute value. On the other hand, in HTML, where all attributes have simple string values, methods
to directly access an attribute value can safely be used as a convenience.

Note: In DOM Level 2, the method normalize is inherited from the Node [p.39] interface where
it was moved.

IDL Definition

interface Element : Node {
 readonly attribute DOMString tagName;
 DOMString getAttribute(in DOMString name);
 void setAttribute(in DOMString name,
 in DOMString value)
 raises(DOMException);
 void removeAttribute(in DOMString name)
 raises(DOMException);
 Attr getAttributeNode(in DOMString name);
 Attr setAttributeNode(in Attr newAttr)
 raises(DOMException);
 Attr removeAttributeNode(in Attr oldAttr)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString name);
 // Introduced in DOM Level 2:
 DOMString getAttributeNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 void setAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DOMString value)
 raises(DOMException);
 // Introduced in DOM Level 2:
 void removeAttributeNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr getAttributeNodeNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Attr setAttributeNodeNS(in Attr newAttr)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 boolean hasAttribute(in DOMString name);

59

1.2. Fundamental Interfaces

 // Introduced in DOM Level 2:
 boolean hasAttributeNS(in DOMString namespaceURI,
 in DOMString localName);
};

Attributes
tagName of type DOMString [p.21] , readonly

The name of the element. For example, in:

<elementExample id="demo">
 ...
</elementExample> ,

tagName has the value "elementExample". Note that this is case-preserving in XML,
as are all of the operations of the DOM. The HTML DOM returns the tagName of an
HTML element in the canonical uppercase form, regardless of the case in the source
HTML document.

Methods
getAttribute

Retrieves an attribute value by name.
Parameters

DOMString [p.21] name The name of the attribute to retrieve.

Return Value

DOMString
[p.21]

The Attr [p.57] value as a string, or the empty string if that
attribute does not have a specified or default value.

No Exceptions

getAttributeNS introduced in DOM Level 2
Retrieves an attribute value by local name and namespace URI. HTML-only DOM
implementations do not need to implement this method.
Parameters

DOMString
[p.21]

namespaceURI The namespace URI [p.452] of the
attribute to retrieve.

DOMString localName The local name [p.452] of the
attribute to retrieve.

Return Value

DOMString
[p.21]

The Attr [p.57] value as a string, or the empty string if that
attribute does not have a specified or default value.

60

1.2. Fundamental Interfaces

No Exceptions

getAttributeNode
Retrieves an attribute node by name.
To retrieve an attribute node by qualified name and namespace URI, use the
getAttributeNodeNS method.
Parameters

DOMString
[p.21]

name The name (nodeName) of the attribute to
retrieve.

Return Value

Attr
[p.57]

The Attr node with the specified name (nodeName) or null if
there is no such attribute.

No Exceptions

getAttributeNodeNS introduced in DOM Level 2
Retrieves an Attr [p.57] node by local name and namespace URI. HTML-only DOM
implementations do not need to implement this method.
Parameters

DOMString
[p.21]

namespaceURI The namespace URI [p.452] of the
attribute to retrieve.

DOMString localName The local name [p.452] of the
attribute to retrieve.

Return Value

Attr
[p.57]

The Attr node with the specified attribute local name and namespace
URI or null if there is no such attribute.

No Exceptions

getElementsByTagName
Returns a NodeList [p.48] of all descendant elements with a given tag name, in the order
in which they would be encountered in a preorder traversal of the Element tree.
Parameters

DOMString
[p.21]

name The name of the tag to match on. The special
value "*" matches all tags.

61

1.2. Fundamental Interfaces

Return Value

NodeList [p.48] A list of matching Element nodes.

No Exceptions

getElementsByTagNameNS introduced in DOM Level 2
Returns a NodeList [p.48] of all the Elements with a given local name and namespace
URI in the order in which they would be encountered in a preorder traversal of the
Document [p.29] tree, starting from this node.
HTML-only DOM implementations do not need to implement this method.
Parameters

DOMString
[p.21]

namespaceURI The namespace URI [p.452] of the
elements to match on. The special
value "*" matches all namespaces.

DOMString localName The local name [p.452] of the elements
to match on. The special value "*"
matches all local names.

Return Value

NodeList
[p.48]

A new NodeList object containing all the matched
Elements.

No Exceptions

hasAttribute introduced in DOM Level 2
Returns true when an attribute with a given name is specified on this element or has a
default value, false otherwise.
Parameters

DOMString [p.21] name The name of the attribute to look for.

Return Value

boolean true if an attribute with the given name is specified on this element
or has a default value, false otherwise.

No Exceptions

62

1.2. Fundamental Interfaces

hasAttributeNS introduced in DOM Level 2
Returns true when an attribute with a given local name and namespace URI is specified
on this element or has a default value, false otherwise. HTML-only DOM
implementations do not need to implement this method.
Parameters

DOMString
[p.21]

namespaceURI The namespace URI [p.452] of the
attribute to look for.

DOMString localName The local name [p.452] of the
attribute to look for.

Return Value

boolean true if an attribute with the given local name and namespace URI is
specified or has a default value on this element, false otherwise.

No Exceptions

removeAttribute
Removes an attribute by name. If the removed attribute is known to have a default value,
an attribute immediately appears containing the default value as well as the corresponding
namespace URI, local name, and prefix when applicable.
To remove an attribute by local name and namespace URI, use the
removeAttributeNS method.
Parameters

DOMString [p.21] name The name of the attribute to remove.

Exceptions

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value

removeAttributeNS introduced in DOM Level 2
Removes an attribute by local name and namespace URI. If the removed attribute has a
default value it is immediately replaced. The replacing attribute has the same namespace
URI and local name, as well as the original prefix.
HTML-only DOM implementations do not need to implement this method.
Parameters

63

1.2. Fundamental Interfaces

DOMString
[p.21]

namespaceURI The namespace URI [p.452] of the
attribute to remove.

DOMString localName The local name [p.452] of the
attribute to remove.

Exceptions

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value

removeAttributeNode
Removes the specified attribute node. If the removed Attr [p.57] has a default value it is
immediately replaced. The replacing attribute has the same namespace URI and local
name, as well as the original prefix, when applicable.
Parameters

Attr [p.57] oldAttr The Attr node to remove from the attribute list.

Return Value

Attr [p.57] The Attr node that was removed.

Exceptions

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

NOT_FOUND_ERR: Raised if oldAttr is not an
attribute of the element.

setAttribute
Adds a new attribute. If an attribute with that name is already present in the element, its
value is changed to be that of the value parameter. This value is a simple string; it is not
parsed as it is being set. So any markup (such as syntax to be recognized as an entity
reference) is treated as literal text, and needs to be appropriately escaped by the
implementation when it is written out. In order to assign an attribute value that contains
entity references, the user must create an Attr [p.57] node plus any Text [p.67] and
EntityReference [p.72] nodes, build the appropriate subtree, and use
setAttributeNode to assign it as the value of an attribute.
To set an attribute with a qualified name and namespace URI, use the setAttributeNS
method.

64

1.2. Fundamental Interfaces

Parameters

DOMString [p.21] name The name of the attribute to create or alter.

DOMString value Value to set in string form.

Exceptions

DOMException
[p.24]

INVALID_CHARACTER_ERR: Raised if the specified
name contains an illegal character.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value

setAttributeNS introduced in DOM Level 2
Adds a new attribute. If an attribute with the same local name and namespace URI is
already present on the element, its prefix is changed to be the prefix part of the
qualifiedName, and its value is changed to be the value parameter. This value is a
simple string; it is not parsed as it is being set. So any markup (such as syntax to be
recognized as an entity reference) is treated as literal text, and needs to be appropriately
escaped by the implementation when it is written out. In order to assign an attribute value
that contains entity references, the user must create an Attr [p.57] node plus any Text
[p.67] and EntityReference [p.72] nodes, build the appropriate subtree, and use
setAttributeNodeNS or setAttributeNode to assign it as the value of an
attribute.
HTML-only DOM implementations do not need to implement this method.
Parameters

DOMString
[p.21]

namespaceURI The namespace URI [p.452] of the
attribute to create or alter.

DOMString qualifiedName The qualified name [p.452] of the
attribute to create or alter.

DOMString value The value to set in string form.

Exceptions

65

1.2. Fundamental Interfaces

DOMException
[p.24]

INVALID_CHARACTER_ERR: Raised if the specified
qualified name contains an illegal character.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed, if the qualifiedName has a prefix and the
namespaceURI is null or an empty string, if the
qualifiedName has a prefix that is "xml" and the
namespaceURI is different from
"http://www.w3.org/XML/1998/namespace", if the
qualifiedName has a prefix that is "xmlns" and the
namespaceURI is different from
"http://www.w3.org/2000/xmlns/", or if the
qualifiedName is "xmlns" and the namespaceURI is
different from "http://www.w3.org/2000/xmlns/".

No Return Value

setAttributeNode
Adds a new attribute node. If an attribute with that name (nodeName) is already present in
the element, it is replaced by the new one.
To add a new attribute node with a qualified name and namespace URI, use the
setAttributeNodeNS method.
Parameters

Attr [p.57] newAttr The Attr node to add to the attribute list.

Return Value

Attr
[p.57]

If the newAttr attribute replaces an existing attribute, the replaced
Attr node is returned, otherwise null is returned.

Exceptions

66

1.2. Fundamental Interfaces

DOMException
[p.24]

WRONG_DOCUMENT_ERR: Raised if newAttr was
created from a different document than the one that created
the element.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

INUSE_ATTRIBUTE_ERR: Raised if newAttr is already
an attribute of another Element object. The DOM user must
explicitly clone Attr [p.57] nodes to re-use them in other
elements.

setAttributeNodeNS introduced in DOM Level 2
Adds a new attribute. If an attribute with that local name and that namespace URI is
already present in the element, it is replaced by the new one.
HTML-only DOM implementations do not need to implement this method.
Parameters

Attr [p.57] newAttr The Attr node to add to the attribute list.

Return Value

Attr
[p.57]

If the newAttr attribute replaces an existing attribute with the same
local name [p.452] and namespace URI [p.452] , the replaced Attr
node is returned, otherwise null is returned.

Exceptions

DOMException
[p.24]

WRONG_DOCUMENT_ERR: Raised if newAttr was
created from a different document than the one that created
the element.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

INUSE_ATTRIBUTE_ERR: Raised if newAttr is already
an attribute of another Element object. The DOM user must
explicitly clone Attr [p.57] nodes to re-use them in other
elements.

Interface Text

The Text interface inherits from CharacterData [p.53] and represents the textual content
(termed character data in XML) of an Element [p.59] or Attr [p.57] . If there is no markup inside
an element’s content, the text is contained in a single object implementing the Text interface that is

67

1.2. Fundamental Interfaces

http://www.w3.org/TR/REC-xml#syntax

the only child of the element. If there is markup, it is parsed into the information items [p.451]
(elements, comments, etc.) and Text nodes that form the list of children of the element.

When a document is first made available via the DOM, there is only one Text node for each block
of text. Users may create adjacent Text nodes that represent the contents of a given element without
any intervening markup, but should be aware that there is no way to represent the separations
between these nodes in XML or HTML, so they will not (in general) persist between DOM editing
sessions. The normalize() method on Element [p.59] merges any such adjacent Text objects
into a single node for each block of text.
IDL Definition

interface Text : CharacterData {
 Text splitText(in unsigned long offset)
 raises(DOMException);
};

Methods
splitText

Breaks this node into two nodes at the specified offset, keeping both in the tree as
siblings. This node then only contains all the content up to the offset point. A new node
of the same type, which is inserted as the next sibling of this node, contains all the content
at and after the offset point. When the offset is equal to the length of this node, the
new node has no data.
Parameters

unsigned
long

offset The 16-bit unit [p.449] offset at which to split,
starting from 0.

Return Value

Text [p.67] The new node, of the same type as this node.

Exceptions

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

Interface Comment

This interface inherits from CharacterData [p.53] and represents the content of a comment, i.e.,
all the characters between the starting ’<!--’ and ending ’-->’. Note that this is the definition of a
comment in XML, and, in practice, HTML, although some HTML tools may implement the full
SGML comment structure.

68

1.2. Fundamental Interfaces

IDL Definition

interface Comment : CharacterData {
};

1.3. Extended Interfaces
The interfaces defined here form part of the DOM Core specification, but objects that expose these
interfaces will never be encountered in a DOM implementation that deals only with HTML. As such,
HTML-only DOM implementations do not need to have objects that implement these interfaces.

A DOM application can use the hasFeature method of the DOMImplementation [p.26] interface to
determine whether they are supported or not. The feature string for all the interfaces listed in this section
is "XML".

Interface CDATASection

CDATA sections are used to escape blocks of text containing characters that would otherwise be
regarded as markup. The only delimiter that is recognized in a CDATA section is the "]]>" string that
ends the CDATA section. CDATA sections cannot be nested. Their primary purpose is for including
material such as XML fragments, without needing to escape all the delimiters.

The DOMString [p.21] attribute of the Text [p.67] node holds the text that is contained by the
CDATA section. Note that this may contain characters that need to be escaped outside of CDATA
sections and that, depending on the character encoding ("charset") chosen for serialization, it may be
impossible to write out some characters as part of a CDATA section.

The CDATASection interface inherits from the CharacterData [p.53] interface through the
Text [p.67] interface. Adjacent CDATASections nodes are not merged by use of the
normalize method of the Element [p.59] interface.

Note: Because no markup is recognized within a CDATASection, character numeric references
cannot be used as an escape mechanism when serializing. Therefore, action needs to be taken when
serializing a CDATASection with a character encoding where some of the contained characters
cannot be represented. Failure to do so would not produce well-formed XML.
One potential solution in the serialization process is to end the CDATA section before the character,
output the character using a character reference or entity reference, and open a new CDATA section
for any further characters in the text node. Note, however, that some code conversion libraries at the
time of writing do not return an error or exception when a character is missing from the encoding,
making the task of ensuring that data is not corrupted on serialization more difficult.

IDL Definition

interface CDATASection : Text {
};

Interface DocumentType

69

1.3. Extended Interfaces

Each Document [p.29] has a doctype attribute whose value is either null or a DocumentType
object. The DocumentType interface in the DOM Core provides an interface to the list of entities
that are defined for the document, and little else because the effect of namespaces and the various
XML schema efforts on DTD representation are not clearly understood as of this writing.

The DOM Level 2 doesn’t support editing DocumentType nodes.
IDL Definition

interface DocumentType : Node {
 readonly attribute DOMString name;
 readonly attribute NamedNodeMap entities;
 readonly attribute NamedNodeMap notations;
 // Introduced in DOM Level 2:
 readonly attribute DOMString publicId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString systemId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString internalSubset;
};

Attributes
entities of type NamedNodeMap [p.49] , readonly

A NamedNodeMap [p.49] containing the general entities, both external and internal,
declared in the DTD. Parameter entities are not contained. Duplicates are discarded. For
example in:

<!DOCTYPE ex SYSTEM "ex.dtd" [
 <!ENTITY foo "foo">
 <!ENTITY bar "bar">
 <!ENTITY bar "bar2">
 <!ENTITY % baz "baz">
]>
<ex/>

the interface provides access to foo and the first declaration of bar but not the second
declaration of bar or baz. Every node in this map also implements the Entity [p.71]
interface.
The DOM Level 2 does not support editing entities, therefore entities cannot be altered
in any way.

internalSubset of type DOMString [p.21] , readonly, introduced in DOM Level 2
The internal subset as a string.

Note: The actual content returned depends on how much information is available to the
implementation. This may vary depending on various parameters, including the XML
processor used to build the document.

name of type DOMString [p.21] , readonly
The name of DTD; i.e., the name immediately following the DOCTYPE keyword.

70

1.3. Extended Interfaces

notations of type NamedNodeMap [p.49] , readonly
A NamedNodeMap [p.49] containing the notations declared in the DTD. Duplicates are
discarded. Every node in this map also implements the Notation [p.71] interface.
The DOM Level 2 does not support editing notations, therefore notations cannot be
altered in any way.

publicId of type DOMString [p.21] , readonly, introduced in DOM Level 2
The public identifier of the external subset.

systemId of type DOMString [p.21] , readonly, introduced in DOM Level 2
The system identifier of the external subset.

Interface Notation

This interface represents a notation declared in the DTD. A notation either declares, by name, the
format of an unparsed entity (see section 4.7 of the XML 1.0 specification), or is used for formal
declaration of processing instruction targets (see section 2.6 of the XML 1.0 specification). The
nodeName attribute inherited from Node [p.39] is set to the declared name of the notation.

The DOM Level 1 does not support editing Notation nodes; they are therefore readonly.

A Notation node does not have any parent.
IDL Definition

interface Notation : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
};

Attributes
publicId of type DOMString [p.21] , readonly

The public identifier of this notation. If the public identifier was not specified, this is
null.

systemId of type DOMString [p.21] , readonly
The system identifier of this notation. If the system identifier was not specified, this is
null.

Interface Entity

This interface represents an entity, either parsed or unparsed, in an XML document. Note that this
models the entity itself not the entity declaration. Entity declaration modeling has been left for a
later Level of the DOM specification.

The nodeName attribute that is inherited from Node [p.39] contains the name of the entity.

An XML processor may choose to completely expand entities before the structure model is passed to
the DOM; in this case there will be no EntityReference [p.72] nodes in the document tree.

71

1.3. Extended Interfaces

XML does not mandate that a non-validating XML processor read and process entity declarations
made in the external subset or declared in external parameter entities. This means that parsed entities
declared in the external subset need not be expanded by some classes of applications, and that the
replacement value of the entity may not be available. When the replacement value is available, the
corresponding Entity node’s child list represents the structure of that replacement text. Otherwise,
the child list is empty.

The DOM Level 2 does not support editing Entity nodes; if a user wants to make changes to the
contents of an Entity, every related EntityReference [p.72] node has to be replaced in the
structure model by a clone of the Entity’s contents, and then the desired changes must be made to
each of those clones instead. All the descendants of an Entity node are readonly.

An Entity node does not have any parent.

Note: If the entity contains an unbound namespace prefix [p.452] , the namespaceURI of the
corresponding node in the Entity node subtree is null. The same is true for
EntityReference [p.72] nodes that refer to this entity, when they are created using the
createEntityReference method of the Document [p.29] interface. The DOM Level 2 does
not support any mechanism to resolve namespace prefixes.

IDL Definition

interface Entity : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 readonly attribute DOMString notationName;
};

Attributes
notationName of type DOMString [p.21] , readonly

For unparsed entities, the name of the notation for the entity. For parsed entities, this is
null.

publicId of type DOMString [p.21] , readonly
The public identifier associated with the entity, if specified. If the public identifier was not
specified, this is null.

systemId of type DOMString [p.21] , readonly
The system identifier associated with the entity, if specified. If the system identifier was
not specified, this is null.

Interface EntityReference

EntityReference objects may be inserted into the structure model when an entity reference is in
the source document, or when the user wishes to insert an entity reference. Note that character
references and references to predefined entities are considered to be expanded by the HTML or XML
processor so that characters are represented by their Unicode equivalent rather than by an entity
reference. Moreover, the XML processor may completely expand references to entities while
building the structure model, instead of providing EntityReference objects. If it does provide

72

1.3. Extended Interfaces

such objects, then for a given EntityReference node, it may be that there is no Entity [p.71]
node representing the referenced entity. If such an Entity exists, then the subtree of the
EntityReference node is in general a copy of the Entity node subtree. However, this may not
be true when an entity contains an unbound namespace prefix [p.452] . In such a case, because the
namespace prefix resolution depends on where the entity reference is, the descendants of the
EntityReference node may be bound to different namespace URIs [p.452] .

As with the Entity [p.71] node, all descendants of the EntityReference are readonly.
IDL Definition

interface EntityReference : Node {
};

Interface ProcessingInstruction

The ProcessingInstruction interface represents a "processing instruction", used in XML as a
way to keep processor-specific information in the text of the document.
IDL Definition

interface ProcessingInstruction : Node {
 readonly attribute DOMString target;
 attribute DOMString data;
 // raises(DOMException) on setting

};

Attributes
data of type DOMString [p.21]

The content of this processing instruction. This is from the first non white space character
after the target to the character immediately preceding the ?>.
Exceptions on setting

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised when
the node is readonly.

target of type DOMString [p.21] , readonly
The target of this processing instruction. XML defines this as being the first token
following the markup that begins the processing instruction.

73

1.3. Extended Interfaces

74

1.3. Extended Interfaces

2. Document Object Model HTML
Editors

Arnaud Le Hors, W3C
Mike Champion, ArborText (for DOM Level 1)
Vidur Apparao, Netscape (for DOM Level 1)
Scott Isaacs, Microsoft (for DOM Level 1 until January 1998)
Chris Wilson, Microsoft (for DOM Level 1 after January 1998)
Ian Jacobs, W3C (for DOM Level 1)

2.1. Introduction
This section extends the Core API to describe objects and methods specific to HTML documents. In
general, the functionality needed to manipulate hierarchical document structures, elements, and attributes
will be found in the core section; functionality that depends on the specific elements defined in HTML
will be found in this section.

The goals of the HTML-specific DOM API are:

to specialize and add functionality that relates specifically to HTML documents and elements.
to address issues of backwards compatibility with the DOM Level 0 [p.450] .
to provide convenience mechanisms, where appropriate, for common and frequent operations on
HTML documents.

The key differences between the core DOM and the HTML application of DOM is that the HTML
Document Object Model exposes a number of convenience methods and properties that are consistent
with the existing models and are more appropriate to script writers. In many cases, these enhancements are
not applicable to a general DOM because they rely on the presence of a predefined DTD. The transitional
and frameset DTDs for HTML 4.0 are assumed. Interoperability between implementations is only
guaranteed for elements and attributes that are specified in the HTML 4.0 DTDs.

More specifically, this document includes the following specializations for HTML:

An HTMLDocument [p.78] interface, derived from the core Document [p.29] interface.
HTMLDocument specifies the operations and queries that can be made on a HTML document.
An HTMLElement [p.82] interface, derived from the core Element [p.59] interface.
HTMLElement specifies the operations and queries that can be made on any HTML element.
Methods on HTMLElement include those that allow for the retrieval and modification of attributes
that apply to all HTML elements.
Specializations for all HTML elements that have attributes that extend beyond those specified in the
HTMLElement [p.82] interface. For all such attributes, the derived interface for the element
contains explicit methods for setting and getting the values.

The DOM Level 2 includes mechanisms to access and modify style specified through CSS and defines an
event model that can be used with HTML documents.

75

2. Document Object Model HTML

The interfaces found within this section are not mandatory. A DOM application can use the
hasFeature method of the DOMImplementation [p.26] interface to determine whether they are
supported or not. The feature string for all the interfaces listed in this section is "HTML".

The interfaces in this specification are designed for HTML 4.0 documents, and not for XHTML 1.0
documents. Use of the HTML DOM with XHTML 1.0 documents may result in incorrect processing; see
Appendix C11 in [XHTML10] for more information.

2.2. HTML Application of Core DOM

2.2.1. Naming Conventions

The HTML DOM follows a naming convention for properties, methods, events, collections, and data
types. All names are defined as one or more English words concatenated together to form a single string.

2.2.1.1. Properties and Methods

The property or method name starts with the initial keyword in lowercase, and each subsequent word
starts with a capital letter. For example, a property that returns document meta information such as the
date the file was created might be named "fileDateCreated". In the ECMAScript binding, properties are
exposed as properties of a given object. In Java, properties are exposed with get and set methods.

2.2.1.2. Non-HTML 4.0 interfaces and attributes

While most of the interfaces defined below can be mapped directly to elements defined in the HTML 4.0
Recommendation, some of them cannot. Similarly, not all attributes listed below have counterparts in the
HTML 4.0 specification (and some do, but have been renamed to avoid conflicts with scripting
languages). Interfaces and attribute definitions that have links to the HTML 4.0 specification have
corresponding element and attribute definitions there; all others are added by this specification, either for
convenience or backwards compatibility with DOM Level 0 [p.450] implementations.

2.3. Miscellaneous Object Definitions
Interface HTMLDOMImplementation (introduced in DOM Level 2)

The HTMLDOMImplementation interface extends the DOMImplementation [p.26] interface
with a method for creating an HTML document instance.
IDL Definition

// Introduced in DOM Level 2:
interface HTMLDOMImplementation : DOMImplementation {
 HTMLDocument createHTMLDocument(in DOMString title);
};

Methods

76

2.2. HTML Application of Core DOM

createHTMLDocument
Creates an HTMLDocument [p.78] object with the minimal tree made of the following
elements: HTML, HEAD, TITLE, and BODY.
Parameters

DOMString
[p.21]

title The title of the document to be set as the content
of the TITLE element, through a child Text
[p.67] node.

Return Value

HTMLDocument [p.78] A new HTMLDocument object.

No Exceptions

Interface HTMLCollection

An HTMLCollection is a list of nodes. An individual node may be accessed by either ordinal
index or the node’s name or id attributes. Note: Collections in the HTML DOM are assumed to be
live meaning that they are automatically updated when the underlying document is changed.
IDL Definition

interface HTMLCollection {
 readonly attribute unsigned long length;
 Node item(in unsigned long index);
 Node namedItem(in DOMString name);
};

Attributes
length of type unsigned long, readonly

This attribute specifies the length or size of the list.

Methods
item

This method retrieves a node specified by ordinal index. Nodes are numbered in tree order
(depth-first traversal order).
Parameters

unsigned
long

index The index of the node to be fetched. The index
origin is 0.

Return Value

Node
[p.39]

The Node at the corresponding position upon success. A value of
null is returned if the index is out of range.

77

2.3. Miscellaneous Object Definitions

No Exceptions

namedItem
This method retrieves a Node [p.39] using a name. It first searches for a Node with a
matching id attribute. If it doesn’t find one, it then searches for a Node with a matching
name attribute, but only on those elements that are allowed a name attribute.
Parameters

DOMString [p.21] name The name of the Node [p.39] to be fetched.

Return Value

Node
[p.39]

The Node with a name or id attribute whose value corresponds to the
specified string. Upon failure (e.g., no node with this name exists),
returns null.

No Exceptions

2.4. Objects related to HTML documents
Interface HTMLDocument

An HTMLDocument is the root of the HTML hierarchy and holds the entire content. Besides
providing access to the hierarchy, it also provides some convenience methods for accessing certain
sets of information from the document.

The following properties have been deprecated in favor of the corresponding ones for the BODY
element:

alinkColor
background
bgColor
fgColor
linkColor
vlinkColor

Note: In DOM Level 2, the method getElementById is inherited from the Document [p.29]
interface where it was moved.

IDL Definition

interface HTMLDocument : Document {
 attribute DOMString title;
 readonly attribute DOMString referrer;
 readonly attribute DOMString domain;
 readonly attribute DOMString URL;
 attribute HTMLElement body;
 readonly attribute HTMLCollection images;

78

2.4. Objects related to HTML documents

 readonly attribute HTMLCollection applets;
 readonly attribute HTMLCollection links;
 readonly attribute HTMLCollection forms;
 readonly attribute HTMLCollection anchors;
 attribute DOMString cookie;
 void open();
 void close();
 void write(in DOMString text);
 void writeln(in DOMString text);
 NodeList getElementsByName(in DOMString elementName);
};

Attributes
URL of type DOMString [p.21] , readonly

The complete URI of the document.

anchors of type HTMLCollection [p.77] , readonly
A collection of all the anchor (A) elements in a document with a value for the name
attribute.Note. For reasons of backwards compatibility, the returned set of anchors only
contains those anchors created with the name attribute, not those created with the id
attribute.

applets of type HTMLCollection [p.77] , readonly
A collection of all the OBJECT elements that include applets and APPLET (deprecated)
elements in a document.

body of type HTMLElement [p.82]
The element that contains the content for the document. In documents with BODY contents,
returns the BODY element. In frameset documents, this returns the outermost FRAMESET
element.

cookie of type DOMString [p.21]
The cookies associated with this document. If there are none, the value is an empty string.
Otherwise, the value is a string: a semicolon-delimited list of "name, value" pairs for all the
cookies associated with the page. For example, name=value;expires=date.

domain of type DOMString [p.21] , readonly
The domain name of the server that served the document, or null if the server cannot be
identified by a domain name.

forms of type HTMLCollection [p.77] , readonly
A collection of all the forms of a document.

images of type HTMLCollection [p.77] , readonly
A collection of all the IMG elements in a document. The behavior is limited to IMG
elements for backwards compatibility.

links of type HTMLCollection [p.77] , readonly
A collection of all AREA elements and anchor (A) elements in a document with a value for
the href attribute.

79

2.4. Objects related to HTML documents

referrer of type DOMString [p.21] , readonly
Returns the URI of the page that linked to this page. The value is an empty string if the user
navigated to the page directly (not through a link, but, for example, via a bookmark).

title of type DOMString [p.21]
The title of a document as specified by the TITLE element in the head of the document.

Methods
close

Closes a document stream opened by open() and forces rendering.
No Parameters
No Return Value
No Exceptions

getElementsByName
Returns the (possibly empty) collection of elements whose name value is given by
elementName.
Parameters

DOMString
[p.21]

elementName The name attribute value for an
element.

Return Value

NodeList [p.48] The matching elements.

No Exceptions

open
Note. This method and the ones following allow a user to add to or replace the structure
model of a document using strings of unparsed HTML. At the time of writing alternate
methods for providing similar functionality for both HTML and XML documents were
being considered. The following methods may be deprecated at some point in the future in
favor of a more general-purpose mechanism.
Open a document stream for writing. If a document exists in the target, this method clears
it.
No Parameters
No Return Value
No Exceptions

write
Write a string of text to a document stream opened by open(). The text is parsed into the
document’s structure model.
Parameters

80

2.4. Objects related to HTML documents

DOMString
[p.21]

text The string to be parsed into some structure in the
document structure model.

No Return Value
No Exceptions

writeln
Write a string of text followed by a newline character to a document stream opened by
open(). The text is parsed into the document’s structure model.
Parameters

DOMString
[p.21]

text The string to be parsed into some structure in the
document structure model.

No Return Value
No Exceptions

2.5. HTML Elements

2.5.1. Property Attributes

HTML attributes are exposed as properties on the element object. The DOM naming conventions always
determine the name of the exposed property, and is independent of the case of the attribute in the source
document. The data type of the property is determined by the type of the attribute as determined by the
HTML 4.0 transitional and frameset DTDs. The attributes have the semantics (including case-sensitivity)
given in the HTML 4.0 specification.

The attributes are exposed as properties for compatibility with DOM Level 0 [p.450] . This usage is
deprecated because it can not be generalized to all possible attribute names, as is required both for XML
and potentially for future versions of HTML. We recommend the use of generic methods on the core
Element [p.59] interface for setting, getting and removing attributes.

DTD Data Type Object Model Data Type

CDATA DOMString

Value list (e.g., (left | right | center)) DOMString

one-value Value list (e.g., (disabled)) boolean

Number long int

The return value of an attribute that has a data type that is a value list is always capitalized, independent of
the case of the value in the source document. For example, if the value of the align attribute on a P
element is "left" then it is returned as "Left". For attributes with the CDATA data type, the case of the
return value is that given in the source document.

81

2.5. HTML Elements

The return value of an attribute that is unspecified and does not have a default value is the empty string if
the return type is a DOMString, false if the return type is a boolean and 0 if the return type is a number.

2.5.2. Naming Exceptions

To avoid namespace conflicts, an attribute with the same name as a keyword in one of our chosen binding
languages is prefixed. For HTML, the prefix used is "html". For example, the for attribute of the LABEL
element collides with loop construct naming conventions and is renamed htmlFor.

2.5.3. Exposing Element Type Names (tagName)

The element type names exposed through a property are in uppercase. For example, the body element type
name is exposed through the tagName property as BODY.

2.5.4. The HTMLElement interface

Interface HTMLElement

All HTML element interfaces derive from this class. Elements that only expose the HTML core
attributes are represented by the base HTMLElement interface. These elements are as follows:

HEAD
special: SUB, SUP, SPAN, BDO
font: TT, I, B, U, S, STRIKE, BIG, SMALL
phrase: EM, STRONG, DFN, CODE, SAMP, KBD, VAR, CITE, ACRONYM, ABBR
list: DD, DT
NOFRAMES, NOSCRIPT
ADDRESS, CENTER

Note: The style attribute of an HTML element is accessible through the
ElementCSSInlineStyle [p.161] interface which is defined in the Document Object Model
CSS [p.135] .

IDL Definition

interface HTMLElement : Element {
 attribute DOMString id;
 attribute DOMString title;
 attribute DOMString lang;
 attribute DOMString dir;
 attribute DOMString className;
};

Attributes
className of type DOMString [p.21]

The class attribute of the element. This attribute has been renamed due to conflicts with the
"class" keyword exposed by many languages. See the class attribute definition in HTML
4.0.

82

2.5.2. Naming Exceptions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-class

dir of type DOMString [p.21]
Specifies the base direction of directionally neutral text and the directionality of tables. See
the dir attribute definition in HTML 4.0.

id of type DOMString [p.21]
The element’s identifier. See the id attribute definition in HTML 4.0.

lang of type DOMString [p.21]
Language code defined in RFC 1766. See the lang attribute definition in HTML 4.0.

title of type DOMString [p.21]
The element’s advisory title. See the title attribute definition in HTML 4.0.

2.5.5. Object definitions

Interface HTMLHtmlElement

Root of an HTML document. See the HTML element definition in HTML 4.0.
IDL Definition

interface HTMLHtmlElement : HTMLElement {
 attribute DOMString version;
};

Attributes
version of type DOMString [p.21]

Version information about the document’s DTD. See the version attribute definition in
HTML 4.0. This attribute is deprecated in HTML 4.0.

Interface HTMLHeadElement

Document head information. See the HEAD element definition in HTML 4.0.
IDL Definition

interface HTMLHeadElement : HTMLElement {
 attribute DOMString profile;
};

Attributes
profile of type DOMString [p.21]

URI designating a metadata profile. See the profile attribute definition in HTML 4.0.

Interface HTMLLinkElement

The LINK element specifies a link to an external resource, and defines this document’s relationship
to that resource (or vice versa). See the LINK element definition in HTML 4.0 (see also the
LinkStyle [p.133] interface in the Document Object Model StyleSheets [p.129] module).
IDL Definition

83

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#edef-LINK
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-profile
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#edef-HEAD
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-version
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#edef-HTML
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-title
http://www.w3.org/TR/1998/REC-html40-19980424/struct/dirlang.html#adef-lang
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-id
http://www.w3.org/TR/1998/REC-html40-19980424/struct/dirlang.html#adef-dir

interface HTMLLinkElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString charset;
 attribute DOMString href;
 attribute DOMString hreflang;
 attribute DOMString media;
 attribute DOMString rel;
 attribute DOMString rev;
 attribute DOMString target;
 attribute DOMString type;
};

Attributes
charset of type DOMString [p.21]

The character encoding of the resource being linked to. See the charset attribute definition
in HTML 4.0.

disabled of type boolean
Enables/disables the link. This is currently only used for style sheet links, and may be used
to activate or deactivate style sheets.

href of type DOMString [p.21]
The URI of the linked resource. See the href attribute definition in HTML 4.0.

hreflang of type DOMString [p.21]
Language code of the linked resource. See the hreflang attribute definition in HTML 4.0.

media of type DOMString [p.21]
Designed for use with one or more target media. See the media attribute definition in
HTML 4.0.

rel of type DOMString [p.21]
Forward link type. See the rel attribute definition in HTML 4.0.

rev of type DOMString [p.21]
Reverse link type. See the rev attribute definition in HTML 4.0.

target of type DOMString [p.21]
Frame to render the resource in. See the target attribute definition in HTML 4.0.

type of type DOMString [p.21]
Advisory content type. See the type attribute definition in HTML 4.0.

Interface HTMLTitleElement

The document title. See the TITLE element definition in HTML 4.0.
IDL Definition

84

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#edef-TITLE
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-type-A
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-target
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-rev
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-rel
http://www.w3.org/TR/1998/REC-html40-19980424/present/styles.html#adef-media
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-hreflang
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-href
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-charset

interface HTMLTitleElement : HTMLElement {
 attribute DOMString text;
};

Attributes
text of type DOMString [p.21]

The specified title as a string.

Interface HTMLMetaElement

This contains generic meta-information about the document. See the META element definition in
HTML 4.0.
IDL Definition

interface HTMLMetaElement : HTMLElement {
 attribute DOMString content;
 attribute DOMString httpEquiv;
 attribute DOMString name;
 attribute DOMString scheme;
};

Attributes
content of type DOMString [p.21]

Associated information. See the content attribute definition in HTML 4.0.

httpEquiv of type DOMString [p.21]
HTTP response header name. See the http-equiv attribute definition in HTML 4.0.

name of type DOMString [p.21]
Meta information name. See the name attribute definition in HTML 4.0.

scheme of type DOMString [p.21]
Select form of content. See the scheme attribute definition in HTML 4.0.

Interface HTMLBaseElement

Document base URI. See the BASE element definition in HTML 4.0.
IDL Definition

interface HTMLBaseElement : HTMLElement {
 attribute DOMString href;
 attribute DOMString target;
};

Attributes
href of type DOMString [p.21]

The base URI. See the href attribute definition in HTML 4.0.

target of type DOMString [p.21]
The default target frame. See the target attribute definition in HTML 4.0.

85

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-target
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-href-BASE
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#edef-BASE
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-scheme
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-name-META
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-http-equiv
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-content
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#edef-META

Interface HTMLIsIndexElement

This element is used for single-line text input. See the ISINDEX element definition in HTML 4.0.
This element is deprecated in HTML 4.0.
IDL Definition

interface HTMLIsIndexElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString prompt;
};

Attributes
form of type HTMLFormElement [p.87] , readonly

Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

prompt of type DOMString [p.21]
The prompt message. See the prompt attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLStyleElement

Style information. See the STYLE element definition in HTML 4.0, the Document Object Model
CSS [p.135] module and the LinkStyle [p.133] interface in the Document Object Model
StyleSheets [p.129] module.
IDL Definition

interface HTMLStyleElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString media;
 attribute DOMString type;
};

Attributes
disabled of type boolean

Enables/disables the style sheet.

media of type DOMString [p.21]
Designed for use with one or more target media. See the media attribute definition in
HTML 4.0.

type of type DOMString [p.21]
The content type pf the style sheet language. See the type attribute definition in HTML 4.0.

Interface HTMLBodyElement

The HTML document body. This element is always present in the DOM API, even if the tags are not
present in the source document. See the BODY element definition in HTML 4.0.

86

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#edef-BODY
http://www.w3.org/TR/1998/REC-html40-19980424/present/styles.html#adef-type-STYLE
http://www.w3.org/TR/1998/REC-html40-19980424/present/styles.html#adef-media
http://www.w3.org/TR/1998/REC-html40-19980424/present/styles.html#edef-STYLE
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-prompt
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-ISINDEX

IDL Definition

interface HTMLBodyElement : HTMLElement {
 attribute DOMString aLink;
 attribute DOMString background;
 attribute DOMString bgColor;
 attribute DOMString link;
 attribute DOMString text;
 attribute DOMString vLink;
};

Attributes
aLink of type DOMString [p.21]

Color of active links (after mouse-button down, but before mouse-button up). See the alink
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

background of type DOMString [p.21]
URI of the background texture tile image. See the background attribute definition in HTML
4.0. This attribute is deprecated in HTML 4.0.

bgColor of type DOMString [p.21]
Document background color. See the bgcolor attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

link of type DOMString [p.21]
Color of links that are not active and unvisited. See the link attribute definition in HTML
4.0. This attribute is deprecated in HTML 4.0.

text of type DOMString [p.21]
Document text color. See the text attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

vLink of type DOMString [p.21]
Color of links that have been visited by the user. See the vlink attribute definition in HTML
4.0. This attribute is deprecated in HTML 4.0.

Interface HTMLFormElement

The FORM element encompasses behavior similar to a collection and an element. It provides direct
access to the contained input elements as well as the attributes of the form element. See the FORM
element definition in HTML 4.0.
IDL Definition

interface HTMLFormElement : HTMLElement {
 readonly attribute HTMLCollection elements;
 readonly attribute long length;
 attribute DOMString name;
 attribute DOMString acceptCharset;
 attribute DOMString action;
 attribute DOMString enctype;
 attribute DOMString method;

87

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-FORM
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-FORM
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-vlink
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-text
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-link
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-bgcolor
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-background
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-alink
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-alink

 attribute DOMString target;
 void submit();
 void reset();
};

Attributes
acceptCharset of type DOMString [p.21]

List of character sets supported by the server. See the accept-charset attribute definition in
HTML 4.0.

action of type DOMString [p.21]
Server-side form handler. See the action attribute definition in HTML 4.0.

elements of type HTMLCollection [p.77] , readonly
Returns a collection of all control elements in the form.

enctype of type DOMString [p.21]
The content type of the submitted form, generally "application/x-www-form-urlencoded".
See the enctype attribute definition in HTML 4.0.

length of type long, readonly
The number of form controls in the form.

method of type DOMString [p.21]
HTTP method used to submit form. See the method attribute definition in HTML 4.0.

name of type DOMString [p.21]
Names the form.

target of type DOMString [p.21]
Frame to render the resource in. See the target attribute definition in HTML 4.0.

Methods
reset

Restores a form element’s default values. It performs the same action as a reset button.
No Parameters
No Return Value
No Exceptions

submit
Submits the form. It performs the same action as a submit button.
No Parameters
No Return Value
No Exceptions

Interface HTMLSelectElement

88

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-target
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-method
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-enctype
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-action
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accept-charset

The select element allows the selection of an option. The contained options can be directly accessed
through the select element as a collection. See the SELECT element definition in HTML 4.0.
IDL Definition

interface HTMLSelectElement : HTMLElement {
 readonly attribute DOMString type;
 attribute long selectedIndex;
 attribute DOMString value;
 readonly attribute long length;
 readonly attribute HTMLFormElement form;
 readonly attribute HTMLCollection options;
 attribute boolean disabled;
 attribute boolean multiple;
 attribute DOMString name;
 attribute long size;
 attribute long tabIndex;
 void add(in HTMLElement element,
 in HTMLElement before)
 raises(DOMException);
 void remove(in long index);
 void blur();
 void focus();
};

Attributes
disabled of type boolean

The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

form of type HTMLFormElement [p.87] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

length of type long, readonly
The number of options in this SELECT.

multiple of type boolean
If true, multiple OPTION elements may be selected in this SELECT. See the multiple
attribute definition in HTML 4.0.

name of type DOMString [p.21]
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

options of type HTMLCollection [p.77] , readonly
The collection of OPTION elements contained by this element.

selectedIndex of type long
The ordinal index of the selected option, starting from 0. The value -1 is returned if no
element is selected. If multiple options are selected, the index of the first selected option is
returned.

89

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-name-SELECT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-multiple
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-multiple
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-disabled
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-SELECT

size of type long
Number of visible rows. See the size attribute definition in HTML 4.0.

tabIndex of type long
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

type of type DOMString [p.21] , readonly
The type of this form control. This is the string "select-multiple" when the multiple
attribute is true and the string "select-one" when false.

value of type DOMString [p.21]
The current form control value.

Methods
add

Add a new element to the collection of OPTION elements for this SELECT. This method is
the equivalent of the appendChild method of the Node [p.39] interface if the before
parameter is null. It is equivalent to the insertBefore method on the parent of
before in all other cases.
Parameters

HTMLElement
[p.82]

element
The element to add.

HTMLElement before The element to insert before, or null for
the tail of the list.

Exceptions

DOMException
[p.24]

NOT_FOUND_ERR: Raised if before is not a
descendant of the SELECT element.

No Return Value

blur
Removes keyboard focus from this element.
No Parameters
No Return Value
No Exceptions

focus
Gives keyboard focus to this element.
No Parameters
No Return Value
No Exceptions

90

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-size-SELECT

remove
Remove an element from the collection of OPTION elements for this SELECT. Does
nothing if no element has the given index.
Parameters

long index The index of the item to remove, starting from 0.

No Return Value
No Exceptions

Interface HTMLOptGroupElement

Group options together in logical subdivisions. See the OPTGROUP element definition in HTML
4.0.
IDL Definition

interface HTMLOptGroupElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString label;
};

Attributes
disabled of type boolean

The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

label of type DOMString [p.21]
Assigns a label to this option group. See the label attribute definition in HTML 4.0.

Interface HTMLOptionElement

A selectable choice. See the OPTION element definition in HTML 4.0.
IDL Definition

interface HTMLOptionElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute boolean defaultSelected;
 readonly attribute DOMString text;
 readonly attribute long index;
 attribute boolean disabled;
 attribute DOMString label;
 attribute boolean selected;
 attribute DOMString value;
};

Attributes
defaultSelected of type boolean

Represents the value of the HTML selected attribute. The value of this attribute does not
change if the state of the corresponding form control, in an interactive user agent, changes.
Changing defaultSelected, however, resets the state of the form control. See the

91

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-OPTION
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-label-OPTGROUP
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-disabled
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-OPTGROUP

selected attribute definition in HTML 4.0.

disabled of type boolean
The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

form of type HTMLFormElement [p.87] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

index of type long, readonly
The index of this OPTION in its parent SELECT, starting from 0.

label of type DOMString [p.21]
Option label for use in hierarchical menus. See the label attribute definition in HTML 4.0.

selected of type boolean
Represents the current state of the corresponding form control, in an interactive user agent.
Changing this attribute changes the state of the form control, but does not change the value
of the HTML selected attribute of the element.

text of type DOMString [p.21] , readonly
The text contained within the option element.

value of type DOMString [p.21]
The current form control value. See the value attribute definition in HTML 4.0.

Interface HTMLInputElement

Form control. Note. Depending upon the environment in which the page is being viewed, the value
property may be read-only for the file upload input type. For the "password" input type, the actual
value returned may be masked to prevent unauthorized use. See the INPUT element definition in
HTML 4.0.
IDL Definition

interface HTMLInputElement : HTMLElement {
 attribute DOMString defaultValue;
 attribute boolean defaultChecked;
 readonly attribute HTMLFormElement form;
 attribute DOMString accept;
 attribute DOMString accessKey;
 attribute DOMString align;
 attribute DOMString alt;
 attribute boolean checked;
 attribute boolean disabled;
 attribute long maxLength;
 attribute DOMString name;
 attribute boolean readOnly;
 attribute DOMString size;
 attribute DOMString src;
 attribute long tabIndex;

92

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-value-OPTION
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-label-OPTION
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-disabled
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-selected

 readonly attribute DOMString type;
 attribute DOMString useMap;
 attribute DOMString value;
 void blur();
 void focus();
 void select();
 void click();
};

Attributes
accept of type DOMString [p.21]

A comma-separated list of content types that a server processing this form will handle
correctly. See the accept attribute definition in HTML 4.0.

accessKey of type DOMString [p.21]
A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

align of type DOMString [p.21]
Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

alt of type DOMString [p.21]
Alternate text for user agents not rendering the normal content of this element. See the alt
attribute definition in HTML 4.0.

checked of type boolean
When the type attribute of the element has the value "Radio" or "Checkbox", this
represents the current state of the form control, in an interactive user agent. Changes to this
attribute change the state of the form control, but do not change the value of the HTML
value attribute of the element.

defaultChecked of type boolean
When type has the value "Radio" or "Checkbox", this represents the HTML checked
attribute of the element. The value of this attribute does not change if the state of the
corresponding form control, in an interactive user agent, changes. Changes to this attribute,
however, resets the state of the form control. See the checked attribute definition in HTML
4.0.

defaultValue of type DOMString [p.21]
When the type attribute of the element has the value "Text", "File" or "Password", this
represents the HTML value attribute of the element. The value of this attribute does not
change if the contents of the corresponding form control, in an interactive user agent,
changes. Changing this attribute, however, resets the contents of the form control. See the
value attribute definition in HTML 4.0.

disabled of type boolean
The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

93

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-disabled
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-value-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-checked
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-align-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accept

form of type HTMLFormElement [p.87] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

maxLength of type long
Maximum number of characters for text fields, when type has the value "Text" or
"Password". See the maxlength attribute definition in HTML 4.0.

name of type DOMString [p.21]
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

readOnly of type boolean
This control is read-only. Relevant only when type has the value "Text" or "Password".
See the readonly attribute definition in HTML 4.0.

size of type DOMString [p.21]
Size information. The precise meaning is specific to each type of field. See the size
attribute definition in HTML 4.0.

src of type DOMString [p.21]
When the type attribute has the value "Image", this attribute specifies the location of the
image to be used to decorate the graphical submit button. See the src attribute definition in
HTML 4.0.

tabIndex of type long
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

type of type DOMString [p.21] , readonly
The type of control created. See the type attribute definition in HTML 4.0.

useMap of type DOMString [p.21]
Use client-side image map. See the usemap attribute definition in HTML 4.0.

value of type DOMString [p.21]
When the type attribute of the element has the value "Text", "File" or "Password", this
represents the current contents of the corresponding form control, in an interactive user
agent. Changing this attribute changes the contents of the form control, but does not change
the value of the HTML value attribute of the element. When the type attribute of the
element has the value "Button", "Hidden", "Submit", "Reset", "Image", "Checkbox" or
"Radio", this represents the HTML value attribute of the element. See the value attribute
definition in HTML 4.0.

Methods
blur

Removes keyboard focus from this element.
No Parameters

94

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-value-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-value-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-usemap
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-type-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-src
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-size-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-size-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-readonly
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-name-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-maxlength

No Return Value
No Exceptions

click
Simulate a mouse-click. For INPUT elements whose type attribute has one of the
following values: "Button", "Checkbox", "Radio", "Reset", or "Submit".
No Parameters
No Return Value
No Exceptions

focus
Gives keyboard focus to this element.
No Parameters
No Return Value
No Exceptions

select
Select the contents of the text area. For INPUT elements whose type attribute has one of
the following values: "Text", "File", or "Password".
No Parameters
No Return Value
No Exceptions

Interface HTMLTextAreaElement

Multi-line text field. See the TEXTAREA element definition in HTML 4.0.
IDL Definition

interface HTMLTextAreaElement : HTMLElement {
 attribute DOMString defaultValue;
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute long cols;
 attribute boolean disabled;
 attribute DOMString name;
 attribute boolean readOnly;
 attribute long rows;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString value;
 void blur();
 void focus();
 void select();
};

Attributes
accessKey of type DOMString [p.21]

A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

95

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-TEXTAREA

cols of type long
Width of control (in characters). See the cols attribute definition in HTML 4.0.

defaultValue of type DOMString [p.21]
Represents the contents of the element. The value of this attribute does not change if the
contents of the corresponding form control, in an interactive user agent, changes. Changing
this attribute, however, resets the contents of the form control.

disabled of type boolean
The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

form of type HTMLFormElement [p.87] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

name of type DOMString [p.21]
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

readOnly of type boolean
This control is read-only. See the readonly attribute definition in HTML 4.0.

rows of type long
Number of text rows. See the rows attribute definition in HTML 4.0.

tabIndex of type long
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

type of type DOMString [p.21] , readonly
The type of this form control. This the string "textarea".

value of type DOMString [p.21]
Represents the current contents of the corresponding form control, in an interactive user
agent. Changing this attribute changes the contents of the form control, but does not change
the contents of the element. If the entirety of the data can not fit into a single DOMString
[p.21] , the implementation may truncate the data.

Methods
blur

Removes keyboard focus from this element.
No Parameters
No Return Value
No Exceptions

96

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-rows-TEXTAREA
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-readonly
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-name-TEXTAREA
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-disabled
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-cols-TEXTAREA

focus
Gives keyboard focus to this element.
No Parameters
No Return Value
No Exceptions

select
Select the contents of the TEXTAREA.
No Parameters
No Return Value
No Exceptions

Interface HTMLButtonElement

Push button. See the BUTTON element definition in HTML 4.0.
IDL Definition

interface HTMLButtonElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute boolean disabled;
 attribute DOMString name;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString value;
};

Attributes
accessKey of type DOMString [p.21]

A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

disabled of type boolean
The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

form of type HTMLFormElement [p.87] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

name of type DOMString [p.21]
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

tabIndex of type long
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

97

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-name-BUTTON
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-disabled
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-BUTTON

type of type DOMString [p.21] , readonly
The type of button. See the type attribute definition in HTML 4.0.

value of type DOMString [p.21]
The current form control value. See the value attribute definition in HTML 4.0.

Interface HTMLLabelElement

Form field label text. See the LABEL element definition in HTML 4.0.
IDL Definition

interface HTMLLabelElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute DOMString htmlFor;
};

Attributes
accessKey of type DOMString [p.21]

A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

form of type HTMLFormElement [p.87] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

htmlFor of type DOMString [p.21]
This attribute links this label with another form control by id attribute. See the for attribute
definition in HTML 4.0.

Interface HTMLFieldSetElement

Organizes form controls into logical groups. See the FIELDSET element definition in HTML 4.0.
IDL Definition

interface HTMLFieldSetElement : HTMLElement {
 readonly attribute HTMLFormElement form;
};

Attributes
form of type HTMLFormElement [p.87] , readonly

Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

Interface HTMLLegendElement

Provides a caption for a FIELDSET grouping. See the LEGEND element definition in HTML 4.0.
IDL Definition

98

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-LEGEND
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-FIELDSET
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-for
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-for
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-LABEL
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-value-BUTTON
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-type-BUTTON

interface HTMLLegendElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute DOMString align;
};

Attributes
accessKey of type DOMString [p.21]

A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

align of type DOMString [p.21]
Text alignment relative to FIELDSET. See the align attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

form of type HTMLFormElement [p.87] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

Interface HTMLUListElement

Unordered list. See the UL element definition in HTML 4.0.
IDL Definition

interface HTMLUListElement : HTMLElement {
 attribute boolean compact;
 attribute DOMString type;
};

Attributes
compact of type boolean

Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

type of type DOMString [p.21]
Bullet style. See the type attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

Interface HTMLOListElement

Ordered list. See the OL element definition in HTML 4.0.
IDL Definition

interface HTMLOListElement : HTMLElement {
 attribute boolean compact;
 attribute long start;
 attribute DOMString type;
};

Attributes

99

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#edef-OL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-type-UL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-compact
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#edef-UL
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-align-LEGEND
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey

compact of type boolean
Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

start of type long
Starting sequence number. See the start attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

type of type DOMString [p.21]
Numbering style. See the type attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLDListElement

Definition list. See the DL element definition in HTML 4.0.
IDL Definition

interface HTMLDListElement : HTMLElement {
 attribute boolean compact;
};

Attributes
compact of type boolean

Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

Interface HTMLDirectoryElement

Directory list. See the DIR element definition in HTML 4.0. This element is deprecated in HTML
4.0.
IDL Definition

interface HTMLDirectoryElement : HTMLElement {
 attribute boolean compact;
};

Attributes
compact of type boolean

Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

Interface HTMLMenuElement

Menu list. See the MENU element definition in HTML 4.0. This element is deprecated in HTML 4.0.
IDL Definition

interface HTMLMenuElement : HTMLElement {
 attribute boolean compact;
};

100

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#edef-MENU
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-compact
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#edef-DIR
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-compact
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#edef-DL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-type-OL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-start
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-compact

Attributes
compact of type boolean

Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

Interface HTMLLIElement

List item. See the LI element definition in HTML 4.0.
IDL Definition

interface HTMLLIElement : HTMLElement {
 attribute DOMString type;
 attribute long value;
};

Attributes
type of type DOMString [p.21]

List item bullet style. See the type attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

value of type long
Reset sequence number when used in OL. See the value attribute definition in HTML 4.0.
This attribute is deprecated in HTML 4.0.

Interface HTMLDivElement

Generic block container. See the DIV element definition in HTML 4.0.
IDL Definition

interface HTMLDivElement : HTMLElement {
 attribute DOMString align;
};

Attributes
align of type DOMString [p.21]

Horizontal text alignment. See the align attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLParagraphElement

Paragraphs. See the P element definition in HTML 4.0.
IDL Definition

interface HTMLParagraphElement : HTMLElement {
 attribute DOMString align;
};

Attributes
align of type DOMString [p.21]

Horizontal text alignment. See the align attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

101

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-align
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#edef-P
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-align
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#edef-DIV
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-value-LI
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-type-LI
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#edef-LI
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-compact

Interface HTMLHeadingElement

For the H1 to H6 elements. See the H1 element definition in HTML 4.0.
IDL Definition

interface HTMLHeadingElement : HTMLElement {
 attribute DOMString align;
};

Attributes
align of type DOMString [p.21]

Horizontal text alignment. See the align attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLQuoteElement

For the Q and BLOCKQUOTE elements. See the Q element definition in HTML 4.0.
IDL Definition

interface HTMLQuoteElement : HTMLElement {
 attribute DOMString cite;
};

Attributes
cite of type DOMString [p.21]

A URI designating a source document or message. See the cite attribute definition in
HTML 4.0.

Interface HTMLPreElement

Preformatted text. See the PRE element definition in HTML 4.0.
IDL Definition

interface HTMLPreElement : HTMLElement {
 attribute long width;
};

Attributes
width of type long

Fixed width for content. See the width attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLBRElement

Force a line break. See the BR element definition in HTML 4.0.
IDL Definition

interface HTMLBRElement : HTMLElement {
 attribute DOMString clear;
};

102

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#edef-BR
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#adef-width-PRE
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#edef-PRE
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#adef-cite-Q
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#edef-Q
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-align
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#edef-H1

Attributes
clear of type DOMString [p.21]

Control flow of text around floats. See the clear attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

Interface HTMLBaseFontElement

Base font. See the BASEFONT element definition in HTML 4.0. This element is deprecated in
HTML 4.0.
IDL Definition

interface HTMLBaseFontElement : HTMLElement {
 attribute DOMString color;
 attribute DOMString face;
 attribute DOMString size;
};

Attributes
color of type DOMString [p.21]

Font color. See the color attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

face of type DOMString [p.21]
Font face identifier. See the face attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

size of type DOMString [p.21]
Font size. See the size attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

Interface HTMLFontElement

Local change to font. See the FONT element definition in HTML 4.0. This element is deprecated in
HTML 4.0.
IDL Definition

interface HTMLFontElement : HTMLElement {
 attribute DOMString color;
 attribute DOMString face;
 attribute DOMString size;
};

Attributes
color of type DOMString [p.21]

Font color. See the color attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

face of type DOMString [p.21]
Font face identifier. See the face attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

103

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-face-FONT
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-color-FONT
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#edef-FONT
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-size-BASEFONT
http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#edef-BASEFONT
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-clear

size of type DOMString [p.21]
Font size. See the size attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

Interface HTMLHRElement

Create a horizontal rule. See the HR element definition in HTML 4.0.
IDL Definition

interface HTMLHRElement : HTMLElement {
 attribute DOMString align;
 attribute boolean noShade;
 attribute DOMString size;
 attribute DOMString width;
};

Attributes
align of type DOMString [p.21]

Align the rule on the page. See the align attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

noShade of type boolean
Indicates to the user agent that there should be no shading in the rendering of this element.
See the noshade attribute definition in HTML 4.0. This attribute is deprecated in HTML
4.0.

size of type DOMString [p.21]
The height of the rule. See the size attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

width of type DOMString [p.21]
The width of the rule. See the width attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLModElement

Notice of modification to part of a document. See the INS and DEL element definitions in HTML
4.0.
IDL Definition

interface HTMLModElement : HTMLElement {
 attribute DOMString cite;
 attribute DOMString dateTime;
};

Attributes
cite of type DOMString [p.21]

A URI designating a document that describes the reason for the change. See the cite
attribute definition in HTML 4.0.

104

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#edef-del
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#edef-ins
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-width-HR
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-size-HR
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-noshade
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-align-HR
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#edef-HR
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-size-FONT

dateTime of type DOMString [p.21]
The date and time of the change. See the datetime attribute definition in HTML 4.0.

Interface HTMLAnchorElement

The anchor element. See the A element definition in HTML 4.0.
IDL Definition

interface HTMLAnchorElement : HTMLElement {
 attribute DOMString accessKey;
 attribute DOMString charset;
 attribute DOMString coords;
 attribute DOMString href;
 attribute DOMString hreflang;
 attribute DOMString name;
 attribute DOMString rel;
 attribute DOMString rev;
 attribute DOMString shape;
 attribute long tabIndex;
 attribute DOMString target;
 attribute DOMString type;
 void blur();
 void focus();
};

Attributes
accessKey of type DOMString [p.21]

A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

charset of type DOMString [p.21]
The character encoding of the linked resource. See the charset attribute definition in HTML
4.0.

coords of type DOMString [p.21]
Comma-separated list of lengths, defining an active region geometry. See also shape for
the shape of the region. See the coords attribute definition in HTML 4.0.

href of type DOMString [p.21]
The URI of the linked resource. See the href attribute definition in HTML 4.0.

hreflang of type DOMString [p.21]
Language code of the linked resource. See the hreflang attribute definition in HTML 4.0.

name of type DOMString [p.21]
Anchor name. See the name attribute definition in HTML 4.0.

rel of type DOMString [p.21]
Forward link type. See the rel attribute definition in HTML 4.0.

105

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-rel
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-name-A
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-hreflang
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-href
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-coords
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-charset
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#edef-A
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#adef-datetime

rev of type DOMString [p.21]
Reverse link type. See the rev attribute definition in HTML 4.0.

shape of type DOMString [p.21]
The shape of the active area. The coordinates are given by coords. See the shape attribute
definition in HTML 4.0.

tabIndex of type long
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

target of type DOMString [p.21]
Frame to render the resource in. See the target attribute definition in HTML 4.0.

type of type DOMString [p.21]
Advisory content type. See the type attribute definition in HTML 4.0.

Methods
blur

Removes keyboard focus from this element.
No Parameters
No Return Value
No Exceptions

focus
Gives keyboard focus to this element.
No Parameters
No Return Value
No Exceptions

Interface HTMLImageElement

Embedded image. See the IMG element definition in HTML 4.0.
IDL Definition

interface HTMLImageElement : HTMLElement {
 attribute DOMString lowSrc;
 attribute DOMString name;
 attribute DOMString align;
 attribute DOMString alt;
 attribute DOMString border;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute boolean isMap;
 attribute DOMString longDesc;
 attribute DOMString src;
 attribute DOMString useMap;
 attribute DOMString vspace;
 attribute DOMString width;
};

106

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#edef-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-type-A
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-target
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-shape
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-shape
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-rev

Attributes
align of type DOMString [p.21]

Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

alt of type DOMString [p.21]
Alternate text for user agents not rendering the normal content of this element. See the alt
attribute definition in HTML 4.0.

border of type DOMString [p.21]
Width of border around image. See the border attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

height of type DOMString [p.21]
Override height. See the height attribute definition in HTML 4.0.

hspace of type DOMString [p.21]
Horizontal space to the left and right of this image. See the hspace attribute definition in
HTML 4.0. This attribute is deprecated in HTML 4.0.

isMap of type boolean
Use server-side image map. See the ismap attribute definition in HTML 4.0.

longDesc of type DOMString [p.21]
URI designating a long description of this image or frame. See the longdesc attribute
definition in HTML 4.0.

lowSrc of type DOMString [p.21]
URI designating the source of this image, for low-resolution output.

name of type DOMString [p.21]
The name of the element (for backwards compatibility).

src of type DOMString [p.21]
URI designating the source of this image. See the src attribute definition in HTML 4.0.

useMap of type DOMString [p.21]
Use client-side image map. See the usemap attribute definition in HTML 4.0.

vspace of type DOMString [p.21]
Vertical space above and below this image. See the vspace attribute definition in HTML
4.0. This attribute is deprecated in HTML 4.0.

width of type DOMString [p.21]
Override width. See the width attribute definition in HTML 4.0.

107

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-width-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-vspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-usemap
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-src-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-longdesc-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-longdesc-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-ismap
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-hspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-height-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-border-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-align-IMG

Interface HTMLObjectElement

Generic embedded object. Note. In principle, all properties on the object element are read-write but in
some environments some properties may be read-only once the underlying object is instantiated. See
the OBJECT element definition in HTML 4.0.
IDL Definition

interface HTMLObjectElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString code;
 attribute DOMString align;
 attribute DOMString archive;
 attribute DOMString border;
 attribute DOMString codeBase;
 attribute DOMString codeType;
 attribute DOMString data;
 attribute boolean declare;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute DOMString name;
 attribute DOMString standby;
 attribute long tabIndex;
 attribute DOMString type;
 attribute DOMString useMap;
 attribute DOMString vspace;
 attribute DOMString width;
 // Introduced in DOM Level 2:
 attribute Document contentDocument;
};

Attributes
align of type DOMString [p.21]

Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

archive of type DOMString [p.21]
Space-separated list of archives. See the archive attribute definition in HTML 4.0.

border of type DOMString [p.21]
Width of border around the object. See the border attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

code of type DOMString [p.21]
Applet class file. See the code attribute for HTMLAppletElement.

codeBase of type DOMString [p.21]
Base URI for classid, data, and archive attributes. See the codebase attribute
definition in HTML 4.0.

codeType of type DOMString [p.21]
Content type for data downloaded via classid attribute. See the codetype attribute
definition in HTML 4.0.

108

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-codetype
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-codetype
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-codebase-OBJECT
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-codebase-OBJECT
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-border-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-archive-OBJECT
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-align-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#edef-OBJECT

data of type DOMString [p.21]
A URI specifying the location of the object’s data. See the data attribute definition in
HTML 4.0.

declare of type boolean
Declare (for future reference), but do not instantiate, this object. See the declare attribute
definition in HTML 4.0.

contentDocument of type Document [p.29] , introduced in DOM Level 2
The document this object contains, if there is any and it is available, or null otherwise.

form of type HTMLFormElement [p.87] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

height of type DOMString [p.21]
Override height. See the height attribute definition in HTML 4.0.

hspace of type DOMString [p.21]
Horizontal space to the left and right of this image, applet, or object. See the hspace
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

name of type DOMString [p.21]
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

standby of type DOMString [p.21]
Message to render while loading the object. See the standby attribute definition in HTML
4.0.

tabIndex of type long
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

type of type DOMString [p.21]
Content type for data downloaded via data attribute. See the type attribute definition in
HTML 4.0.

useMap of type DOMString [p.21]
Use client-side image map. See the usemap attribute definition in HTML 4.0.

vspace of type DOMString [p.21]
Vertical space above and below this image, applet, or object. See the vspace attribute
definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

width of type DOMString [p.21]
Override width. See the width attribute definition in HTML 4.0.

109

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-width-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-vspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-vspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-usemap
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-type-OBJECT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-standby
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-name-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-hspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-hspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-height-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-declare
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-declare
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-data

Interface HTMLParamElement

Parameters fed to the OBJECT element. See the PARAM element definition in HTML 4.0.
IDL Definition

interface HTMLParamElement : HTMLElement {
 attribute DOMString name;
 attribute DOMString type;
 attribute DOMString value;
 attribute DOMString valueType;
};

Attributes
name of type DOMString [p.21]

The name of a run-time parameter. See the name attribute definition in HTML 4.0.

type of type DOMString [p.21]
Content type for the value attribute when valuetype has the value "ref". See the type
attribute definition in HTML 4.0.

value of type DOMString [p.21]
The value of a run-time parameter. See the value attribute definition in HTML 4.0.

valueType of type DOMString [p.21]
Information about the meaning of the value attribute value. See the valuetype attribute
definition in HTML 4.0.

Interface HTMLAppletElement

An embedded Java applet. See the APPLET element definition in HTML 4.0. This element is
deprecated in HTML 4.0.
IDL Definition

interface HTMLAppletElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString alt;
 attribute DOMString archive;
 attribute DOMString code;
 attribute DOMString codeBase;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute DOMString name;
 attribute DOMString object;
 attribute DOMString vspace;
 attribute DOMString width;
};

Attributes
align of type DOMString [p.21]

Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

110

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-align-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#edef-APPLET
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-valuetype
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-valuetype
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-value-PARAM
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-type-PARAM
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-type-PARAM
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-name-PARAM
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#edef-PARAM

alt of type DOMString [p.21]
Alternate text for user agents not rendering the normal content of this element. See the alt
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

archive of type DOMString [p.21]
Comma-separated archive list. See the archive attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

code of type DOMString [p.21]
Applet class file. See the code attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

codeBase of type DOMString [p.21]
Optional base URI for applet. See the codebase attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

height of type DOMString [p.21]
Override height. See the height attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

hspace of type DOMString [p.21]
Horizontal space to the left and right of this image, applet, or object. See the hspace
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

name of type DOMString [p.21]
The name of the applet. See the name attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

object of type DOMString [p.21]
Serialized applet file. See the object attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

vspace of type DOMString [p.21]
Vertical space above and below this image, applet, or object. See the vspace attribute
definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

width of type DOMString [p.21]
Override width. See the width attribute definition in HTML 4.0. This attribute is deprecated
in HTML 4.0.

Interface HTMLMapElement

Client-side image map. See the MAP element definition in HTML 4.0.
IDL Definition

interface HTMLMapElement : HTMLElement {
 readonly attribute HTMLCollection areas;
 attribute DOMString name;
};

111

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#edef-MAP
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-width-APPLET
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-vspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-vspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-object
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-name-APPLET
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-hspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-hspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-height-APPLET
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-codebase-APPLET
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-code
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-archive-APPLET
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt

Attributes
areas of type HTMLCollection [p.77] , readonly

The list of areas defined for the image map.

name of type DOMString [p.21]
Names the map (for use with usemap). See the name attribute definition in HTML 4.0.

Interface HTMLAreaElement

Client-side image map area definition. See the AREA element definition in HTML 4.0.
IDL Definition

interface HTMLAreaElement : HTMLElement {
 attribute DOMString accessKey;
 attribute DOMString alt;
 attribute DOMString coords;
 attribute DOMString href;
 attribute boolean noHref;
 attribute DOMString shape;
 attribute long tabIndex;
 attribute DOMString target;
};

Attributes
accessKey of type DOMString [p.21]

A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

alt of type DOMString [p.21]
Alternate text for user agents not rendering the normal content of this element. See the alt
attribute definition in HTML 4.0.

coords of type DOMString [p.21]
Comma-separated list of lengths, defining an active region geometry. See also shape for
the shape of the region. See the coords attribute definition in HTML 4.0.

href of type DOMString [p.21]
The URI of the linked resource. See the href attribute definition in HTML 4.0.

noHref of type boolean
Specifies that this area is inactive, i.e., has no associated action. See the nohref attribute
definition in HTML 4.0.

shape of type DOMString [p.21]
The shape of the active area. The coordinates are given by coords. See the shape attribute
definition in HTML 4.0.

tabIndex of type long
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

112

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-shape
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-shape
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-nohref
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-nohref
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-href
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-coords
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#edef-AREA
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-name-MAP

target of type DOMString [p.21]
Frame to render the resource in. See the target attribute definition in HTML 4.0.

Interface HTMLScriptElement

Script statements. See the SCRIPT element definition in HTML 4.0.
IDL Definition

interface HTMLScriptElement : HTMLElement {
 attribute DOMString text;
 attribute DOMString htmlFor;
 attribute DOMString event;
 attribute DOMString charset;
 attribute boolean defer;
 attribute DOMString src;
 attribute DOMString type;
};

Attributes
charset of type DOMString [p.21]

The character encoding of the linked resource. See the charset attribute definition in HTML
4.0.

defer of type boolean
Indicates that the user agent can defer processing of the script. See the defer attribute
definition in HTML 4.0.

event of type DOMString [p.21]
Reserved for future use.

htmlFor of type DOMString [p.21]
Reserved for future use.

src of type DOMString [p.21]
URI designating an external script. See the src attribute definition in HTML 4.0.

text of type DOMString [p.21]
The script content of the element.

type of type DOMString [p.21]
The content type of the script language. See the type attribute definition in HTML 4.0.

Interface HTMLTableElement

The create* and delete* methods on the table allow authors to construct and modify tables. HTML
4.0 specifies that only one of each of the CAPTION, THEAD, and TFOOT elements may exist in a
table. Therefore, if one exists, and the createTHead() or createTFoot() method is called, the method
returns the existing THead or TFoot element. See the TABLE element definition in HTML 4.0.

113

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#edef-TABLE
http://www.w3.org/TR/1998/REC-html40-19980424/interact/scripts.html#adef-type-SCRIPT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/scripts.html#adef-src-SCRIPT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/scripts.html#adef-defer
http://www.w3.org/TR/1998/REC-html40-19980424/interact/scripts.html#adef-defer
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-charset
http://www.w3.org/TR/1998/REC-html40-19980424/interact/scripts.html#edef-SCRIPT
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-target

IDL Definition

interface HTMLTableElement : HTMLElement {
 attribute HTMLTableCaptionElement caption;
 attribute HTMLTableSectionElement tHead;
 attribute HTMLTableSectionElement tFoot;
 readonly attribute HTMLCollection rows;
 readonly attribute HTMLCollection tBodies;
 attribute DOMString align;
 attribute DOMString bgColor;
 attribute DOMString border;
 attribute DOMString cellPadding;
 attribute DOMString cellSpacing;
 attribute DOMString frame;
 attribute DOMString rules;
 attribute DOMString summary;
 attribute DOMString width;
 HTMLElement createTHead();
 void deleteTHead();
 HTMLElement createTFoot();
 void deleteTFoot();
 HTMLElement createCaption();
 void deleteCaption();
 HTMLElement insertRow(in long index)
 raises(DOMException);
 void deleteRow(in long index)
 raises(DOMException);
};

Attributes
align of type DOMString [p.21]

Specifies the table’s position with respect to the rest of the document. See the align
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

bgColor of type DOMString [p.21]
Cell background color. See the bgcolor attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

border of type DOMString [p.21]
The width of the border around the table. See the border attribute definition in HTML 4.0.

caption of type HTMLTableCaptionElement [p.117]
Returns the table’s CAPTION, or void if none exists.

cellPadding of type DOMString [p.21]
Specifies the horizontal and vertical space between cell content and cell borders. See the
cellpadding attribute definition in HTML 4.0.

cellSpacing of type DOMString [p.21]
Specifies the horizontal and vertical separation between cells. See the cellspacing attribute
definition in HTML 4.0.

114

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-cellspacing
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-cellspacing
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-cellpadding
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-border-TABLE
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-bgcolor
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-align-TABLE
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-align-TABLE

frame of type DOMString [p.21]
Specifies which external table borders to render. See the frame attribute definition in
HTML 4.0.

rows of type HTMLCollection [p.77] , readonly
Returns a collection of all the rows in the table, including all in THEAD, TFOOT, all
TBODY elements.

rules of type DOMString [p.21]
Specifies which internal table borders to render. See the rules attribute definition in HTML
4.0.

summary of type DOMString [p.21]
Description about the purpose or structure of a table. See the summary attribute definition
in HTML 4.0.

tBodies of type HTMLCollection [p.77] , readonly
Returns a collection of the defined table bodies.

tFoot of type HTMLTableSectionElement [p.118]
Returns the table’s TFOOT, or null if none exists.

tHead of type HTMLTableSectionElement [p.118]
Returns the table’s THEAD, or null if none exists.

width of type DOMString [p.21]
Specifies the desired table width. See the width attribute definition in HTML 4.0.

Methods
createCaption

Create a new table caption object or return an existing one.
Return Value

HTMLElement [p.82] A CAPTION element.

No Parameters
No Exceptions

createTFoot
Create a table footer row or return an existing one.
Return Value

HTMLElement [p.82] A footer element (TFOOT).

No Parameters
No Exceptions

115

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-width-TABLE
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-summary
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-rules
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-frame

createTHead
Create a table header row or return an existing one.
Return Value

HTMLElement [p.82] A new table header element (THEAD).

No Parameters
No Exceptions

deleteCaption
Delete the table caption, if one exists.
No Parameters
No Return Value
No Exceptions

deleteRow
Delete a table row.
Parameters

long index The index of the row to be deleted. This index starts from 0
and is relative to all the rows contained inside the table,
regardless of section parentage.

Exceptions

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if the specified index is greater
than or equal to the number of rows or if the index is
negative.

No Return Value

deleteTFoot
Delete the footer from the table, if one exists.
No Parameters
No Return Value
No Exceptions

deleteTHead
Delete the header from the table, if one exists.
No Parameters
No Return Value
No Exceptions

116

2.5.5. Object definitions

insertRow
Insert a new empty row in the table. The new row is inserted immediately before and in the
same section as the current indexth row in the table. If index is equal to the number of
rows, the new row is appended. In addition, when the table is empty the row is inserted into
a TBODY which is created and inserted into the table. Note. A table row cannot be empty
according to HTML 4.0 Recommendation.
Parameters

long index The row number where to insert a new row. This index
starts from 0 and is relative to all the rows contained inside
the table, regardless of section parentage.

Return Value

HTMLElement [p.82] The newly created row.

Exceptions

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if the specified index is
greater than the number of rows or if the index is negative.

Interface HTMLTableCaptionElement

Table caption See the CAPTION element definition in HTML 4.0.
IDL Definition

interface HTMLTableCaptionElement : HTMLElement {
 attribute DOMString align;
};

Attributes
align of type DOMString [p.21]

Caption alignment with respect to the table. See the align attribute definition in HTML 4.0.
This attribute is deprecated in HTML 4.0.

Interface HTMLTableColElement

Regroups the COL and COLGROUP elements. See the COL element definition in HTML 4.0.
IDL Definition

interface HTMLTableColElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute long span;
 attribute DOMString vAlign;
 attribute DOMString width;
};

117

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#edef-COL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-align-CAPTION
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#edef-CAPTION

Attributes
align of type DOMString [p.21]

Horizontal alignment of cell data in column. See the align attribute definition in HTML
4.0.

ch of type DOMString [p.21]
Alignment character for cells in a column. See the char attribute definition in HTML 4.0.

chOff of type DOMString [p.21]
Offset of alignment character. See the charoff attribute definition in HTML 4.0.

span of type long
Indicates the number of columns in a group or affected by a grouping. See the span
attribute definition in HTML 4.0.

vAlign of type DOMString [p.21]
Vertical alignment of cell data in column. See the valign attribute definition in HTML 4.0.

width of type DOMString [p.21]
Default column width. See the width attribute definition in HTML 4.0.

Interface HTMLTableSectionElement

The THEAD, TFOOT, and TBODY elements.
IDL Definition

interface HTMLTableSectionElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
 readonly attribute HTMLCollection rows;
 HTMLElement insertRow(in long index)
 raises(DOMException);
 void deleteRow(in long index)
 raises(DOMException);
};

Attributes
align of type DOMString [p.21]

Horizontal alignment of data in cells. See the align attribute for HTMLTheadElement for
details.

ch of type DOMString [p.21]
Alignment character for cells in a column. See the char attribute definition in HTML 4.0.

chOff of type DOMString [p.21]
Offset of alignment character. See the charoff attribute definition in HTML 4.0.

118

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-charoff
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-char
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-width-COL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-valign
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-span-COL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-span-COL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-charoff
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-char
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-align-TD

rows of type HTMLCollection [p.77] , readonly
The collection of rows in this table section.

vAlign of type DOMString [p.21]
Vertical alignment of data in cells. See the valign attribute for HTMLTheadElement for
details.

Methods
deleteRow

Delete a row from this section.
Parameters

long index The index of the row to be deleted. This index starts from 0
and is relative only to the rows contained inside this
section, not all the rows in the table.

Exceptions

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if the specified index is greater
than or equal to the number of rows or if the index is
negative.

No Return Value

insertRow
Insert a row into this section. The new row is inserted immediately before the current
indexth row in this section. If index is equal to the number of rows in this section, the
new row is appended.
Parameters

long index The row number where to insert a new row. This index
starts from 0 and is relative only to the rows contained
inside this section, not all the rows in the table.

Return Value

HTMLElement [p.82] The newly created row.

Exceptions

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if the specified index is
greater than the number of rows of if the index is neagative.

119

2.5.5. Object definitions

Interface HTMLTableRowElement

A row in a table. See the TR element definition in HTML 4.0.
IDL Definition

interface HTMLTableRowElement : HTMLElement {
 readonly attribute long rowIndex;
 readonly attribute long sectionRowIndex;
 readonly attribute HTMLCollection cells;
 attribute DOMString align;
 attribute DOMString bgColor;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
 HTMLElement insertCell(in long index)
 raises(DOMException);
 void deleteCell(in long index)
 raises(DOMException);
};

Attributes
align of type DOMString [p.21]

Horizontal alignment of data within cells of this row. See the align attribute definition in
HTML 4.0.

bgColor of type DOMString [p.21]
Background color for rows. See the bgcolor attribute definition in HTML 4.0. This attribute
is deprecated in HTML 4.0.

cells of type HTMLCollection [p.77] , readonly
The collection of cells in this row.

ch of type DOMString [p.21]
Alignment character for cells in a column. See the char attribute definition in HTML 4.0.

chOff of type DOMString [p.21]
Offset of alignment character. See the charoff attribute definition in HTML 4.0.

rowIndex of type long, readonly
The index of this row, relative to the entire table, starting from 0. This is in document tree
order and not display order. The rowIndex does not take into account sections (THEAD,
TFOOT, or TBODY) within the table.

sectionRowIndex of type long, readonly
The index of this row, relative to the current section (THEAD, TFOOT, or TBODY), starting
from 0.

vAlign of type DOMString [p.21]
Vertical alignment of data within cells of this row. See the valign attribute definition in
HTML 4.0.

120

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-valign
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-charoff
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-char
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-bgcolor
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-align-TD
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#edef-TR

Methods
deleteCell

Delete a cell from the current row.
Parameters

long index The index of the cell to delete, starting from 0.

Exceptions

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if the specified index is
greater than or equal to the number of cells or if the index is
negative.

No Return Value

insertCell
Insert an empty TD cell into this row. If index is equal to the number of cells, the new cell
is appended
Parameters

long index The place to insert the cell, starting from 0.

Return Value

HTMLElement [p.82] The newly created cell.

Exceptions

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if the specified index is
greater than the number of cells or if the index is negative.

Interface HTMLTableCellElement

The object used to represent the TH and TD elements. See the TD element definition in HTML 4.0.
IDL Definition

interface HTMLTableCellElement : HTMLElement {
 readonly attribute long cellIndex;
 attribute DOMString abbr;
 attribute DOMString align;
 attribute DOMString axis;
 attribute DOMString bgColor;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute long colSpan;
 attribute DOMString headers;

121

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#edef-TD

 attribute DOMString height;
 attribute boolean noWrap;
 attribute long rowSpan;
 attribute DOMString scope;
 attribute DOMString vAlign;
 attribute DOMString width;
};

Attributes
abbr of type DOMString [p.21]

Abbreviation for header cells. See the abbr attribute definition in HTML 4.0.

align of type DOMString [p.21]
Horizontal alignment of data in cell. See the align attribute definition in HTML 4.0.

axis of type DOMString [p.21]
Names group of related headers. See the axis attribute definition in HTML 4.0.

bgColor of type DOMString [p.21]
Cell background color. See the bgcolor attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

cellIndex of type long, readonly
The index of this cell in the row, starting from 0. This index is in document tree order and
not display order.

ch of type DOMString [p.21]
Alignment character for cells in a column. See the char attribute definition in HTML 4.0.

chOff of type DOMString [p.21]
Offset of alignment character. See the charoff attribute definition in HTML 4.0.

colSpan of type long
Number of columns spanned by cell. See the colspan attribute definition in HTML 4.0.

headers of type DOMString [p.21]
List of id attribute values for header cells. See the headers attribute definition in HTML
4.0.

height of type DOMString [p.21]
Cell height. See the height attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

noWrap of type boolean
Suppress word wrapping. See the nowrap attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

rowSpan of type long
Number of rows spanned by cell. See the rowspan attribute definition in HTML 4.0.

122

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-rowspan
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-nowrap
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-height-TH
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-headers
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-colspan
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-charoff
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-char
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-bgcolor
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-axis
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-align-TD
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-abbr

scope of type DOMString [p.21]
Scope covered by header cells. See the scope attribute definition in HTML 4.0.

vAlign of type DOMString [p.21]
Vertical alignment of data in cell. See the valign attribute definition in HTML 4.0.

width of type DOMString [p.21]
Cell width. See the width attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

Interface HTMLFrameSetElement

Create a grid of frames. See the FRAMESET element definition in HTML 4.0.
IDL Definition

interface HTMLFrameSetElement : HTMLElement {
 attribute DOMString cols;
 attribute DOMString rows;
};

Attributes
cols of type DOMString [p.21]

The number of columns of frames in the frameset. See the cols attribute definition in
HTML 4.0.

rows of type DOMString [p.21]
The number of rows of frames in the frameset. See the rows attribute definition in HTML
4.0.

Interface HTMLFrameElement

Create a frame. See the FRAME element definition in HTML 4.0.
IDL Definition

interface HTMLFrameElement : HTMLElement {
 attribute DOMString frameBorder;
 attribute DOMString longDesc;
 attribute DOMString marginHeight;
 attribute DOMString marginWidth;
 attribute DOMString name;
 attribute boolean noResize;
 attribute DOMString scrolling;
 attribute DOMString src;
 // Introduced in DOM Level 2:
 attribute Document contentDocument;
};

Attributes
contentDocument of type Document [p.29] , introduced in DOM Level 2

The document this frame contains, if there is any and it is available, or null otherwise.

123

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#edef-FRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-rows-FRAMESET
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-cols-FRAMESET
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#edef-FRAMESET
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-width-TH
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-valign
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-scope

frameBorder of type DOMString [p.21]
Request frame borders. See the frameborder attribute definition in HTML 4.0.

longDesc of type DOMString [p.21]
URI designating a long description of this image or frame. See the longdesc attribute
definition in HTML 4.0.

marginHeight of type DOMString [p.21]
Frame margin height, in pixels. See the marginheight attribute definition in HTML 4.0.

marginWidth of type DOMString [p.21]
Frame margin width, in pixels. See the marginwidth attribute definition in HTML 4.0.

name of type DOMString [p.21]
The frame name (object of the target attribute). See the name attribute definition in
HTML 4.0.

noResize of type boolean
When true, forbid user from resizing frame. See the noresize attribute definition in HTML
4.0.

scrolling of type DOMString [p.21]
Specify whether or not the frame should have scrollbars. See the scrolling attribute
definition in HTML 4.0.

src of type DOMString [p.21]
A URI designating the initial frame contents. See the src attribute definition in HTML 4.0.

Interface HTMLIFrameElement

Inline subwindows. See the IFRAME element definition in HTML 4.0.
IDL Definition

interface HTMLIFrameElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString frameBorder;
 attribute DOMString height;
 attribute DOMString longDesc;
 attribute DOMString marginHeight;
 attribute DOMString marginWidth;
 attribute DOMString name;
 attribute DOMString scrolling;
 attribute DOMString src;
 attribute DOMString width;
 // Introduced in DOM Level 2:
 attribute Document contentDocument;
};

Attributes

124

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#edef-IFRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-src-FRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-scrolling
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-scrolling
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-noresize
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-name-FRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-marginwidth
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-marginheight
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-longdesc-FRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-longdesc-FRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-frameborder

align of type DOMString [p.21]
Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

contentDocument of type Document [p.29] , introduced in DOM Level 2
The document this frame contains, if there is any and it is available, or null otherwise.

frameBorder of type DOMString [p.21]
Request frame borders. See the frameborder attribute definition in HTML 4.0.

height of type DOMString [p.21]
Frame height. See the height attribute definition in HTML 4.0.

longDesc of type DOMString [p.21]
URI designating a long description of this image or frame. See the longdesc attribute
definition in HTML 4.0.

marginHeight of type DOMString [p.21]
Frame margin height, in pixels. See the marginheight attribute definition in HTML 4.0.

marginWidth of type DOMString [p.21]
Frame margin width, in pixels. See the marginwidth attribute definition in HTML 4.0.

name of type DOMString [p.21]
The frame name (object of the target attribute). See the name attribute definition in
HTML 4.0.

scrolling of type DOMString [p.21]
Specify whether or not the frame should have scrollbars. See the scrolling attribute
definition in HTML 4.0.

src of type DOMString [p.21]
A URI designating the initial frame contents. See the src attribute definition in HTML 4.0.

width of type DOMString [p.21]
Frame width. See the width attribute definition in HTML 4.0.

125

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-width-IFRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-src-FRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-scrolling
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-scrolling
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-name-IFRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-marginwidth
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-marginheight
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-longdesc-IFRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-longdesc-IFRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-height-IFRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-frameborder
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-align-IMG

126

2.5.5. Object definitions

3. Document Object Model Views
Editors

Laurence Cable, Sun
Arnaud Le Hors, W3C

3.1. Introduction
A document may have one or more "views" associated with it, e.g., a computed view on a document after
applying a CSS stylesheet, or multiple presentations (e.g., HTML Frame) of the same document in a
client. That is, a view is some alternate representation of, or a presentation of, and associated with, a
source document.

A view may be static, reflecting the state of the document when the view was created, or dynamic,
reflecting changes in the target document as they occur, subsequent to the view being created. This Level
of the DOM specification makes no statement about these behaviors.

This section defines an AbstractView [p.127] interface which provides a base interface from which all
such views shall derive. It defines an attribute which references the target document of the
AbstractView. The only semantics of the AbstractView defined here create an association
between a view and its target document.

There are no subinterfaces of AbstractView [p.127] defined in the DOM Level 2.

However, AbstractView [p.127] is defined in and used in this Level in two places:

A Document may implement a DocumentView [p.128] that has a default view attribute associated
with it. This default view is typically dependent on the implementation (e.g., the browser frame
rendering the document). The default view can be used in order to identify and/or associate a view
with its target document (by testing object equality on the AbstractView [p.127] or obtaining the
DocumentView attribute).
A UIEvent [p.232] typically occurs upon a view of a Document (e.g., a mouse click on a browser
frame rendering a particular Document instance). A UIEvent has an AbstractView [p.127]
associated with it which identifies both the particular (implementation-dependent) view in which the
event occurs, and the target document the UIEvent is related to.

The interfaces found within this section are not mandatory. A DOM application can use the
hasFeature method of the DOMImplementation [p.26] interface to determine whether they are
supported or not. The feature string for all the interfaces listed in this section is "Views".

3.2. Interfaces
Interface AbstractView (introduced in DOM Level 2)

127

3. Document Object Model Views

A base interface that all views shall derive from.
IDL Definition

// Introduced in DOM Level 2:
interface AbstractView {
 readonly attribute DocumentView document;
};

Attributes
document of type DocumentView [p.128] , readonly

The source DocumentView [p.128] of which this is an AbstractView.

Interface DocumentView (introduced in DOM Level 2)

The DocumentView interface is implemented by Document [p.29] objects in DOM
implementations supporting DOM Views. It provides an attribute to retrieve the default view of a
document.
IDL Definition

// Introduced in DOM Level 2:
interface DocumentView {
 readonly attribute AbstractView defaultView;
};

Attributes
defaultView of type AbstractView [p.127] , readonly

The default AbstractView [p.127] for this Document [p.29] , or null if none
available.

128

3.2. Interfaces

4. Document Object Model StyleSheets
Editors

Vidur Apparao, Netscape Communications Corp.
Philippe Le Hégaret, W3C
Chris Wilson, Microsoft

4.1. Introduction
The DOM Level 2 Style Sheet interfaces are base interfaces used to represent any type of style sheet. The
expectation is that DOM modules that represent a specific style sheet language may contain interfaces that
derive from these interfaces.

A DOM application can use the hasFeature method of the DOMImplementation [p.26] interface to
determine whether the StyleSheets interfaces are supported or not. The feature string for the fundamental
interfaces listed in this section is "StyleSheets".

4.2. Style Sheet Interfaces
This set of interfaces represents the generic notion of style sheets.

Interface StyleSheet (introduced in DOM Level 2)

The StyleSheet interface is the abstract base interface for any type of style sheet. It represents a
single style sheet associated with a structured document. In HTML, the StyleSheet interface
represents either an external style sheet, included via the HTML LINK element, or an inline STYLE
element. In XML, this interface represents an external style sheet, included via a style sheet
processing instruction.
IDL Definition

// Introduced in DOM Level 2:
interface StyleSheet {
 readonly attribute DOMString type;
 attribute boolean disabled;
 readonly attribute Node ownerNode;
 readonly attribute StyleSheet parentStyleSheet;
 readonly attribute DOMString href;
 readonly attribute DOMString title;
 readonly attribute MediaList media;
};

Attributes
disabled of type boolean

false if the style sheet is applied to the document. true if it is not. Modifying this
attribute may cause a new resolution of style for the document. A stylesheet only applies if
both an appropriate medium definition is present and the disabled attribute is false. So, if
the media doesn’t apply to the current user agent, the disabled attribute is ignored.

129

4. Document Object Model StyleSheets

http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/1998/REC-html40-19980424/present/styles.html#h-14.2.3
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#h-12.3

href of type DOMString [p.21] , readonly
If the style sheet is a linked style sheet, the value of its attribute is its location. For inline
style sheets, the value of this attribute is null. See the href attribute definition for the
LINK element in HTML 4.0, and the href pseudo-attribute for the XML style sheet
processing instruction.

media of type MediaList [p.131] , readonly
The intended destination media for style information. The media is often specified in the
ownerNode. If no media has been specified, the MediaList [p.131] will be empty. See
the media attribute definition for the LINK element in HTML 4.0, and the media
pseudo-attribute for the XML style sheet processing instruction . Modifying the media list
may cause a change to the attribute disabled.

ownerNode of type Node [p.39] , readonly
The node that associates this style sheet with the document. For HTML, this may be the
corresponding LINK or STYLE element. For XML, it may be the linking processing
instruction. For style sheets that are included by other style sheets, the value of this
attribute is null.

parentStyleSheet of type StyleSheet [p.129] , readonly
For style sheet languages that support the concept of style sheet inclusion, this attribute
represents the including style sheet, if one exists. If the style sheet is a top-level style sheet,
or the style sheet language does not support inclusion, the value of this attribute is null.

title of type DOMString [p.21] , readonly
The advisory title. The title is often specified in the ownerNode. See the title attribute
definition for the LINK element in HTML 4.0, and the title pseudo-attribute for the XML
style sheet processing instruction.

type of type DOMString [p.21] , readonly
This specifies the style sheet language for this style sheet. The style sheet language is
specified as a content type (e.g. "text/css"). The content type is often specified in the
ownerNode (see also [ContentTypes]). Also see the type attribute definition for the LINK
element in HTML 4.0, and the type pseudo-attribute for the XML style sheet processing
instruction.

Interface StyleSheetList (introduced in DOM Level 2)

The StyleSheetList interface provides the abstraction of an ordered collection of style sheets.
IDL Definition

// Introduced in DOM Level 2:
interface StyleSheetList {
 readonly attribute unsigned long length;
 StyleSheet item(in unsigned long index);
};

130

4.2. Style Sheet Interfaces

http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-type-A
http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-title
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-title
http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/1998/REC-html40-19980424/present/styles.html#adef-media
http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-href

Attributes
length of type unsigned long, readonly

The number of StyleSheets [p.129] in the list. The range of valid child stylesheet
indices is 0 to length-1 inclusive.

Methods
item

Used to retrieve a style sheet by ordinal index.
Parameters

unsigned long index Index into the collection

Return Value

StyleSheet
[p.129]

The style sheet at the index position in the
StyleSheetList, or null if that is not a valid index.

No Exceptions

Interface MediaList (introduced in DOM Level 2)

The MediaList interface provides the abstraction of an ordered collection of media, without
defining or constraining how this collection is implemented. An empty list is the same as a list that
contains the medium "all".
IDL Definition

// Introduced in DOM Level 2:
interface MediaList {
 attribute DOMString mediaText;
 // raises(DOMException) on setting

 readonly attribute unsigned long length;
 DOMString item(in unsigned long index);
 void delete(in DOMString oldMedium)
 raises(DOMException);
 void append(in DOMString newMedium)
 raises(DOMException);
};

Attributes
length of type unsigned long, readonly

The number of media in the list. The range of valid media is 0 to length-1 inclusive.

mediaText of type DOMString [p.21]
The parsable textual representation of the media list. This is a comma-separated list of
media.
Exceptions on setting

131

4.2. Style Sheet Interfaces

http://www.w3.org/TR/1998/REC-html40-19980424/types.html#h-6.13

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified string value has a
syntax error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
media list is readonly.

Methods
append

Adds the medium newMedium to the end of the list. If the newMedium is already used, it
is first removed.
Parameters

DOMString [p.21] newMedium The new medium to add.

Exceptions

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
list is readonly.

No Return Value

delete
Deletes the medium indicated by oldMedium from the list.
Parameters

DOMString [p.21] oldMedium The medium to delete in the media list.

Exceptions

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
list is readonly.

NOT_FOUND_ERR: Raised if oldMedium is not in the
list.

No Return Value

item
Returns the indexth in the list. If index is greater than or equal to the number of media
in the list, this returns null.
Parameters

unsigned long index Index into the collection.

132

4.2. Style Sheet Interfaces

Return Value

DOMString
[p.21]

The medium at the indexth position in the MediaList, or
null if that is not a valid index.

No Exceptions

4.3. Document Extensions
Interface LinkStyle (introduced in DOM Level 2)

The LinkStyle interface provides a mechanism by which a style sheet can be retrieved from the
node responsible for linking it into a document. An instance of the LinkStyle interface can be
obtained using binding-specific casting methods on an instance of a linking node
(HTMLLinkElement [p.83] , HTMLStyleElement [p.86] or ProcessingInstruction
[p.73] in DOM Level 2).
IDL Definition

// Introduced in DOM Level 2:
interface LinkStyle {
 readonly attribute StyleSheet sheet;
};

Attributes
sheet of type StyleSheet [p.129] , readonly

The style sheet.

Interface DocumentStyle (introduced in DOM Level 2)

The DocumentStyle interface provides a mechanism by which the style sheets embedded in a
document can be retrieved. The expectation is that an instance of the DocumentStyle interface
can be obtained by using binding-specific casting methods on an instance of the Document [p.29]
interface.
IDL Definition

// Introduced in DOM Level 2:
interface DocumentStyle {
 readonly attribute StyleSheetList styleSheets;
};

Attributes
styleSheets of type StyleSheetList [p.130] , readonly

A list containing all the style sheets explicitly linked into or embedded in a document. For
HTML documents, this includes external style sheets, included via the HTML LINK
element, and inline STYLE elements. In XML, this includes external style sheets, included
via style sheet processing instructions (see [XML-StyleSheet]).

133

4.3. Document Extensions

http://www.w3.org/TR/1998/REC-html40-19980424/present/styles.html#h-14.2.3
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#h-12.3

4.4. Association between a style sheet and a document.
HTML and Style Sheet Creation

A style sheet can be associated with an HTMLDocument in one of two ways:
By creating a new LINK HTML element (see the HTMLLinkElement [p.83] interface). The
underlying style sheet will be created after the element is inserted into the document and both
the href and the type attribute have been set in a way indicating that the linked object is a style
sheet.
By creating a new STYLE HTML element (see the HTMLStyLeElement interface). The
underlying style sheet will be created after the element is inserted into the document and the
type attribute is set in a way indicating that the element corresponds to a style sheet language
interpreted by the user agent.

HTML and Style Sheet Removal
Removing a LINK HTML element or a STYLE HTML element removes the underlying style sheet
from the style sheet collection associated with a document. Specifically, the removed style sheet is no
longer applied to the presentation of the document.

XML and Style Sheet Creation
A new style sheet can be created and associated with an XML document by creating a processing
instruction with the target ’xml-stylesheet’ and inserting it into the document.

XML and Style Sheet Removal
Removing a processing instruction with a target of ’xml-stylesheet’ removes the underlying style
sheet from the style sheet collection associated with a document. Specifically, the removed style
sheet is no longer applied to the presentation of the document.

134

4.4. Association between a style sheet and a document.

5. Document Object Model CSS
Editors

Vidur Apparao, Netscape Communications Corp.
Philippe Le Hégaret, W3C
Chris Wilson, Microsoft

5.1. Overview of the DOM Level 2 CSS Interfaces
The DOM Level 2 Cascading Style Sheets (CSS) interfaces are designed with the goal of exposing CSS
constructs to object model consumers. Cascading Style Sheets is a declarative syntax for defining
presentation rules, properties and ancillary constructs used to format and render Web documents. This
document specifies a mechanism to programmatically access and modify the rich style and presentation
control provided by CSS (specifically CSS level 2 [CSS2]). This augments CSS by providing a
mechanism to dynamically control the inclusion and exclusion of individual style sheets, as well as
manipulate CSS rules and properties.

The CSS interfaces are organized in a logical, rather than physical structure. A collection of all style
sheets referenced by or embedded in the document is accessible on the document interface. Each item in
this collection exposes the properties common to all style sheets referenced or embedded in HTML and
XML documents; this interface is described in the Document Object Model StyleSheets [p.129] . User
style sheets are not accessible through this collection, in part due to potential privacy concerns (and
certainly read-write issues).

For each CSS style sheet, an additional interface is exposed - the CSSStyleSheet [p.136] interface.
This interface allows access to the collection of rules within a CSS style sheet and methods to modify that
collection. Interfaces are provided for each specific type of rule in CSS2 (e.g. style declarations,
@import rules, or @font-face rules), as well as a shared generic CSSRule [p.138] interface.

The most common type of rule is a style declaration. The CSSStyleRule [p.140] interface that
represents this type of rule provides string access to the CSS selector of the rule, and access to the
property declarations through the CSSStyleDeclaration [p.145] interface.

Finally, an optional CSS2Properties [p.182] interface is described; this interface (if implemented)
provides shortcuts to the string values of all the properties in CSS level 2.

All CSS objects in the DOM are "live", that is, a change in the style sheet is reflected in the computed and
actual style.

A DOM application can use the hasFeature method of the DOMImplementation [p.26] interface to
determine whether the CSS interfaces are supported or not. The feature string for the CSS Model is
"CSS". The existence within an implementation of the extended interfaces can also be queried using the
hasFeature method.

135

5. Document Object Model CSS

http://www.w3.org/Style/CSS

5.2. CSS Fundamental Interfaces
The interfaces within this section are considered fundamental, and must be supported by all conforming
DOM implementations. These interfaces represent CSS style sheets specifically.

Interface CSSStyleSheet (introduced in DOM Level 2)

The CSSStyleSheet interface is a concrete interface used to represent a CSS style sheet i.e., a
style sheet whose content type is "text/css".
IDL Definition

// Introduced in DOM Level 2:
interface CSSStyleSheet : stylesheets::StyleSheet {
 readonly attribute CSSRule ownerRule;
 readonly attribute CSSRuleList cssRules;
 unsigned long insertRule(in DOMString rule,
 in unsigned long index)
 raises(DOMException);
 void deleteRule(in unsigned long index)
 raises(DOMException);
};

Attributes
cssRules of type CSSRuleList [p.138] , readonly

The list of all CSS rules contained within the style sheet. This includes both rule sets and
at-rules.

ownerRule of type CSSRule [p.138] , readonly
If this style sheet comes from an @import rule, the ownerRule attribute will contain the
CSSImportRule [p.143] . In that case, the ownerNode attribute in the StyleSheet
[p.129] interface will be null. If the style sheet comes from an element or a processing
instruction, the ownerRule attribute will be null and the ownerNode attribute will
contain the Node [p.39] .

Methods
deleteRule

Used to delete a rule from the style sheet.
Parameters

unsigned
long

index The index within the style sheet’s rule list of the
rule to remove.

Exceptions

136

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#at-rules
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q8

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if the specified index does not
correspond to a rule in the style sheet’s rule list.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
style sheet is readonly.

No Return Value

insertRule
Used to insert a new rule into the style sheet. The new rule now becomes part of the
cascade.
Parameters

DOMString
[p.21]

rule The parsable text representing the rule. For rule
sets this contains both the selector and the style
declaration. For at-rules, this specifies both the
at-identifier and the rule content.

unsigned
long

index The index within the style sheet’s rule list of the
rule before which to insert the specified rule. If the
specified index is equal to the length of the style
sheet’s rule collection, the rule will be added to the
end of the style sheet.

Return Value

unsigned
long

The index within the style sheet’s rule collection of the newly
inserted rule.

Exceptions

DOMException
[p.24]

HIERARCHY_REQUEST_ERR: Raised if the rule cannot
be inserted at the specified index e.g. if an @import rule is
inserted after a standard rule set or other at-rule.

INDEX_SIZE_ERR: Raised if the specified index is not a
valid insertion point.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
style sheet is readonly.

SYNTAX_ERR: Raised if the specified rule has a syntax
error and is unparsable.

137

5.2. CSS Fundamental Interfaces

Interface CSSRuleList (introduced in DOM Level 2)

The CSSRuleList interface provides the abstraction of an ordered collection of CSS rules.
IDL Definition

// Introduced in DOM Level 2:
interface CSSRuleList {
 readonly attribute unsigned long length;
 CSSRule item(in unsigned long index);
};

Attributes
length of type unsigned long, readonly

The number of CSSRules [p.138] in the list. The range of valid child rule indices is 0 to
length-1 inclusive.

Methods
item

Used to retrieve a CSS rule by ordinal index. The order in this collection represents the
order of the rules in the CSS style sheet.
Parameters

unsigned long index Index into the collection

Return Value

CSSRule
[p.138]

The style rule at the index position in the CSSRuleList, or
null if that is not a valid index.

No Exceptions

Interface CSSRule (introduced in DOM Level 2)

The CSSRule interface is the abstract base interface for any type of CSS statement. This includes
both rule sets and at-rules. An implementation is expected to preserve all rules specified in a CSS
style sheet, even if the rule is not recognized by the parser. Unrecognized rules are represented using
the CSSUnknownRule [p.144] interface.
IDL Definition

// Introduced in DOM Level 2:
interface CSSRule {
 // RuleType
 const unsigned short UNKNOWN_RULE = 0;
 const unsigned short STYLE_RULE = 1;
 const unsigned short CHARSET_RULE = 2;
 const unsigned short IMPORT_RULE = 3;
 const unsigned short MEDIA_RULE = 4;
 const unsigned short FONT_FACE_RULE = 5;
 const unsigned short PAGE_RULE = 6;

138

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#at-rules
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q8
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q5

 readonly attribute unsigned short type;
 attribute DOMString cssText;
 // raises(DOMException) on setting

 readonly attribute CSSStyleSheet parentStyleSheet;
 readonly attribute CSSRule parentRule;
};

Definition group RuleType

An integer indicating which type of rule this is.
Defined Constants

CHARSET_RULE The rule is a CSSCharsetRule [p.144] .

FONT_FACE_RULE The rule is a CSSFontFaceRule [p.142] .

IMPORT_RULE The rule is a CSSImportRule [p.143] .

MEDIA_RULE The rule is a CSSMediaRule [p.140] .

PAGE_RULE The rule is a CSSPageRule [p.143] .

STYLE_RULE The rule is a CSSStyleRule [p.140] .

UNKNOWN_RULE The rule is a CSSUnknownRule [p.144] .

Attributes
cssText of type DOMString [p.21]

The parsable textual representation of the rule. This reflects the current state of the rule and
not its initial value.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified CSS string value has
a syntax error and is unparsable.

INVALID_MODIFICATION_ERR: Raised if the specified
CSS string value represents a different type of rule than the
current one.

HIERARCHY_REQUEST_ERR: Raised if the rule cannot
be inserted at this point in the style sheet.

NO_MODIFICATION_ALLOWED_ERR: Raised if the rule
is readonly.

parentRule of type CSSRule [p.138] , readonly
If this rule is contained inside another rule (e.g. a style rule inside an @media block), this is
the containing rule. If this rule is not nested inside any other rules, this returns null.

139

5.2. CSS Fundamental Interfaces

parentStyleSheet of type CSSStyleSheet [p.136] , readonly
The style sheet that contains this rule.

type of type unsigned short, readonly
The type of the rule, as defined above. The expectation is that binding-specific casting
methods can be used to cast down from an instance of the CSSRule interface to the
specific derived interface implied by the type.

Interface CSSStyleRule (introduced in DOM Level 2)

The CSSStyleRule interface represents a single rule set in a CSS style sheet.
IDL Definition

// Introduced in DOM Level 2:
interface CSSStyleRule : CSSRule {
 attribute DOMString selectorText;
 // raises(DOMException) on setting

 readonly attribute CSSStyleDeclaration style;
};

Attributes
selectorText of type DOMString [p.21]

The textual representation of the selector for the rule set. The implementation may have
stripped out insignificant whitespace while parsing the selector.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified CSS string value
has a syntax error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
rule is readonly.

style of type CSSStyleDeclaration [p.145] , readonly
The declaration-block of this rule set.

Interface CSSMediaRule (introduced in DOM Level 2)

The CSSMediaRule interface represents a @media rule in a CSS style sheet. A @media rule can
be used to delimit style rules for specific media types.
IDL Definition

140

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/media.html#at-media-rule
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q8
http://www.w3.org/TR/1998/REC-CSS2-19980512/selector.html
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q8

// Introduced in DOM Level 2:
interface CSSMediaRule : CSSRule {
 readonly attribute stylesheets::MediaList media;
 readonly attribute CSSRuleList cssRules;
 unsigned long insertRule(in DOMString rule,
 in unsigned long index)
 raises(DOMException);
 void deleteRule(in unsigned long index)
 raises(DOMException);
};

Attributes
cssRules of type CSSRuleList [p.138] , readonly

A list of all CSS rules contained within the media block.

media of type stylesheets::MediaList, readonly
A list of media types for this rule.

Methods
deleteRule

Used to delete a rule from the media block.
Parameters

unsigned
long

index The index within the media block’s rule
collection of the rule to remove.

Exceptions

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if the specified index does not
correspond to a rule in the media rule list.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
media rule is readonly.

No Return Value

insertRule
Used to insert a new rule into the media block.
Parameters

141

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/media.html#media-types

DOMString
[p.21]

rule The parsable text representing the rule. For rule
sets this contains both the selector and the style
declaration. For at-rules, this specifies both the
at-identifier and the rule content.

unsigned
long

index The index within the media block’s rule collection
of the rule before which to insert the specified rule.
If the specified index is equal to the length of the
media blocks’s rule collection, the rule will be
added to the end of the media block.

Return Value

unsigned
long

The index within the media block’s rule collection of the
newly inserted rule.

Exceptions

DOMException
[p.24]

HIERARCHY_REQUEST_ERR: Raised if the rule cannot
be inserted at the specified index, e.g., if an @import rule is
inserted after a standard rule set or other at-rule.

INDEX_SIZE_ERR: Raised if the specified index is not a
valid insertion point.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
media rule is readonly.

SYNTAX_ERR: Raised if the specified rule has a syntax
error and is unparsable.

Interface CSSFontFaceRule (introduced in DOM Level 2)

The CSSFontFaceRule interface represents a @font-face rule in a CSS style sheet. The
@font-face rule is used to hold a set of font descriptions.
IDL Definition

// Introduced in DOM Level 2:
interface CSSFontFaceRule : CSSRule {
 readonly attribute CSSStyleDeclaration style;
};

Attributes
style of type CSSStyleDeclaration [p.145] , readonly

The declaration-block of this rule.

142

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q8
http://www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#font-descriptions

Interface CSSPageRule (introduced in DOM Level 2)

The CSSPageRule interface represents a @page rule within a CSS style sheet. The @page rule is
used to specify the dimensions, orientation, margins, etc. of a page box for paged media.
IDL Definition

// Introduced in DOM Level 2:
interface CSSPageRule : CSSRule {
 attribute DOMString selectorText;
 // raises(DOMException) on setting

 readonly attribute CSSStyleDeclaration style;
};

Attributes
selectorText of type DOMString [p.21]

The parsable textual representation of the page selector for the rule.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified CSS string value
has a syntax error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
rule is readonly.

style of type CSSStyleDeclaration [p.145] , readonly
The declaration-block of this rule.

Interface CSSImportRule (introduced in DOM Level 2)

The CSSImportRule interface represents a @import rule within a CSS style sheet. The @import
rule is used to import style rules from other style sheets.
IDL Definition

// Introduced in DOM Level 2:
interface CSSImportRule : CSSRule {
 readonly attribute DOMString href;
 readonly attribute stylesheets::MediaList media;
 readonly attribute CSSStyleSheet styleSheet;
};

Attributes
href of type DOMString [p.21] , readonly

The location of the style sheet to be imported. The attribute will not contain the
"url(...)" specifier around the URI.

media of type stylesheets::MediaList, readonly
A list of media types for which this style sheet may be used.

143

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/cascade.html#at-import
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q8
http://www.w3.org/TR/1998/REC-CSS2-19980512/page.html#page-box

styleSheet of type CSSStyleSheet [p.136] , readonly
The style sheet referred to by this rule, if it has been loaded. The value of this attribute is
null if the style sheet has not yet been loaded or if it will not be loaded (e.g. if the style
sheet is for a media type not supported by the user agent).

Interface CSSCharsetRule (introduced in DOM Level 2)

The CSSCharsetRule interface represents a @charset rule in a CSS style sheet. The value of the
encoding attribute does not at all affect the encoding of text data in the DOM objects; this
encoding is always UTF-16. After a stylesheet is loaded, the value of the encoding attribute is the
value found in the @charset rule. If there was no @charset in the original document, then no
CSSCharsetRule is created. The value of the encoding attribute may also be used as a hint for
the encoding used on serialization of the style sheet.

The value of the @charset rule (and therefore of the CSSCharsetRule) may not correspond to the
encoding the document actually came in; character encoding information e.g. in an HTTP header, has
priority (see http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#x66) but is not
reflected in the CSSCharsetRule.
IDL Definition

// Introduced in DOM Level 2:
interface CSSCharsetRule : CSSRule {
 attribute DOMString encoding;
 // raises(DOMException) on setting

};

Attributes
encoding of type DOMString [p.21]

The encoding information used in this @charset rule.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified encoding value has
a syntax error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
encoding rule is readonly.

Interface CSSUnknownRule (introduced in DOM Level 2)

The CSSUnknownRule interface represents an at-rule not supported by this user agent.
IDL Definition

// Introduced in DOM Level 2:
interface CSSUnknownRule : CSSRule {
};

144

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#x66
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#x66
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#x66

Interface CSSStyleDeclaration (introduced in DOM Level 2)

The CSSStyleDeclaration interface represents a single CSS declaration block. This interface
may be used to determine the style properties currently set in a block or to set style properties
explicitly within the block.

While an implementation may not recognize all CSS properties within a CSS declaration block, it is
expected to provide access to all specified properties through the CSSStyleDeclaration
interface. Furthermore, implementations that support a specific level of CSS should correctly handle
CSS shorthand properties for that level. For a further discussion of shorthand properties, see the
CSS2Properties [p.182] interface.
IDL Definition

// Introduced in DOM Level 2:
interface CSSStyleDeclaration {
 attribute DOMString cssText;
 // raises(DOMException) on setting

 DOMString getPropertyValue(in DOMString propertyName);
 CSSValue getPropertyCSSValue(in DOMString propertyName);
 DOMString removeProperty(in DOMString propertyName)
 raises(DOMException);
 DOMString getPropertyPriority(in DOMString propertyName);
 void setProperty(in DOMString propertyName,
 in DOMString value,
 in DOMString priority)
 raises(DOMException);
 readonly attribute unsigned long length;
 DOMString item(in unsigned long index);
 readonly attribute CSSRule parentRule;
};

Attributes
cssText of type DOMString [p.21]

The parsable textual representation of the declaration block (excluding the surrounding
curly braces). Setting this attribute will result in the parsing of the new value and resetting
of the properties in the declaration block.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified CSS string value
has a syntax error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
declaration is readonly or a property is readonly.

length of type unsigned long, readonly
The number of properties that have been explicitly set in this declaration block.

145

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/about.html#shorthand
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#block

parentRule of type CSSRule [p.138] , readonly
The CSS rule that contains this declaration block or null if this
CSSStyleDeclaration is not attached to a CSSRule [p.138] .

Methods
getPropertyCSSValue

Used to retrieve the object representation of the value of a CSS property if it has been
explicitly set within this declaration block. This method returns null if the property is a
shorthand property. Shorthand property values can only be accessed and modified as
strings, using the getPropertyValue and setProperty methods.
Parameters

DOMString
[p.21]

propertyName The name of the CSS property. See
the CSS property index.

Return Value

CSSValue
[p.148]

Returns the value of the property if it has been explicitly set for
this declaration block. Returns null if the property has not been
set.

No Exceptions

getPropertyPriority
Used to retrieve the priority of a CSS property (e.g. the "important" qualifier) if the
property has been explicitly set in this declaration block.
Parameters

DOMString
[p.21]

propertyName The name of the CSS property. See
the CSS property index.

Return Value

DOMString
[p.21]

A string representing the priority (e.g. "important") if one
exists. The empty string if none exists.

No Exceptions

getPropertyValue
Used to retrieve the value of a CSS property if it has been explicitly set within this
declaration block.
Parameters

146

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/propidx.html
http://www.w3.org/TR/1998/REC-CSS2-19980512/propidx.html
http://www.w3.org/TR/1998/REC-CSS2-19980512/about.html#shorthand

DOMString
[p.21]

propertyName The name of the CSS property. See
the CSS property index.

Return Value

DOMString
[p.21]

Returns the value of the property if it has been explicitly set for
this declaration block. Returns the empty string if the property
has not been set.

No Exceptions

item
Used to retrieve the properties that have been explicitly set in this declaration block. The
order of the properties retrieved using this method does not have to be the order in which
they were set. This method can be used to iterate over all properties in this declaration
block.
Parameters

unsigned long index Index of the property name to retrieve.

Return Value

DOMString
[p.21]

The name of the property at this ordinal position. The empty
string if no property exists at this position.

No Exceptions

removeProperty
Used to remove a CSS property if it has been explicitly set within this declaration block.
Parameters

DOMString
[p.21]

propertyName The name of the CSS property. See
the CSS property index.

Return Value

DOMString
[p.21]

Returns the value of the property if it has been explicitly set for
this declaration block. Returns the empty string if the property
has not been set or the property name does not correspond to a
valid CSS2 property.

Exceptions

147

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/propidx.html
http://www.w3.org/TR/1998/REC-CSS2-19980512/propidx.html

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
declaration is readonly or the property is readonly.

setProperty
Used to set a property value and priority within this declaration block.
Parameters

DOMString
[p.21]

propertyName The name of the CSS property. See
the CSS property index.

DOMString value The new value of the property.

DOMString priority The new priority of the property (e.g.
"important").

Exceptions

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified value has a syntax
error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
declaration is readonly or the property is readonly.

No Return Value

Interface CSSValue (introduced in DOM Level 2)

The CSSValue interface represents a simple or a complex value. A CSSValue object only occurs
in a context of a CSS property.
IDL Definition

// Introduced in DOM Level 2:
interface CSSValue {
 // UnitTypes
 const unsigned short CSS_INHERIT = 0;
 const unsigned short CSS_PRIMITIVE_VALUE = 1;
 const unsigned short CSS_VALUE_LIST = 2;
 const unsigned short CSS_CUSTOM = 3;

 attribute DOMString cssText;
 // raises(DOMException) on setting

 readonly attribute unsigned short valueType;
};

Definition group UnitTypes

148

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/propidx.html

An integer indicating which type of unit applies to the value.
Defined Constants

CSS_CUSTOM The value is a custom value.

CSS_INHERIT The value is inherited.

CSS_PRIMITIVE_VALUE The value is a primitive value and an instance of the
CSSPrimitiveValue [p.149] interface can be
obtained by using binding-specific casting methods on
this instance of the CSSValue interface.

CSS_VALUE_LIST The value is a list CSSValue.

Attributes
cssText of type DOMString [p.21]

A string representation of the current value.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified CSS string value has
a syntax error (according to the attached property) or is
unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
value is readonly.

valueType of type unsigned short, readonly
A code defining the type of the value as defined above.

Interface CSSPrimitiveValue (introduced in DOM Level 2)

The CSSPrimitiveValue interface represents a single CSS value. This interface may be used to
determine the value of a specific style property currently set in a block or to set a specific style
property explicitly within the block. An instance of this interface can be obtained from the
getPropertyCSSValue method of the CSSStyleDeclaration [p.145] interface. A
CSSPrimitiveValue object only occurs in a context of a CSS property.

Conversions are allowed between absolute values (from millimeters to centimeters, from degrees to
radians, and so on) but not between relative values. (For example, a pixel value cannot be converted
to a centimeter value.) Percentage values can’t be converted since they are relative to the parent value
(or another property value). There is one exception for color percentage values: since a color
percentage value is relative to the range 0-255, a color percentage value can be converted to a
number; (see also the RGBColor [p.156] interface).
IDL Definition

149

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#values

// Introduced in DOM Level 2:
interface CSSPrimitiveValue : CSSValue {
 // UnitTypes
 const unsigned short CSS_UNKNOWN = 0;
 const unsigned short CSS_NUMBER = 1;
 const unsigned short CSS_PERCENTAGE = 2;
 const unsigned short CSS_EMS = 3;
 const unsigned short CSS_EXS = 4;
 const unsigned short CSS_PX = 5;
 const unsigned short CSS_CM = 6;
 const unsigned short CSS_MM = 7;
 const unsigned short CSS_IN = 8;
 const unsigned short CSS_PT = 9;
 const unsigned short CSS_PC = 10;
 const unsigned short CSS_DEG = 11;
 const unsigned short CSS_RAD = 12;
 const unsigned short CSS_GRAD = 13;
 const unsigned short CSS_MS = 14;
 const unsigned short CSS_S = 15;
 const unsigned short CSS_HZ = 16;
 const unsigned short CSS_KHZ = 17;
 const unsigned short CSS_DIMENSION = 18;
 const unsigned short CSS_STRING = 19;
 const unsigned short CSS_URI = 20;
 const unsigned short CSS_IDENT = 21;
 const unsigned short CSS_ATTR = 22;
 const unsigned short CSS_COUNTER = 23;
 const unsigned short CSS_RECT = 24;
 const unsigned short CSS_RGBCOLOR = 25;

 readonly attribute unsigned short primitiveType;
 void setFloatValue(in unsigned short unitType,
 in float floatValue)
 raises(DOMException);
 float getFloatValue(in unsigned short unitType)
 raises(DOMException);
 void setStringValue(in unsigned short stringType,
 in DOMString stringValue)
 raises(DOMException);
 DOMString getStringValue()
 raises(DOMException);
 Counter getCounterValue()
 raises(DOMException);
 Rect getRectValue()
 raises(DOMException);
 RGBColor getRGBColorValue()
 raises(DOMException);
};

Definition group UnitTypes

An integer indicating which type of unit applies to the value.
Defined Constants

150

5.2. CSS Fundamental Interfaces

CSS_ATTR The value is a attribute function. The value can be obtained
by using the getStringValue method.

CSS_CM The value is a length (cm). The value can be obtained by
using the getFloatValue method.

CSS_COUNTER The value is a counter or counters function. The value can
be obtained by using the getCounterValue method.

CSS_DEG The value is an angle (deg). The value can be obtained by
using the getFloatValue method.

CSS_DIMENSION The value is a number with an unknown dimension. The
value can be obtained by using the getFloatValue
method.

CSS_EMS The value is a length (ems). The value can be obtained by
using the getFloatValue method.

CSS_EXS The value is a length (exs). The value can be obtained by
using the getFloatValue method.

CSS_GRAD The value is an angle (grad). The value can be obtained by
using the getFloatValue method.

CSS_HZ The value is a frequency (Hz). The value can be obtained by
using the getFloatValue method.

CSS_IDENT The value is an identifier. The value can be obtained by
using the getStringValue method.

CSS_IN The value is a length (in). The value can be obtained by
using the getFloatValue method.

CSS_KHZ The value is a frequency (kHz). The value can be obtained by
using the getFloatValue method.

CSS_MM The value is a length (mm). The value can be obtained by
using the getFloatValue method.

CSS_MS The value is a time (ms). The value can be obtained by using
the getFloatValue method.

CSS_NUMBER The value is a simple number. The value can be obtained by
using the getFloatValue method.

CSS_PC The value is a length (pc). The value can be obtained by
using the getFloatValue method.

CSS_PERCENTAGE The value is a percentage. The value can be obtained by
using the getFloatValue method.

151

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#percentage-units
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#length-units
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q13
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q20
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#length-units
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q21
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#length-units
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#value-def-identifier
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q21
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q19
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#length-units
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#length-units
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q19
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#counter
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#length-units
http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#x16

CSS_PT The value is a length (pt). The value can be obtained by
using the getFloatValue method.

CSS_PX The value is a length (px). The value can be obtained by
using the getFloatValue method.

CSS_RAD The value is an angle (rad). The value can be obtained by
using the getFloatValue method.

CSS_RECT The value is a rect function. The value can be obtained by
using the getRectValue method.

CSS_RGBCOLOR The value is a RGB color. The value can be obtained by
using the getRGBColorValue method.

CSS_S The value is a time (s). The value can be obtained by using
the getFloatValue method.

CSS_STRING The value is a STRING. The value can be obtained by using
the getStringValue method.

CSS_UNKNOWN The value is not a recognized CSS2 value. The value can
only be obtained by using the cssText attribute.

CSS_URI The value is a URI. The value can be obtained by using the
getStringValue method.

Attributes
primitiveType of type unsigned short, readonly

The type of the value as defined by the constants specified above.

Methods
getCounterValue

This method is used to get the Counter value. If this CSS value doesn’t contain a counter
value, a DOMException [p.24] is raised. Modification to the corresponding style
property can be achieved using the Counter [p.157] interface.
Return Value

Counter [p.157] The Counter value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the CSS value doesn’t
contain a Counter value (e.g. this is not CSS_COUNTER).

No Parameters

152

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#uri
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#strings
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q20
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#color-units
http://www.w3.org/TR/1998/REC-CSS2-19980512/visufx.html#value-def-shape
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q19
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#length-units
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#length-units

getFloatValue
This method is used to get a float value in a specified unit. If this CSS value doesn’t
contain a float value or can’t be converted into the specified unit, a DOMException
[p.24] is raised.
Parameters

unsigned
short

unitType A unit code to get the float value. The unit code
can only be a float unit type (i.e. CSS_NUMBER,
CSS_PERCENTAGE, CSS_EMS, CSS_EXS,
CSS_PX, CSS_CM, CSS_MM, CSS_IN,
CSS_PT, CSS_PC, CSS_DEG, CSS_RAD,
CSS_GRAD, CSS_MS, CSS_S, CSS_HZ,
CSS_KHZ, CSS_DIMENSION).

Return Value

float The float value in the specified unit.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the CSS value doesn’t
contain a float value or if the float value can’t be converted
into the specified unit.

getRGBColorValue
This method is used to get the RGB color. If this CSS value doesn’t contain a RGB color
value, a DOMException [p.24] is raised. Modification to the corresponding style
property can be achieved using the RGBColor [p.156] interface.
Return Value

RGBColor [p.156] the RGB color value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the attached property
can’t return a RGB color value (e.g. this is not
CSS_RGBCOLOR).

No Parameters

getRectValue
This method is used to get the Rect value. If this CSS value doesn’t contain a rect value, a
DOMException [p.24] is raised. Modification to the corresponding style property can be
achieved using the Rect [p.157] interface.

153

5.2. CSS Fundamental Interfaces

Return Value

Rect [p.157] The Rect value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the CSS value doesn’t
contain a Rect value. (e.g. this is not CSS_RECT).

No Parameters

getStringValue
This method is used to get the string value. If the CSS value doesn’t contain a string value,
a DOMException [p.24] is raised.

Note: Some properties (like ’font-family’ or ’voice-family’) convert a whitespace
separated list of idents to a string.

Return Value

DOMString
[p.21]

The string value in the current unit. The current
primitiveType can only be a string unit type (i.e.
CSS_STRING, CSS_URI, CSS_IDENT and CSS_ATTR).

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the CSS value
doesn’t contain a string value.

No Parameters

setFloatValue
A method to set the float value with a specified unit. If the property attached with this value
can not accept the specified unit or the float value, the value will be unchanged and a
DOMException [p.24] will be raised.
Parameters

154

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-voice-family
http://www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#propdef-font-family

unsigned
short

unitType A unit code as defined above. The unit code
can only be a float unit type (i.e.
CSS_NUMBER, CSS_PERCENTAGE,
CSS_EMS, CSS_EXS, CSS_PX, CSS_CM,
CSS_MM, CSS_IN, CSS_PT, CSS_PC,
CSS_DEG, CSS_RAD, CSS_GRAD,
CSS_MS, CSS_S, CSS_HZ, CSS_KHZ,
CSS_DIMENSION).

float floatValue The new float value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the attached property
doesn’t support the float value or the unit type.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

No Return Value

setStringValue
A method to set the string value with the specified unit. If the property attached to this
value can’t accept the specified unit or the string value, the value will be unchanged and a
DOMException [p.24] will be raised.
Parameters

unsigned
short

stringType A string code as defined above. The
string code can only be a string unit type
(i.e. CSS_STRING, CSS_URI,
CSS_IDENT, and CSS_ATTR).

DOMString
[p.21]

stringValue
The new string value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the CSS value doesn’t
contain a string value or if the string value can’t be converted
into the specified unit.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

155

5.2. CSS Fundamental Interfaces

No Return Value

Interface CSSValueList (introduced in DOM Level 2)

The CSSValueList interface provides the abstraction of an ordered collection of CSS values.

Some properties allow an empty list into their syntax. In that case, these properties take the none
identifier. So, an empty list means that the property has the value none.
IDL Definition

// Introduced in DOM Level 2:
interface CSSValueList : CSSValue {
 readonly attribute unsigned long length;
 CSSValue item(in unsigned long index);
};

Attributes
length of type unsigned long, readonly

The number of CSSValues [p.148] in the list. The range of valid values of the indices is
0 to length-1 inclusive.

Methods
item

Used to retrieve a CSS rule by ordinal index. The order in this collection represents the
order of the values in the CSS style property.
Parameters

unsigned long index Index into the collection.

Return Value

CSSValue
[p.148]

The style rule at the index position in the CSSValueList,
or null if that is not a valid index.

No Exceptions

Interface RGBColor (introduced in DOM Level 2)

The RGBColor interface is used to represent any RGB color value. This interface reflects the values
in the underlying style property. Hence, modifications made to the CSSPrimitiveValue [p.149]
objects modify the style property.

A specified RGB color is not clipped (even if the number is outside the range 0-255 or 0%-100%). A
computed RGB color is clipped depending on the device.

Even if a style sheet can only contain an integer for a color value, the internal storage of this integer
is a float, and this can be used as a float in the specified or the computed style.

156

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#value-def-color

A color percentage value can always be converted to a number and vice versa.
IDL Definition

// Introduced in DOM Level 2:
interface RGBColor {
 readonly attribute CSSPrimitiveValue red;
 readonly attribute CSSPrimitiveValue green;
 readonly attribute CSSPrimitiveValue blue;
};

Attributes
blue of type CSSPrimitiveValue [p.149] , readonly

This attribute is used for the blue value of the RGB color.

green of type CSSPrimitiveValue [p.149] , readonly
This attribute is used for the green value of the RGB color.

red of type CSSPrimitiveValue [p.149] , readonly
This attribute is used for the red value of the RGB color.

Interface Rect (introduced in DOM Level 2)

The Rect interface is used to represent any rect value. This interface reflects the values in the
underlying style property. Hence, modifications made to the CSSPrimitiveValue [p.149]
objects modify the style property.
IDL Definition

// Introduced in DOM Level 2:
interface Rect {
 readonly attribute CSSPrimitiveValue top;
 readonly attribute CSSPrimitiveValue right;
 readonly attribute CSSPrimitiveValue bottom;
 readonly attribute CSSPrimitiveValue left;
};

Attributes
bottom of type CSSPrimitiveValue [p.149] , readonly

This attribute is used for the bottom of the rect.

left of type CSSPrimitiveValue [p.149] , readonly
This attribute is used for the left of the rect.

right of type CSSPrimitiveValue [p.149] , readonly
This attribute is used for the right of the rect.

top of type CSSPrimitiveValue [p.149] , readonly
This attribute is used for the top of the rect.

Interface Counter (introduced in DOM Level 2)

157

5.2. CSS Fundamental Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/visufx.html#value-def-shape

The Counter interface is used to represent any counter or counters function value. This interface
reflects the values in the underlying style property. Hence, modifications made to the
CSSPrimitiveValue [p.149] objects modify the style property.
IDL Definition

// Introduced in DOM Level 2:
interface Counter {
 readonly attribute DOMString identifier;
 readonly attribute DOMString listStyle;
 readonly attribute DOMString separator;
};

Attributes
identifier of type DOMString [p.21] , readonly

This attribute is used for the identifier of the counter.

listStyle of type DOMString [p.21] , readonly
This attribute is used for the style of the list.

separator of type DOMString [p.21] , readonly
This attribute is used for the separator of the nested counters.

5.2.1. Override and computed style sheet

Interface ViewCSS (introduced in DOM Level 2)

This interface represents a CSS view. The getComputedStyle method provides a read only
access to the computed values of an element.

The expectation is that an instance of the ViewCSS interface can be obtained by using
binding-specific casting methods on an instance of the View interface.

Since a computed style is related to an Element [p.59] node, if this element is removed from the
document, the associated CSSStyleDeclaration [p.145] and CSSValue [p.148] related to this
declaration are no longer valid.
IDL Definition

// Introduced in DOM Level 2:
interface ViewCSS : views::AbstractView {
 CSSStyleDeclaration getComputedStyle(in Element elt,
 in DOMString pseudoElt);
};

Methods
getComputedStyle

This method is used to get the computed style as it is defined in [CSS2].
Parameters

158

5.2.1. Override and computed style sheet

http://www.w3.org/TR/1998/REC-CSS2-19980512/cascade.html#computed-value
http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#value-def-counter

Element
[p.59]

elt The element whose style is to be
computed. This parameter cannot be null.

DOMString
[p.21]

pseudoElt
The pseudo-element or null if none.

Return Value

CSSStyleDeclaration
[p.145]

The computed style. The
CSSStyleDeclaration is read-only and
contains only absolute values.

No Exceptions

Interface DocumentCSS (introduced in DOM Level 2)

This interface represents a document with a CSS view.

The getOverrideStyle method provides a mechanism through which a DOM author could
effect immediate change to the style of an element without modifying the explicitly linked style
sheets of a document or the inline style of elements in the style sheets. This style sheet comes after
the author style sheet in the cascade algorithm and is called override style sheet. The override style
sheet takes precedence over author style sheets. An "!important" declaration still takes precedence
over a normal declaration. Override, author, and user style sheets all may contain "!important"
declarations. User "!important" rules take precedence over both override and author "!important"
rules, and override "!important" rules take precedence over author "!important" rules.

The expectation is that an instance of the DocumentCSS interface can be obtained by using
binding-specific casting methods on an instance of the Document [p.29] interface.
IDL Definition

// Introduced in DOM Level 2:
interface DocumentCSS : stylesheets::DocumentStyle {
 CSSStyleDeclaration getOverrideStyle(in Element elt,
 in DOMString pseudoElt);
};

Methods
getOverrideStyle

This method is used to retrieve the override style declaration for a specified element and a
specified pseudo-element.
Parameters

159

5.2.1. Override and computed style sheet

Element
[p.59]

elt The element whose style is to be modified.
This parameter cannot be null.

DOMString
[p.21]

pseudoElt
The pseudo-element or null if none.

Return Value

CSSStyleDeclaration [p.145] The override style declaration.

No Exceptions

5.2.2. Style sheet creation

Interface DOMImplementationCSS (introduced in DOM Level 2)

This interface allows the DOM user to create a CSSStyleSheet [p.136] outside the context of a
document. There is no way to associate the new CSSStyleSheet with a document in DOM Level
2.
IDL Definition

// Introduced in DOM Level 2:
interface DOMImplementationCSS : DOMImplementation {
 CSSStyleSheet createCSSStyleSheet(in DOMString title,
 in DOMString media);
};

Methods
createCSSStyleSheet

Creates a new CSSStyleSheet [p.136] .
Parameters

DOMString
[p.21]

title The advisory title. See also the Style Sheet
Interfaces [p.130] section.

DOMString media The comma-separated list of media associated
with the new style sheet. See also the Style Sheet
Interfaces [p.130] section.

Return Value

CSSStyleSheet [p.136] A new CSS style sheet.

No Exceptions

160

5.2.2. Style sheet creation

5.2.3. Element with CSS inline style

Interface ElementCSSInlineStyle (introduced in DOM Level 2)

Inline style information attached to elements is exposed through the style attribute. This represents
the contents of the STYLE attribute for HTML elements (or elements in other schemas or DTDs
which use the STYLE attribute in the same way).
IDL Definition

// Introduced in DOM Level 2:
interface ElementCSSInlineStyle {
 readonly attribute CSSStyleDeclaration style;
};

Attributes
style of type CSSStyleDeclaration [p.145] , readonly

The style attribute.

5.3. CSS Extended Interfaces
The interfaces found within this section are not mandatory. A DOM application can use the
hasFeature method of the DOMImplementation [p.26] interface to determine whether they are
supported or not. The feature string for all the extended interfaces listed in this section is "CSS2".

The following table specifies the type of CSSValue [p.148] used to represent each property that can be
specified in a CSSStyleDeclaration [p.145] found in a CSSStyleRule [p.140] for a CSS Level 2
style sheet. The expectation is that the CSSValue returned from the getPropertyCSSValue method
on the CSSStyleDeclaration interface can be cast down, using binding-specific casting methods, to
the specific derived interface.

For properties that are represented by a custom interface (the valueType of the CSSValue [p.148] is
CSS_CUSTOM), the name of the derived interface is specified in the table. For properties that consist of
lists of values (the valueType of the CSSValue is CSS_VALUE_LIST), the derived interface is
CSSValueList [p.156] . For all other properties (the valueType of the CSSValue is
CSS_PRIMITIVE_VALUE), the derived interface is CSSPrimitiveValue [p.149] .

Property Name Representation

azimuth CSS2Azimuth [p.165]

background null

background-attachment ident

background-color rgbcolor, ident

background-image uri, ident

background-position CSS2BackgroundPosition [p.167]

161

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-html40-19980424/present/styles.html#h-14.2.2

background-repeat ident

border null

border-collapse ident

border-color null

border-spacing CSS2BorderSpacing [p.170]

border-style null

border-top, border-right, border-bottom, border-left null

border-top-color, border-right-color, border-bottom-color,
border-left-color

rgbcolor, ident

border-top-style, border-right-style, border-bottom-style,
border-left-style

ident

border-top-width, border-right-width, border-bottom-width,
border-left-width

length, ident

border-width null

bottom length, percentage, ident

caption-side ident

clear ident

clip rect, ident

color rgbcolor, ident

content list of string, uri, counter, attr, ident

counter-increment list of CSS2CounterIncrement
[p.173]

counter-reset list of CSS2CounterReset [p.173]

cue null

cue-after, cue-before uri, ident

cursor CSS2Cursor [p.174]

direction ident

display ident

elevation angle, ident

empty-cells ident

162

5.3. CSS Extended Interfaces

float ident

font null

font-family list of strings and idents

font-size ident, length, percentage

font-size-adjust number, ident

font-stretch ident

font-style ident

font-variant ident

font-weight ident

height length, percentage, ident

left length, percentage, ident

letter-spacing ident, length

line-height ident, length, percentage, number

list-style null

list-style-image uri, ident

list-style-position ident

list-style-type ident

margin null

margin-top, margin-right, margin-bottom, margin-left length, percentage, ident

marker-offset length, ident

max-height length, percentage, ident

max-width length, percentage, ident

min-height length, percentage, ident

min-width length, percentage, ident

orphans number

outline null

outline-color rgbcolor, ident

outline-style ident

163

5.3. CSS Extended Interfaces

outline-width length, ident

overflow ident

padding null

padding-top, padding-right, padding-bottom, padding-left length, percentage

page ident

page-break-after ident

page-break-before ident

page-break-inside ident

pause null

pause-after, pause-before time, percentage

pitch frequency, identifier

pitch-range number

play-during CSS2PlayDuring [p.175]

position ident

quotes list of string or ident

richness number

right length, percentage, ident

speak ident

speak-header ident

speak-numeral ident

speak-punctuation ident

speech-rate number, ident

stress number

table-layout ident

text-align ident, string

text-decoration list of ident

text-indent length, percentage

text-shadow list of CSS2TextShadow [p.176]

164

5.3. CSS Extended Interfaces

text-transform ident

top length, percentage, ident

unicode-bidi ident

vertical-align ident, percentage, length

visibility ident

voice-family list of strings and idents

volume number, percentage, ident

white-space ident

widows number

width length, percentage, ident

word-spacing length, ident

z-index ident, number

Interface CSS2Azimuth (introduced in DOM Level 2)

The CSS2Azimuth interface represents the azimuth CSS Level 2 property.
IDL Definition

// Introduced in DOM Level 2:
interface CSS2Azimuth : CSSValue {
 readonly attribute unsigned short azimuthType;
 readonly attribute DOMString identifier;
 readonly attribute boolean behind;
 void setAngleValue(in unsigned short uType,
 in float fValue)
 raises(DOMException);
 float getAngleValue(in unsigned short uType)
 raises(DOMException);
 void setIdentifier(in DOMString ident,
 in boolean b)
 raises(DOMException);
};

Attributes
azimuthType of type unsigned short, readonly

A code defining the type of the value as defined in CSSValue [p.148] . It would be one of
CSS_DEG, CSS_RAD, CSS_GRAD or CSS_IDENT.

behind of type boolean, readonly
behind indicates whether the behind identifier has been set.

165

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-azimuth

identifier of type DOMString [p.21] , readonly
If azimuthType is CSS_IDENT, identifier contains one of left-side, far-left, left,
center-left, center, center-right, right, far-right, right-side, leftwards, rightwards. The empty
string if none is set.

Methods
getAngleValue

Used to retrieved the float value of the azimuth property.
Parameters

unsigned
short

uType The unit type can be only an angle unit type
(CSS_DEG, CSS_RAD or CSS_GRAD).

Return Value

float The float value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the unit type is
invalid.

setAngleValue
A method to set the angle value with a specified unit. This method will unset any
previously set identifier value.
Parameters

unsigned
short

uType The unitType could only be one of CSS_DEG,
CSS_RAD or CSS_GRAD).

float fValue The new float value of the angle.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the unit type is
invalid.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

No Return Value

166

5.3. CSS Extended Interfaces

setIdentifier
Setting the identifier for the azimuth property will unset any previously set angle value.
The value of azimuthType is set to CSS_IDENT
Parameters

DOMString
[p.21]

ident The new identifier. If the identifier is "leftwards"
or "rightward", the behind attribute is ignored.

boolean b The new value for behind.

Exceptions

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified identifier has
a syntax error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

No Return Value

Interface CSS2BackgroundPosition (introduced in DOM Level 2)

The CSS2BackgroundPosition interface represents the background-position CSS Level 2
property.
IDL Definition

// Introduced in DOM Level 2:
interface CSS2BackgroundPosition : CSSValue {
 readonly attribute unsigned short horizontalType;
 readonly attribute unsigned short verticalType;
 readonly attribute DOMString horizontalIdentifier;
 readonly attribute DOMString verticalIdentifier;
 float getHorizontalPosition(in float hType)
 raises(DOMException);
 float getVerticalPosition(in float vType)
 raises(DOMException);
 void setHorizontalPosition(in unsigned short hType,
 in float value)
 raises(DOMException);
 void setVerticalPosition(in unsigned short vType,
 in float value)
 raises(DOMException);
 void setPositionIdentifier(in DOMString hIdentifier,
 in DOMString vIdentifier)
 raises(DOMException);
};

Attributes

167

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/colors.html#propdef-background-position

horizontalIdentifier of type DOMString [p.21] , readonly
If horizontalType is CSS_IDENT or CSS_INHERIT, this attribute contains the
string representation of the ident, otherwise it contains an empty string.

horizontalType of type unsigned short, readonly
A code defining the type of the horizontal value. It would be one of CSS_PERCENTAGE,
CSS_EMS, CSS_EXS, CSS_PX, CSS_CM, CSS_MM, CSS_IN, CSS_PT, CSS_PC or
CSS_IDENT. If one of horizontal or vertical is CSS_IDENT, it’s guaranteed that the other
is the same.

verticalIdentifier of type DOMString [p.21] , readonly
If verticalType is CSS_IDENT or CSS_INHERIT, this attribute contains the string
representation of the ident, otherwise it contains an empty string. The value is "center"
if only the horizontalIdentifier has been set.

verticalType of type unsigned short, readonly
A code defining the type of the horizontal value. The code can be one of the following
units : CSS_PERCENTAGE, CSS_EMS, CSS_EXS, CSS_PX, CSS_CM, CSS_MM,
CSS_IN, CSS_PT, CSS_PC, CSS_IDENT, CSS_INHERIT. If one of horizontal or
vertical is CSS_IDENT or CSS_INHERIT, it’s guaranteed that the other is the same.

Methods
getHorizontalPosition

This method is used to get the float value in a specified unit if the
horizontalPosition represents a length or a percentage. If the float doesn’t contain a
float value or can’t be converted into the specified unit, a DOMException [p.24] is
raised.
Parameters

float hType The horizontal unit.

Return Value

float The float value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the property doesn’t
contain a float or the value can’t be converted.

getVerticalPosition
This method is used to get the float value in a specified unit if the verticalPosition
represents a length or a percentage. If the float doesn’t contain a float value or can’t be
converted into the specified unit, a DOMException [p.24] is raised. The value is 50% if
only the horizontal value has been specified.

168

5.3. CSS Extended Interfaces

Parameters

float vType The vertical unit.

Return Value

float The float value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the property doesn’t
contain a float or the value can’t be converted.

setHorizontalPosition
This method is used to set the horizontal position with a specified unit. If the vertical value
is not a percentage or a length, it sets the vertical position to 50%.
Parameters

unsigned short hType The specified unit (a length or a percentage).

float value The new value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the specified unit is
not a length or a percentage.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

No Return Value

setPositionIdentifier
Sets the identifiers. If the second identifier is the empty string, the vertical identifier is set
to its default value ("center").
Parameters

DOMString [p.21] hIdentifier The new horizontal identifier.

DOMString vIdentifier The new vertical identifier.

Exceptions

169

5.3. CSS Extended Interfaces

DOMException
[p.24]

SYNTAX_ERR: Raised if the identifiers have a syntax
error and are unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

No Return Value

setVerticalPosition
This method is used to set the vertical position with a specified unit. If the horizontal value
is not a percentage or a length, it sets the vertical position to 50%.
Parameters

unsigned short vType The specified unit (a length or a percentage).

float value The new value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the specified unit is
not a length or a percentage.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

No Return Value

Interface CSS2BorderSpacing (introduced in DOM Level 2)

The CSS2BorderSpacing interface represents the border-spacing CSS Level 2 property.
IDL Definition

// Introduced in DOM Level 2:
interface CSS2BorderSpacing : CSSValue {
 readonly attribute unsigned short horizontalType;
 readonly attribute unsigned short verticalType;
 float getHorizontalSpacing(in float hType)
 raises(DOMException);
 float getVerticalSpacing(in float vType)
 raises(DOMException);
 void setHorizontalSpacing(in unsigned short hType,
 in float value)
 raises(DOMException);
 void setVerticalSpacing(in unsigned short vType,
 in float value)
 raises(DOMException);
};

170

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/tables.html#propdef-border-spacing

Attributes
horizontalType of type unsigned short, readonly

The A code defining the type of the value as defined in CSSValue [p.148] . It would be
one of CSS_EMS, CSS_EXS, CSS_PX, CSS_CM, CSS_MM, CSS_IN, CSS_PT or
CSS_PC.

verticalType of type unsigned short, readonly
The A code defining the type of the value as defined in CSSValue [p.148] . It would be
one of CSS_EMS, CSS_EXS, CSS_PX, CSS_CM, CSS_MM, CSS_IN, CSS_PT, CSS_PC
or CSS_INHERIT.

Methods
getHorizontalSpacing

This method is used to get the float value in a specified unit if the horizontalSpacing
represents a length. If the float doesn’t contain a float value or can’t be converted into the
specified unit, a DOMException [p.24] is raised.
Parameters

float hType The horizontal unit.

Return Value

float The float value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the property doesn’t
contain a float or the value can’t be converted.

getVerticalSpacing
This method is used to get the float value in a specified unit if the verticalSpacing
represents a length. If the float doesn’t contain a float value or can’t be converted into the
specified unit, a DOMException [p.24] is raised. The value is 0 if only the horizontal
value has been specified.
Parameters

float vType The vertical unit.

Return Value

float The float value.

171

5.3. CSS Extended Interfaces

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the property doesn’t
contain a float or the value can’t be converted.

setHorizontalSpacing
This method is used to set the horizontal spacing with a specified unit. If the vertical value
is a length, it sets the vertical spacing to 0.
Parameters

unsigned short hType The horizontal unit.

float value The new value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the specified unit is
not a length.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

No Return Value

setVerticalSpacing
This method is used to set the vertical spacing with a specified unit. If the horizontal value
is not a length, it sets the vertical spacing to 0.
Parameters

unsigned short vType The vertical unit.

float value The new value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the specified unit is
not a length or a percentage.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

No Return Value

172

5.3. CSS Extended Interfaces

Interface CSS2CounterReset (introduced in DOM Level 2)

The CSS2CounterReset interface represents a simple value for the counter-reset CSS Level 2
property.
IDL Definition

// Introduced in DOM Level 2:
interface CSS2CounterReset : CSSValue {
 attribute DOMString identifier;
 // raises(DOMException) on setting

 attribute short reset;
 // raises(DOMException) on setting

};

Attributes
identifier of type DOMString [p.21]

The element name.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified identifier has a
syntax error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
identifier is readonly.

reset of type short
The reset (default value is 0).
Exceptions on setting

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
identifier is readonly.

Interface CSS2CounterIncrement (introduced in DOM Level 2)

The CSS2CounterIncrement interface represents a simple value for the counter-increment CSS
Level 2 property.
IDL Definition

// Introduced in DOM Level 2:
interface CSS2CounterIncrement : CSSValue {
 attribute DOMString identifier;
 // raises(DOMException) on setting

 attribute short increment;
 // raises(DOMException) on setting

};

173

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#propdef-counter-increment
http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#propdef-counter-reset

Attributes
identifier of type DOMString [p.21]

The element name.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified identifier has a
syntax error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
identifier is readonly.

increment of type short
The increment. (Default value is 1.)
Exceptions on setting

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
identifier is readonly.

Interface CSS2Cursor (introduced in DOM Level 2)

The CSS2Cursor interface represents the cursor CSS Level 2 property.
IDL Definition

// Introduced in DOM Level 2:
interface CSS2Cursor : CSSValue {
 readonly attribute CSSValueList uris;
 attribute DOMString predefinedCursor;
 // raises(DOMException) on setting

};

Attributes
predefinedCursor of type DOMString [p.21]

This identifier represents a generic cursor name or an empty string.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified CSS string value
has a syntax error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
declaration is readonly.

uris of type CSSValueList [p.156] , readonly
uris represents the list of URIs (CSS_URI) on the cursor property. The list can be empty.

174

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/ui.html#propdef-cursor

Interface CSS2PlayDuring (introduced in DOM Level 2)

The CSS2PlayDuring interface represents the play-during CSS Level 2 property.
IDL Definition

// Introduced in DOM Level 2:
interface CSS2PlayDuring : CSSValue {
 readonly attribute unsigned short playDuringType;
 attribute DOMString playDuringIdentifier;
 // raises(DOMException) on setting

 attribute DOMString uri;
 // raises(DOMException) on setting

 attribute boolean mix;
 // raises(DOMException) on setting

 attribute boolean repeat;
 // raises(DOMException) on setting

};

Attributes
mix of type boolean

true if the sound should be mixed. It will be ignored if the attribute doesn’t contain a
uri.
Exceptions on setting

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
declaration is readonly.

playDuringIdentifier of type DOMString [p.21]
One of "inherit", "auto", "none" or the empty string if the playDuringType is
CSS_UNKNOWN. On setting, it will set the uri to the empty string and mix and repeat
to false.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified CSS string value
has a syntax error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
declaration is readonly.

playDuringType of type unsigned short, readonly
A code defining the type of the value as defined in CSSvalue. It would be one of
CSS_UNKNOWN or CSS_IDENT.

175

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-play-during

repeat of type boolean
true if the sound should be repeated. It will be ignored if the attribute doesn’t contain a
uri.
Exceptions on setting

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
declaration is readonly.

uri of type DOMString [p.21]
The sound specified by the uri. It will set the playDuringType attribute to
CSS_UNKNOWN.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified CSS string value
has a syntax error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
declaration is readonly.

Interface CSS2TextShadow (introduced in DOM Level 2)

The CSS2TextShadow interface represents a simple value for the text-shadow CSS Level 2
property.
IDL Definition

// Introduced in DOM Level 2:
interface CSS2TextShadow {
 readonly attribute CSSValue color;
 readonly attribute CSSValue horizontal;
 readonly attribute CSSValue vertical;
 readonly attribute CSSValue blur;
};

Attributes
blur of type CSSValue [p.148] , readonly

The blur radius of the text shadow. 0 if no length has been specified.

color of type CSSValue [p.148] , readonly
Specifies the color of the text shadow. The CSS Value can contain an empty string if no
color has been specified.

horizontal of type CSSValue [p.148] , readonly
The horizontal position of the text shadow. 0 if no length has been specified.

vertical of type CSSValue [p.148] , readonly
The vertical position of the text shadow. 0 if no length has been specified.

176

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/text.html#propdef-text-shadow

The following table specifies the type of CSSValue [p.148] used to represent each descriptor that can be
specified in a CSSStyleDeclaration [p.145] found in a CSSFontFaceRule [p.142] for a CSS
Level 2 style sheet.

Property Name Representation

font-family list of strings and idents

font-style list of idents

font-variant list of idents

font-weight list of idents

font-stretch list of idents

font-size list of lengths or ident

unicode-range list of strings. Example: "U+370-3FF", "U+1F??"

units-per-em number

src list of CSS2FontFaceSrc [p.178]

panose-1 list of integers

stemv number

stemh number

slope number

cap-height number

x-height number

ascent number

descent number

widths list of CSS2FontFaceWidths [p.178]

bbox list of numbers

definition-src uri

baseline number

centerline number

mathline number

topline number

177

5.3. CSS Extended Interfaces

Interface CSS2FontFaceSrc (introduced in DOM Level 2)

The CSS2FontFaceSrc interface represents the src CSS Level 2 descriptor.
IDL Definition

// Introduced in DOM Level 2:
interface CSS2FontFaceSrc {
 attribute DOMString uri;
 // raises(DOMException) on setting

 readonly attribute CSSValueList format;
 attribute DOMString fontFaceName;
 // raises(DOMException) on setting

};

Attributes
fontFaceName of type DOMString [p.21]

Specifies the full font name of a locally installed font.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified CSS string value
has a syntax error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
declaration is readonly.

format of type CSSValueList [p.156] , readonly
This attribute contains a list of strings for the format CSS function.

uri of type DOMString [p.21]
Specifies the source of the font, empty string otherwise.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified CSS string value
has a syntax error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
declaration is readonly.

Interface CSS2FontFaceWidths (introduced in DOM Level 2)

The CSS2FontFaceWidths interface represents a simple value for the widths CSS Level 2
descriptor.
IDL Definition

178

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#descdef-widths
http://www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#descdef-src

// Introduced in DOM Level 2:
interface CSS2FontFaceWidths {
 attribute DOMString urange;
 // raises(DOMException) on setting

 readonly attribute CSSValueList numbers;
};

Attributes
numbers of type CSSValueList [p.156] , readonly

A list of numbers representing the glyph widths.

urange of type DOMString [p.21]
The range for the characters.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the specified CSS string value
has a syntax error and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
declaration is readonly.

The following table specifies the type of CSSValue [p.148] used to represent each property that can be
specified in a CSSStyleDeclaration [p.145] found in a CSSPageRule [p.143] for a CSS Level 2
style sheet.

Property Name Representation

margin null

margin-top, margin-right, margin-bottom,
margin-left

length (no CSS_EMS and CSS_EXS), percentage,
ident

marks list of idents

size CSS2PageSize [p.179]

Interface CSS2PageSize (introduced in DOM Level 2)

The CSS2PageSize interface represents the size CSS Level 2 descriptor.
IDL Definition

// Introduced in DOM Level 2:
interface CSS2PageSize : CSSValue {
 readonly attribute unsigned short widthType;
 readonly attribute unsigned short heightType;
 readonly attribute DOMString identifier;
 float getWidth(in float wType)
 raises(DOMException);
 float getHeightSize(in float hType)
 raises(DOMException);

179

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/page.html#propdef-size

 void setWidthSize(in unsigned short wType,
 in float value)
 raises(DOMException);
 void setHeightSize(in unsigned short hType,
 in float value)
 raises(DOMException);
 void setIdentifier(in DOMString ident)
 raises(DOMException);
};

Attributes
heightType of type unsigned short, readonly

A code defining the type of the height of the page. It would be one of CSS_EMS,
CSS_EXS, CSS_PX, CSS_CM, CSS_MM, CSS_IN, CSS_PT, CSS_PC or CSS_IDENT. If
one of width or height is CSS_IDENT, it’s guaranteed that the other is the same.

identifier of type DOMString [p.21] , readonly
If width is CSS_IDENT, this attribute contains the string representation of the ident,
otherwise it contains an empty string.

widthType of type unsigned short, readonly
A code defining the type of the width of the page. It would be one of CSS_EMS,
CSS_EXS, CSS_PX, CSS_CM, CSS_MM, CSS_IN, CSS_PT, CSS_PC or CSS_IDENT.

Methods
getHeightSize

This method is used to get the float value in a specified unit if the heightType
represents a length. If the float doesn’t contain a float value or can’t be converted into the
specified unit, a DOMException [p.24] is raised. If only the width value has been
specified, the height value is the same.
Parameters

float hType The height unit.

Return Value

float The float value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the property doesn’t
contain a float or the value can’t be converted.

getWidth
This method is used to get the float value in a specified unit if the widthType represents
a length. If the float doesn’t contain a float value or can’t be converted into the specified
unit, a DOMException [p.24] is raised.

180

5.3. CSS Extended Interfaces

Parameters

float wType The width unit.

Return Value

float The float value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the property doesn’t
contain a float or the value can’t be converted.

setHeightSize
This method is used to set the height position with a specified unit. If the widthType is
not a length, it sets the width position to the same value.
Parameters

unsigned short hType The height unit.

float value The new value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the specified unit is
not a length or a percentage.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

No Return Value

setIdentifier
Sets the identifier.
Parameters

DOMString [p.21] ident The new identifier.

Exceptions

181

5.3. CSS Extended Interfaces

DOMException
[p.24]

SYNTAX_ERR: Raised if the identifier has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

No Return Value

setWidthSize
This method is used to set the width position with a specified unit. If the heightType is
not a length, it sets the height position to the same value.
Parameters

unsigned short wType The width unit.

float value The new value.

Exceptions

DOMException
[p.24]

INVALID_ACCESS_ERR: Raised if the specified unit is
not a length or a percentage.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

No Return Value

Interface CSS2Properties (introduced in DOM Level 2)

The CSS2Properties interface represents a convenience mechanism for retrieving and setting
properties within a CSSStyleDeclaration [p.145] . The attributes of this interface correspond
to all the properties specified in CSS2. Getting an attribute of this interface is equivalent to calling the
getPropertyValue method of the CSSStyleDeclaration interface. Setting an attribute of
this interface is equivalent to calling the setProperty method of the CSSStyleDeclaration
interface.

A compliant implementation is not required to implement the CSS2Properties interface. If an
implementation does implement this interface, the expectation is that language-specific methods can
be used to cast from an instance of the CSSStyleDeclaration [p.145] interface to the
CSS2Properties interface.

If an implementation does implement this interface, it is expected to understand the specific syntax of
the shorthand properties, and apply their semantics; when the margin property is set, for example,
the marginTop, marginRight, marginBottom and marginLeft properties are actually
being set by the underlying implementation.

182

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/propidx.html

When dealing with CSS "shorthand" properties, the shorthand properties should be decomposed into
their component longhand properties as appropriate, and when querying for their value, the form
returned should be the shortest form exactly equivalent to the declarations made in the ruleset.
However, if there is no shorthand declaration that could be added to the ruleset without changing in
any way the rules already declared in the ruleset (i.e., by adding longhand rules that were previously
not declared in the ruleset), then the empty string should be returned for the shorthand property.

For example, querying for the font property should not return "normal normal normal 14pt/normal
Arial, sans-serif", when "14pt Arial, sans-serif" suffices. (The normals are initial values, and are
implied by use of the longhand property.)

If the values for all the longhand properties that compose a particular string are the initial values, then
a string consisting of all the initial values should be returned (e.g. a border-width value of
"medium" should be returned as such, not as "").

For some shorthand properties that take missing values from other sides, such as the margin,
padding, and border-[width|style|color] properties, the minimum number of sides
possible should be used; i.e., "0px 10px" will be returned instead of "0px 10px 0px 10px".

If the value of a shorthand property can not be decomposed into its component longhand properties,
as is the case for the font property with a value of "menu", querying for the values of the
component longhand properties should return the empty string.
IDL Definition

// Introduced in DOM Level 2:
interface CSS2Properties {
 attribute DOMString azimuth;
 // raises(DOMException) on setting

 attribute DOMString background;
 // raises(DOMException) on setting

 attribute DOMString backgroundAttachment;
 // raises(DOMException) on setting

 attribute DOMString backgroundColor;
 // raises(DOMException) on setting

 attribute DOMString backgroundImage;
 // raises(DOMException) on setting

 attribute DOMString backgroundPosition;
 // raises(DOMException) on setting

 attribute DOMString backgroundRepeat;
 // raises(DOMException) on setting

 attribute DOMString border;
 // raises(DOMException) on setting

 attribute DOMString borderCollapse;
 // raises(DOMException) on setting

183

5.3. CSS Extended Interfaces

 attribute DOMString borderColor;
 // raises(DOMException) on setting

 attribute DOMString borderSpacing;
 // raises(DOMException) on setting

 attribute DOMString borderStyle;
 // raises(DOMException) on setting

 attribute DOMString borderTop;
 // raises(DOMException) on setting

 attribute DOMString borderRight;
 // raises(DOMException) on setting

 attribute DOMString borderBottom;
 // raises(DOMException) on setting

 attribute DOMString borderLeft;
 // raises(DOMException) on setting

 attribute DOMString borderTopColor;
 // raises(DOMException) on setting

 attribute DOMString borderRightColor;
 // raises(DOMException) on setting

 attribute DOMString borderBottomColor;
 // raises(DOMException) on setting

 attribute DOMString borderLeftColor;
 // raises(DOMException) on setting

 attribute DOMString borderTopStyle;
 // raises(DOMException) on setting

 attribute DOMString borderRightStyle;
 // raises(DOMException) on setting

 attribute DOMString borderBottomStyle;
 // raises(DOMException) on setting

 attribute DOMString borderLeftStyle;
 // raises(DOMException) on setting

 attribute DOMString borderTopWidth;
 // raises(DOMException) on setting

 attribute DOMString borderRightWidth;
 // raises(DOMException) on setting

 attribute DOMString borderBottomWidth;
 // raises(DOMException) on setting

 attribute DOMString borderLeftWidth;
 // raises(DOMException) on setting

184

5.3. CSS Extended Interfaces

 attribute DOMString borderWidth;
 // raises(DOMException) on setting

 attribute DOMString bottom;
 // raises(DOMException) on setting

 attribute DOMString captionSide;
 // raises(DOMException) on setting

 attribute DOMString clear;
 // raises(DOMException) on setting

 attribute DOMString clip;
 // raises(DOMException) on setting

 attribute DOMString color;
 // raises(DOMException) on setting

 attribute DOMString content;
 // raises(DOMException) on setting

 attribute DOMString counterIncrement;
 // raises(DOMException) on setting

 attribute DOMString counterReset;
 // raises(DOMException) on setting

 attribute DOMString cue;
 // raises(DOMException) on setting

 attribute DOMString cueAfter;
 // raises(DOMException) on setting

 attribute DOMString cueBefore;
 // raises(DOMException) on setting

 attribute DOMString cursor;
 // raises(DOMException) on setting

 attribute DOMString direction;
 // raises(DOMException) on setting

 attribute DOMString display;
 // raises(DOMException) on setting

 attribute DOMString elevation;
 // raises(DOMException) on setting

 attribute DOMString emptyCells;
 // raises(DOMException) on setting

 attribute DOMString cssFloat;
 // raises(DOMException) on setting

 attribute DOMString font;
 // raises(DOMException) on setting

185

5.3. CSS Extended Interfaces

 attribute DOMString fontFamily;
 // raises(DOMException) on setting

 attribute DOMString fontSize;
 // raises(DOMException) on setting

 attribute DOMString fontSizeAdjust;
 // raises(DOMException) on setting

 attribute DOMString fontStretch;
 // raises(DOMException) on setting

 attribute DOMString fontStyle;
 // raises(DOMException) on setting

 attribute DOMString fontVariant;
 // raises(DOMException) on setting

 attribute DOMString fontWeight;
 // raises(DOMException) on setting

 attribute DOMString height;
 // raises(DOMException) on setting

 attribute DOMString left;
 // raises(DOMException) on setting

 attribute DOMString letterSpacing;
 // raises(DOMException) on setting

 attribute DOMString lineHeight;
 // raises(DOMException) on setting

 attribute DOMString listStyle;
 // raises(DOMException) on setting

 attribute DOMString listStyleImage;
 // raises(DOMException) on setting

 attribute DOMString listStylePosition;
 // raises(DOMException) on setting

 attribute DOMString listStyleType;
 // raises(DOMException) on setting

 attribute DOMString margin;
 // raises(DOMException) on setting

 attribute DOMString marginTop;
 // raises(DOMException) on setting

 attribute DOMString marginRight;
 // raises(DOMException) on setting

 attribute DOMString marginBottom;
 // raises(DOMException) on setting

186

5.3. CSS Extended Interfaces

 attribute DOMString marginLeft;
 // raises(DOMException) on setting

 attribute DOMString markerOffset;
 // raises(DOMException) on setting

 attribute DOMString marks;
 // raises(DOMException) on setting

 attribute DOMString maxHeight;
 // raises(DOMException) on setting

 attribute DOMString maxWidth;
 // raises(DOMException) on setting

 attribute DOMString minHeight;
 // raises(DOMException) on setting

 attribute DOMString minWidth;
 // raises(DOMException) on setting

 attribute DOMString orphans;
 // raises(DOMException) on setting

 attribute DOMString outline;
 // raises(DOMException) on setting

 attribute DOMString outlineColor;
 // raises(DOMException) on setting

 attribute DOMString outlineStyle;
 // raises(DOMException) on setting

 attribute DOMString outlineWidth;
 // raises(DOMException) on setting

 attribute DOMString overflow;
 // raises(DOMException) on setting

 attribute DOMString padding;
 // raises(DOMException) on setting

 attribute DOMString paddingTop;
 // raises(DOMException) on setting

 attribute DOMString paddingRight;
 // raises(DOMException) on setting

 attribute DOMString paddingBottom;
 // raises(DOMException) on setting

 attribute DOMString paddingLeft;
 // raises(DOMException) on setting

 attribute DOMString page;
 // raises(DOMException) on setting

187

5.3. CSS Extended Interfaces

 attribute DOMString pageBreakAfter;
 // raises(DOMException) on setting

 attribute DOMString pageBreakBefore;
 // raises(DOMException) on setting

 attribute DOMString pageBreakInside;
 // raises(DOMException) on setting

 attribute DOMString pause;
 // raises(DOMException) on setting

 attribute DOMString pauseAfter;
 // raises(DOMException) on setting

 attribute DOMString pauseBefore;
 // raises(DOMException) on setting

 attribute DOMString pitch;
 // raises(DOMException) on setting

 attribute DOMString pitchRange;
 // raises(DOMException) on setting

 attribute DOMString playDuring;
 // raises(DOMException) on setting

 attribute DOMString position;
 // raises(DOMException) on setting

 attribute DOMString quotes;
 // raises(DOMException) on setting

 attribute DOMString richness;
 // raises(DOMException) on setting

 attribute DOMString right;
 // raises(DOMException) on setting

 attribute DOMString size;
 // raises(DOMException) on setting

 attribute DOMString speak;
 // raises(DOMException) on setting

 attribute DOMString speakHeader;
 // raises(DOMException) on setting

 attribute DOMString speakNumeral;
 // raises(DOMException) on setting

 attribute DOMString speakPunctuation;
 // raises(DOMException) on setting

 attribute DOMString speechRate;
 // raises(DOMException) on setting

188

5.3. CSS Extended Interfaces

 attribute DOMString stress;
 // raises(DOMException) on setting

 attribute DOMString tableLayout;
 // raises(DOMException) on setting

 attribute DOMString textAlign;
 // raises(DOMException) on setting

 attribute DOMString textDecoration;
 // raises(DOMException) on setting

 attribute DOMString textIndent;
 // raises(DOMException) on setting

 attribute DOMString textShadow;
 // raises(DOMException) on setting

 attribute DOMString textTransform;
 // raises(DOMException) on setting

 attribute DOMString top;
 // raises(DOMException) on setting

 attribute DOMString unicodeBidi;
 // raises(DOMException) on setting

 attribute DOMString verticalAlign;
 // raises(DOMException) on setting

 attribute DOMString visibility;
 // raises(DOMException) on setting

 attribute DOMString voiceFamily;
 // raises(DOMException) on setting

 attribute DOMString volume;
 // raises(DOMException) on setting

 attribute DOMString whiteSpace;
 // raises(DOMException) on setting

 attribute DOMString widows;
 // raises(DOMException) on setting

 attribute DOMString width;
 // raises(DOMException) on setting

 attribute DOMString wordSpacing;
 // raises(DOMException) on setting

 attribute DOMString zIndex;
 // raises(DOMException) on setting

};

189

5.3. CSS Extended Interfaces

Attributes
azimuth of type DOMString [p.21]

See the azimuth property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

background of type DOMString [p.21]
See the background property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

backgroundAttachment of type DOMString [p.21]
See the background-attachment property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

backgroundColor of type DOMString [p.21]
See the background-color property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

backgroundImage of type DOMString [p.21]
See the background-image property definition in CSS2.
Exceptions on setting

190

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/colors.html#propdef-background-image
http://www.w3.org/TR/1998/REC-CSS2-19980512/colors.html#propdef-background-color
http://www.w3.org/TR/1998/REC-CSS2-19980512/colors.html#propdef-background-attachment
http://www.w3.org/TR/1998/REC-CSS2-19980512/colors.html#propdef-background
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-azimuth

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

backgroundPosition of type DOMString [p.21]
See the background-position property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

backgroundRepeat of type DOMString [p.21]
See the background-repeat property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

border of type DOMString [p.21]
See the border property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderBottom of type DOMString [p.21]
See the border-bottom property definition in CSS2.
Exceptions on setting

191

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-bottom
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border
http://www.w3.org/TR/1998/REC-CSS2-19980512/colors.html#propdef-background-repeat
http://www.w3.org/TR/1998/REC-CSS2-19980512/colors.html#propdef-background-position

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderBottomColor of type DOMString [p.21]
See the border-bottom-color property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderBottomStyle of type DOMString [p.21]
See the border-bottom-style property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderBottomWidth of type DOMString [p.21]
See the border-bottom-width property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderCollapse of type DOMString [p.21]
See the border-collapse property definition in CSS2.
Exceptions on setting

192

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/tables.html#propdef-border-collapse
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-bottom-width
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-bottom-style
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-bottom-color

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderColor of type DOMString [p.21]
See the border-color property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderLeft of type DOMString [p.21]
See the border-left property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderLeftColor of type DOMString [p.21]
See the border-left-color property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderLeftStyle of type DOMString [p.21]
See the border-left-style property definition in CSS2.
Exceptions on setting

193

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-left-style
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-left-color
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-left
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-color

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderLeftWidth of type DOMString [p.21]
See the border-left-width property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderRight of type DOMString [p.21]
See the border-right property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderRightColor of type DOMString [p.21]
See the border-right-color property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderRightStyle of type DOMString [p.21]
See the border-right-style property definition in CSS2.
Exceptions on setting

194

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-right-style
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-right-color
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-right
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-left-width

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderRightWidth of type DOMString [p.21]
See the border-right-width property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderSpacing of type DOMString [p.21]
See the border-spacing property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderStyle of type DOMString [p.21]
See the border-style property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderTop of type DOMString [p.21]
See the border-top property definition in CSS2.
Exceptions on setting

195

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-top
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-style
http://www.w3.org/TR/1998/REC-CSS2-19980512/tables.html#propdef-border-spacing
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-right-width

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderTopColor of type DOMString [p.21]
See the border-top-color property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderTopStyle of type DOMString [p.21]
See the border-top-style property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderTopWidth of type DOMString [p.21]
See the border-top-width property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

borderWidth of type DOMString [p.21]
See the border-width property definition in CSS2.
Exceptions on setting

196

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-width
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-top-width
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-top-style
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-border-top-color

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

bottom of type DOMString [p.21]
See the bottom property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

captionSide of type DOMString [p.21]
See the caption-side property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

clear of type DOMString [p.21]
See the clear property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

clip of type DOMString [p.21]
See the clip property definition in CSS2.
Exceptions on setting

197

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/visufx#propdef-clip
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-clear
http://www.w3.org/TR/1998/REC-CSS2-19980512/tables.html#propdef-caption-side
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-bottom

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

color of type DOMString [p.21]
See the color property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

content of type DOMString [p.21]
See the content property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

counterIncrement of type DOMString [p.21]
See the counter-increment property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

counterReset of type DOMString [p.21]
See the counter-reset property definition in CSS2.
Exceptions on setting

198

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#propdef-counter-reset
http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#propdef-counter-increment
http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#propdef-content
http://www.w3.org/TR/1998/REC-CSS2-19980512/colors.html#propdef-color

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

cssFloat of type DOMString [p.21]
See the float property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

cue of type DOMString [p.21]
See the cue property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

cueAfter of type DOMString [p.21]
See the cue-after property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

cueBefore of type DOMString [p.21]
See the cue-before property definition in CSS2.
Exceptions on setting

199

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-cue-before
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-cue-after
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-cue
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-float

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

cursor of type DOMString [p.21]
See the cursor property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

direction of type DOMString [p.21]
See the direction property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

display of type DOMString [p.21]
See the display property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

elevation of type DOMString [p.21]
See the elevation property definition in CSS2.
Exceptions on setting

200

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-elevation
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-display
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-direction
http://www.w3.org/TR/1998/REC-CSS2-19980512/ui.html#propdef-cursor

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

emptyCells of type DOMString [p.21]
See the empty-cells property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

font of type DOMString [p.21]
See the font property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

fontFamily of type DOMString [p.21]
See the font-family property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

fontSize of type DOMString [p.21]
See the font-size property definition in CSS2.
Exceptions on setting

201

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#propdef-font-size
http://www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#propdef-font-family
http://www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#propdef-font
http://www.w3.org/TR/1998/REC-CSS2-19980512/tables.html#propdef-empty-cells

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

fontSizeAdjust of type DOMString [p.21]
See the font-size-adjust property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

fontStretch of type DOMString [p.21]
See the font-stretch property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

fontStyle of type DOMString [p.21]
See the font-style property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

fontVariant of type DOMString [p.21]
See the font-variant property definition in CSS2.
Exceptions on setting

202

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#propdef-font-variant
http://www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#propdef-font-style
http://www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#propdef-font-stretch
http://www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#propdef-font-size-adjust

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

fontWeight of type DOMString [p.21]
See the font-weight property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

height of type DOMString [p.21]
See the height property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

left of type DOMString [p.21]
See the left property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

letterSpacing of type DOMString [p.21]
See the letter-spacing property definition in CSS2.
Exceptions on setting

203

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/text.html#propdef-letter-spacing
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-left
http://www.w3.org/TR/1998/REC-CSS2-19980512/visudet.html#propdef-height
http://www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#propdef-font-weight

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

lineHeight of type DOMString [p.21]
See the line-height property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

listStyle of type DOMString [p.21]
See the list-style property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

listStyleImage of type DOMString [p.21]
See the list-style-image property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

listStylePosition of type DOMString [p.21]
See the list-style-position property definition in CSS2.
Exceptions on setting

204

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#propdef-list-style-position
http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#propdef-list-style-image
http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#propdef-list-style
http://www.w3.org/TR/1998/REC-CSS2-19980512/visudet.html#propdef-line-height

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

listStyleType of type DOMString [p.21]
See the list-style-type property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

margin of type DOMString [p.21]
See the margin property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

marginBottom of type DOMString [p.21]
See the margin-bottom property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

marginLeft of type DOMString [p.21]
See the margin-left property definition in CSS2.
Exceptions on setting

205

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-margin-left
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-margin-bottom
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-margin
http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#propdef-list-style-type

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

marginRight of type DOMString [p.21]
See the margin-right property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

marginTop of type DOMString [p.21]
See the margin-top property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

markerOffset of type DOMString [p.21]
See the marker-offset property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

marks of type DOMString [p.21]
See the marks property definition in CSS2.
Exceptions on setting

206

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/page.html#propdef-marks
http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#propdef-marker-offset
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-margin-top
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-margin-right

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

maxHeight of type DOMString [p.21]
See the max-height property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

maxWidth of type DOMString [p.21]
See the max-width property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

minHeight of type DOMString [p.21]
See the min-height property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

minWidth of type DOMString [p.21]
See the min-width property definition in CSS2.
Exceptions on setting

207

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/visudet.html#propdef-min-width
http://www.w3.org/TR/1998/REC-CSS2-19980512/visudet.html#propdef-min-height
http://www.w3.org/TR/1998/REC-CSS2-19980512/visudet.html#propdef-max-width
http://www.w3.org/TR/1998/REC-CSS2-19980512/visudet.html#propdef-max-height

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

orphans of type DOMString [p.21]
See the orphans property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

outline of type DOMString [p.21]
See the outline property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

outlineColor of type DOMString [p.21]
See the outline-color property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

outlineStyle of type DOMString [p.21]
See the outline-style property definition in CSS2.
Exceptions on setting

208

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/ui.html#propdef-outline-style
http://www.w3.org/TR/1998/REC-CSS2-19980512/ui.html#propdef-outline-color
http://www.w3.org/TR/1998/REC-CSS2-19980512/ui.html#propdef-outline
http://www.w3.org/TR/1998/REC-CSS2-19980512/page.html#propdef-orphans

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

outlineWidth of type DOMString [p.21]
See the outline-width property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

overflow of type DOMString [p.21]
See the overflow property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

padding of type DOMString [p.21]
See the padding property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

paddingBottom of type DOMString [p.21]
See the padding-bottom property definition in CSS2.
Exceptions on setting

209

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-padding-bottom
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-padding
http://www.w3.org/TR/1998/REC-CSS2-19980512/visufx.html#propdef-overflow
http://www.w3.org/TR/1998/REC-CSS2-19980512/ui.html#propdef-outline-width

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

paddingLeft of type DOMString [p.21]
See the padding-left property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

paddingRight of type DOMString [p.21]
See the padding-right property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

paddingTop of type DOMString [p.21]
See the padding-top property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

page of type DOMString [p.21]
See the page property definition in CSS2.
Exceptions on setting

210

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/page.html#propdef-page
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-padding-top
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-padding-right
http://www.w3.org/TR/1998/REC-CSS2-19980512/box.html#propdef-padding-left

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

pageBreakAfter of type DOMString [p.21]
See the page-break-after property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

pageBreakBefore of type DOMString [p.21]
See the page-break-before property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

pageBreakInside of type DOMString [p.21]
See the page-break-inside property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

pause of type DOMString [p.21]
See the pause property definition in CSS2.
Exceptions on setting

211

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-pause
http://www.w3.org/TR/1998/REC-CSS2-19980512/page.html#propdef-page-break-inside
http://www.w3.org/TR/1998/REC-CSS2-19980512/page.html#propdef-page-break-before
http://www.w3.org/TR/1998/REC-CSS2-19980512/page.html#propdef-page-break-after

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

pauseAfter of type DOMString [p.21]
See the pause-after property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

pauseBefore of type DOMString [p.21]
See the pause-before property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

pitch of type DOMString [p.21]
See the pitch property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

pitchRange of type DOMString [p.21]
See the pitch-range property definition in CSS2.
Exceptions on setting

212

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-pitch-range
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-pitch
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-pause-before
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-pause-after

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

playDuring of type DOMString [p.21]
See the play-during property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

position of type DOMString [p.21]
See the position property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

quotes of type DOMString [p.21]
See the quotes property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

richness of type DOMString [p.21]
See the richness property definition in CSS2.
Exceptions on setting

213

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-richness
http://www.w3.org/TR/1998/REC-CSS2-19980512/generate.html#propdef-quotes
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-position
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-play-during

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

right of type DOMString [p.21]
See the right property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

size of type DOMString [p.21]
See the size property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

speak of type DOMString [p.21]
See the speak property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

speakHeader of type DOMString [p.21]
See the speak-header property definition in CSS2.
Exceptions on setting

214

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/tables.html#propdef-speak-header
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-speak
http://www.w3.org/TR/1998/REC-CSS2-19980512/page.html#propdef-size
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-right

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

speakNumeral of type DOMString [p.21]
See the speak-numeral property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

speakPunctuation of type DOMString [p.21]
See the speak-punctuation property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

speechRate of type DOMString [p.21]
See the speech-rate property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

stress of type DOMString [p.21]
See the stress property definition in CSS2.
Exceptions on setting

215

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-stress
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-speech-rate
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-speak-punctuation
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-speak-numeral

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

tableLayout of type DOMString [p.21]
See the table-layout property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

textAlign of type DOMString [p.21]
See the text-align property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

textDecoration of type DOMString [p.21]
See the text-decoration property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

textIndent of type DOMString [p.21]
See the text-indent property definition in CSS2.
Exceptions on setting

216

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/text.html#propdef-text-indent
http://www.w3.org/TR/1998/REC-CSS2-19980512/text.html#propdef-text-decoration
http://www.w3.org/TR/1998/REC-CSS2-19980512/text.html#propdef-text-align
http://www.w3.org/TR/1998/REC-CSS2-19980512/tables.html#propdef-table-layout

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

textShadow of type DOMString [p.21]
See the text-shadow property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

textTransform of type DOMString [p.21]
See the text-transform property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

top of type DOMString [p.21]
See the top property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

unicodeBidi of type DOMString [p.21]
See the unicode-bidi property definition in CSS2.
Exceptions on setting

217

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-unicode-bidi
http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-top
http://www.w3.org/TR/1998/REC-CSS2-19980512/text.html#propdef-text-transform
http://www.w3.org/TR/1998/REC-CSS2-19980512/text.html#propdef-text-shadow

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

verticalAlign of type DOMString [p.21]
See the vertical-align property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

visibility of type DOMString [p.21]
See the visibility property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

voiceFamily of type DOMString [p.21]
See the voice-family property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

volume of type DOMString [p.21]
See the volume property definition in CSS2.
Exceptions on setting

218

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-volume
http://www.w3.org/TR/1998/REC-CSS2-19980512/aural.html#propdef-voice-family
http://www.w3.org/TR/1998/REC-CSS2-19980512/visufx.html#propdef-visibility
http://www.w3.org/TR/1998/REC-CSS2-19980512/visudet.html#propdef-vertical-align

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

whiteSpace of type DOMString [p.21]
See the white-space property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

widows of type DOMString [p.21]
See the widows property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

width of type DOMString [p.21]
See the width property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

wordSpacing of type DOMString [p.21]
See the word-spacing property definition in CSS2.
Exceptions on setting

219

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/text.html#propdef-word-spacing
http://www.w3.org/TR/1998/REC-CSS2-19980512/visudet.html#propdef-width
http://www.w3.org/TR/1998/REC-CSS2-19980512/page.html#propdef-widows
http://www.w3.org/TR/1998/REC-CSS2-19980512/text.html#propdef-white-space

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

zIndex of type DOMString [p.21]
See the z-index property definition in CSS2.
Exceptions on setting

DOMException
[p.24]

SYNTAX_ERR: Raised if the new value has a syntax error
and is unparsable.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
property is readonly.

220

5.3. CSS Extended Interfaces

http://www.w3.org/TR/1998/REC-CSS2-19980512/visuren.html#propdef-z-index

6. Document Object Model Events
Editors

Tom Pixley, Netscape Communications Corporation

6.1. Overview of the DOM Level 2 Event Model
The DOM Level 2 Event Model is designed with two main goals. The first goal is the design of a generic
event system which allows registration of event handlers, describes event flow through a tree structure,
and provides basic contextual information for each event. Additionally, the specification will provide
standard sets of events for user interface control and document mutation notifications, including defined
contextual information for each of these event sets.

The second goal of the event model is to provide a common subset of the current event systems used in
DOM Level 0 [p.450] browsers. This is intended to foster interoperability of existing scripts and content. It
is not expected that this goal will be met with full backwards compatibility. However, the specification
attempts to achieve this when possible.

The following sections of the Event Model specification define both the specification for the DOM Event
Model and a number of compliant event sets designed for use within the model. The Event Model consists
of the two sections on event propagation and event listener registration and the Event interface. A DOM
consumer can use the hasFeature of the DOMImplementation [p.26] interface to determine
whether the Event Model has been implemented by a DOM implementation. The feature string for the
Event Model is "Events". The existence within an implementation of each of the individual event sets can
also be queried using the hasFeature method. Each event set describes its own feature string in the
event set listing.

6.1.1. Terminology

UI events
User interface events. These events are generated by user interaction through an external device
(mouse, keyboard, etc.)

UI Logical events
Device independent user interface events such as focus change messages or element triggering
notifications.

Mutation events
Events caused by any action which modifies the structure of the document.

Capturing
The process by which an event can be handled by one of the event’s target’s ancestors before being
handled by the event’s target.

Bubbling
The process by which an event propagates upward through its ancestors after being handled by the
event’s target.

Cancelable
A designation for events which indicates that upon handling the event the client may choose to
prevent the DOM implementation from processing any default action associated with the event.

221

6. Document Object Model Events

6.2. Description of event flow
Event flow is the process through which the an event originates from the DOM implementation and is
passed into the Document Object Model. The methods of event capture and event bubbling, along with
various event listener registration techniques, allow the event to then be handled in a number of ways. It
can be handled locally at the EventTarget level or centrally from an EventTarget [p.224] higher in
the document tree.

6.2.1. Basic event flow

Each event has an EventTarget [p.224] toward which the event is directed by the DOM
implementation. This EventTarget is specified in the Event [p.227] ’s target attribute. When the
event reaches the target, any event listeners registered on the EventTarget are triggered. Although all
EventListeners [p.226] on the EventTarget are guaranteed to be triggered by any event which is
received by that EventTarget, no specification is made as to the order in which they will receive the
event with regards to the other EventListeners [p.226] on the EventTarget. If neither event
capture or event bubbling are in use for that particular event, the event flow process will complete after all
listeners have been triggered. If event capture or event bubbling is in use, the event flow will be modified
as described in the sections below.

Any exceptions thrown inside an EventListener [p.226] will not stop propagation of the event. It will
continue processing any additional EventListener in the described manner.

It is expected that actions taken by EventListener [p.226] s may cause additional events to fire.
Additional events should be handled in a synchronous manner and may cause reentrancy into the event
model.

6.2.2. Event capture

Event capture is the process by which an EventListener registered on an ancestor of the event’s target can
intercept events of a given type before they are received by the event’s target. Capture operates from the
top of the tree, generally the Document [p.29] , downward, making it the symmetrical opposite of
bubbling which is described below. The chain of EventTarget [p.224] s from the top of the tree to the
event’s target is determined before the initial dispatch of the event. If modifications occur to the tree
during event processing, event flow will proceed based on the initial state of the tree.

An EventListener [p.226] being registered on an EventTarget [p.224] may choose to have that
EventListener capture events by specifying the useCapture parameter of the
addEventListener method to be true. Thereafter, when an event of the given type is dispatched
toward a descendant of the capturing object, the event will trigger any capturing event listeners of the
appropriate type which exist in the direct line between the top of the document and the event’s target. This
downward propagation continues until the event’s target is reached. A capturing EventListener will
not be triggered by events dispatched directly to the EventTarget upon which it is registered.

222

6.2. Description of event flow

If the capturing EventListener [p.226] wishes to prevent further processing of the event from
occurring it may call the stopProgagation method of the Event [p.227] interface. This will prevent
further dispatch of the event, although additional EventListeners registered at the same hierarchy
level will still receive the event. Once an event’s stopPropagation method has been called, further
calls to that method have no additional effect. If no additional capturers exist and stopPropagation
has not been called, the event triggers the appropriate EventListeners on the target itself.

Although event capture is similar to the delegation based event model in which all interested parties
register their listeners directly on the target about which they wish to receive notifications, it is different in
two important respects. First, event capture only allows interception of events which are targeted at
descendants of the capturing EventTarget [p.224] . It does not allow interception of events targeted to
the capturer’s ancestors, its siblings, or its sibling’s descendants. Secondly, event capture is not specified
for a single EventTarget, it is specified for a specific type of event. Once specified, event capture
intercepts all events of the specified type targeted toward any of the capturer’s descendants.

6.2.3. Event bubbling

Events which are designated as bubbling will initially proceed with the same event flow as non-bubbling
events. The event is dispatched to its target EventTarget [p.224] and any event listeners found there
are triggered. Bubbling events will then trigger any additional event listeners found by following the
EventTarget’s parent chain upward, checking for any event listeners registered on each successive
EventTarget. This upward propagation will continue up to and including the Document [p.29] .
EventListener [p.226] s registered as capturers will not be triggered during this phase. The chain of
EventTargets from the event target to the top of the tree is determined before the initial dispatch of the
event. If modifications occur to the tree during event processing, event flow will proceed based on the
initial state of the tree.

Any event handler may choose to prevent further event propagation by calling the stopPropagation
method of the Event [p.227] interface. If any EventListener [p.226] calls this method, all additional
EventListeners on the current EventTarget [p.224] will be triggered but bubbling will cease at
that level. Only one call to stopPropagation is required to prevent further bubbling.

6.2.4. Event cancelation

Some events are specified as cancelable. For these events, the DOM implementation generally has a
default action associated with the event. An example of this is a hyperlink in a web browser. When the
user clicks on the hyperlink the default action is generally to active that hyperlink. Before processing these
events, the implementation must check for event listeners registered to receive the event and dispatch the
event to those listeners. These listeners then have the option of canceling the implementation’s default
action or allowing the default action to proceed. In the case of the hyperlink in the browser, canceling the
action would have the result of not activating the hyperlink.

Cancelation is accomplished by calling the Event [p.227] ’s preventDefault method. If one or more
EventListeners [p.226] call preventDefault during any phase of event flow the default action
will be canceled.

223

6.2.3. Event bubbling

Different implementations will specify their own default actions, if any, associated with each event. The
DOM does not attempt to specify these actions.

6.3. Event listener registration

6.3.1. Event registration interfaces

Interface EventTarget (introduced in DOM Level 2)

The EventTarget interface is implemented by all Nodes [p.39] in an implementation which
supports the DOM Event Model. The interface allows registration and removal of
EventListeners [p.226] on an EventTarget and dispatch of events to that EventTarget.
IDL Definition

// Introduced in DOM Level 2:
interface EventTarget {
 void addEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture);
 void removeEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture);
 boolean dispatchEvent(in Event evt)
 raises(EventException);
};

Methods
addEventListener

This method allows the registration of event listeners on the event target. If an
EventListener [p.226] is added to an EventTarget while it is processing an event,
it will not be triggered by the current actions but may be triggered during a later stage of
event flow, such as the bubbling phase.
If multiple identical EventListener [p.226] s are registered on the same
EventTarget with the same parameters the duplicate instances are discarded. They do
not cause the EventListener to be called twice and since they are discarded they do
not need to be removed with the removeEventListener method.
Parameters

224

6.3. Event listener registration

DOMString
[p.21]

type The event type for which the user is
registering

EventListener
[p.226]

listener The listener parameter takes an
interface implemented by the user
which contains the methods to be
called when the event occurs.

boolean useCapture If true, useCapture indicates that
the user wishes to initiate capture.
After initiating capture, all events of
the specified type will be dispatched
to the registered EventListener
before being dispatched to any
EventTargets beneath them in the
tree. Events which are bubbling
upward through the tree will not
trigger an EventListener
designated to use capture.

No Return Value
No Exceptions

dispatchEvent
This method allows the dispatch of events into the implementations event model. Events
dispatched in this manner will have the same capturing and bubbling behavior as events
dispatched directly by the implementation. The target of the event is the EventTarget
on which dispatchEvent is called.
Parameters

Event
[p.227]

evt Specifies the event type, behavior, and contextual
information to be used in processing the event.

Return Value

boolean The return value of dispatchEvent indicates whether any of the
listeners which handled the event called preventDefault. If
preventDefault was called the value is false, else the value is
true.

Exceptions

225

6.3.1. Event registration interfaces

EventException
[p.230]

UNSPECIFIED_EVENT_TYPE_ERR: Raised if the
Event [p.227] ’s type was not specified by initializing the
event before dispatchEvent was called. Specification
of the Event’s type as null or an empty string will also
trigger this exception.

removeEventListener
This method allows the removal of event listeners from the event target. If an
EventListener [p.226] is removed from an EventTarget while it is processing an
event, it will still be triggered by the current actions but will not be triggered again during
any later stages of event flow, such as bubbling.
Calling removeEventListener with arguments which do not identify any currently
registered EventListener [p.226] on the EventTarget has no effect.
Parameters

DOMString
[p.21]

type Specifies the event type of the
EventListener [p.226] being
removed.

EventListener
[p.226]

listener The EventListener parameter
indicates the EventListener to
be removed.

boolean useCapture Specifies whether the
EventListener being removed
was registered as a capturing listener
or not. If a listener was registered
twice, one with capture and one
without, each must be removed
separately. Removal of a capturing
listener does not affect a
non-capturing version of the same
listener, and vice versa.

No Return Value
No Exceptions

Interface EventListener (introduced in DOM Level 2)

The EventListener interface is the primary method for handling events. Users implement the
EventListener interface and register their listener on an EventTarget [p.224] using the
AddEventListener method. The users should also remove their EventListener from its
EventTarget after they have completed using the listener.

226

6.3.1. Event registration interfaces

When a Node [p.39] is copied using the cloneNode method the EventListeners attached to
the source Node are not attached to the copied Node. If the user wishes the same
EventListeners to be added to the newly created copy the user must add them manually.
IDL Definition

// Introduced in DOM Level 2:
interface EventListener {
 void handleEvent(in Event evt);
};

Methods
handleEvent

This method is called whenever an event occurs of the type for which the
EventListener interface was registered.
Parameters

Event
[p.227]

evt The Event contains contextual information about the
event. It also contains the stopPropagation and
preventDefault methods which are used in
determining the event’s flow and default action.

No Return Value
No Exceptions

6.3.2. Interaction with HTML 4.0 event listeners

In HTML 4.0, event listeners were specified as attributes of an element. As such, registration of a second
event listener of the same type would replace the first listener. The DOM Event Model allows registration
of multiple event listeners on a single Node [p.39] . To achieve this, event listeners are no longer stored as
attribute values.

In order to achieve compatibility with HTML 4.0, implementors may view the setting of attributes which
represent event handlers as the creation and registration of an EventListener on the Node [p.39] .
The value of useCapture defaults to false. This EventListener [p.226] behaves in the same
manner as any other EventListeners which may be registered on the EventTarget [p.224] . If the
attribute representing the event listener is changed, this may be viewed as the removal of the previously
registered EventListener and the registration of a new one. No technique is provided to allow HTML
4.0 event listeners access to the context information defined for each event.

6.4. Event interface
Interface Event (introduced in DOM Level 2)

The Event interface is used to provide contextual information about an event to the handler
processing the event. An object which implements the Event interface is generally passed as the
first parameter to an event handler. More specific context information is passed to event handlers by
deriving additional interfaces from Event which contain information directly relating to the type of

227

6.4. Event interface

event they accompany. These derived interfaces are also implemented by the object passed to the
event listener.
IDL Definition

// Introduced in DOM Level 2:
interface Event {
 // PhaseType
 const unsigned short CAPTURING_PHASE = 1;
 const unsigned short AT_TARGET = 2;
 const unsigned short BUBBLING_PHASE = 3;

 readonly attribute DOMString type;
 readonly attribute EventTarget target;
 readonly attribute Node currentNode;
 readonly attribute unsigned short eventPhase;
 readonly attribute boolean bubbles;
 readonly attribute boolean cancelable;
 readonly attribute DOMTimeStamp timeStamp;
 void stopPropagation();
 void preventDefault();
 void initEvent(in DOMString eventTypeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg);
};

Definition group PhaseType

An integer indicating which phase of event flow is being processed.
Defined Constants

AT_TARGET The event is currently being evaluated at the target node.

BUBBLING_PHASE The current event phase is the bubbling phase.

CAPTURING_PHASE The current event phase is the capturing phase.

Attributes
bubbles of type boolean, readonly

Used to indicate whether or not an event is a bubbling event. If the event can bubble the
value is true, else the value is false.

cancelable of type boolean, readonly
Used to indicate whether or not an event can have its default action prevented. If the
default action can be prevented the value is true, else the value is false.

currentNode of type Node [p.39] , readonly
Used to indicate the Node [p.39] whose EventListeners [p.226] are currently being
processed. This is particularly useful during capturing and bubbling.

228

6.4. Event interface

eventPhase of type unsigned short, readonly
Used to indicate which phase of event flow is currently being evaluated.

target of type EventTarget [p.224] , readonly
Used to indicate the EventTarget [p.224] to which the event was originally dispatched.

timeStamp of type DOMTimeStamp [p.22] , readonly
Used to specify the time (in milliseconds relative to the epoch) at which the event was
created. Due to the fact that some systems may not provide this information the value of
timeStamp may be not available for all events. When not available, a value of 0 will be
returned. Examples of epoch time are the time of the system start or 0:0:0 UTC 1st January
1970.

type of type DOMString [p.21] , readonly
The name of the event (case-insensitive). The name must be an XML name [p.453] .

Methods
initEvent

The initEvent method is used to initialize the value of an Event created through the
DocumentEvent [p.231] interface. This method may only be called before the Event
has been dispatched via the dispatchEvent method, though it may be called multiple
times during that phase if necessary. If called multiple times the final invocation takes
precedence. If called from a subclass of Event interface only the values specified in the
initEvent method are modified, all other attributes are left unchanged.
Parameters

DOMString
[p.21]

eventTypeArg Specifies the event type. This type
may be any event type currently
defined in this specification or a new
event type.. The string must be an
XML name [p.453] .

Any new event type must not begin
with any upper, lower, or mixed case
version of the string "DOM". This
prefix is reserved for future DOM
event sets.

boolean canBubbleArg Specifies whether or not the event can
bubble.

boolean cancelableArg Specifies whether or not the event’s
default action can be prevented.

No Return Value
No Exceptions

229

6.4. Event interface

preventDefault
If an event is cancelable, the preventDefault method is used to signify that the event
is to be canceled, meaning any default action normally taken by the implementation as a
result of the event will not occur. If, during any stage of event flow, the
preventDefault method is called the event is canceled. Any default action associated
with the event will not occur. Calling this method for a non-cancelable event has no effect.
Once preventDefault has been called it will remain in effect throughout the remainder
of the event’s propagation. This method may be used during any stage of event flow.
No Parameters
No Return Value
No Exceptions

stopPropagation
The stopPropagation method is used prevent further propagation of an event during
event flow. If this method is called by any EventListener [p.226] the event will cease
propagating through the tree. The event will complete dispatch to all listeners on the
current EventTarget [p.224] before event flow stops. This method may be used during
any stage of event flow.
No Parameters
No Return Value
No Exceptions

Exception EventException introduced in DOM Level 2

Event operations may throw an EventException [p.230] as specified in their method
descriptions.
IDL Definition

// Introduced in DOM Level 2:
exception EventException {
 unsigned short code;
};

// EventExceptionCode
const unsigned short UNSPECIFIED_EVENT_TYPE_ERR = 0;

Definition group EventExceptionCode

An integer indicating the type of error generated.
Defined Constants

UNSPECIFIED_EVENT_TYPE_ERR If the Event [p.227] ’s type was not
specified by initializing the event before
the method was called. Specification of the
Event’s type as null or an empty string
will also trigger this exception.

230

6.4. Event interface

6.5. DocumentEvent interface
Interface DocumentEvent (introduced in DOM Level 2)

The DocumentEvent interface provides a mechanism by which the user can create an Event of a
type supported by the implementation. It is expected that the DocumentEvent interface will be
implemented on the same object which implements the Document [p.29] interface in an
implementation which supports the Event model.
IDL Definition

// Introduced in DOM Level 2:
interface DocumentEvent {
 Event createEvent(in DOMString eventType)
 raises(DOMException);
};

Methods
createEvent

Parameters

DOMString
[p.21]

eventType The eventType parameter specifies the
type of Event [p.227] interface to be
created. If the Event interface specified is
supported by the implementation this method
will return a new Event of the interface type
requested. If the Event is to be dispatched
via the dispatchEvent method the
appropriate event init method must be called
after creation in order to initialize the
Event’s values. As an example, a user
wishing to synthesize some kind of
UIEvent [p.232] would call
createEvent with the parameter
"UIEvents". The initUIEvent method
could then be called on the newly created
UIEvent to set the specific type of UIEvent
to be dispatched and set its context
information.

The createEvent method is used in
creating Event [p.227] s when it is either
inconvenient or unnecessary for the user to
create an Event themselves. In cases where
the implementation provided Event is
insufficient, users may supply their own
Event implementations for use with the
dispatchEvent method.

231

6.5. DocumentEvent interface

Return Value

Event [p.227] The newly created Event

Exceptions

DOMException
[p.24]

NOT_SUPPORTED_ERR: Raised if the implementation
does not support the type of Event [p.227] interface
requested

6.6. Event set definitions
The DOM Level 2 Event Model allows a DOM implementation to support multiple sets of events. The
model has been designed to allow addition of new event sets as is required. The DOM will not attempt to
define all possible events. For purposes of interoperability, the DOM will define a set of user interface
events including lower level device dependent events, a set of UI logical events, and a set of document
mutation events.

6.6.1. User Interface event types

The User Interface event set is composed of events listed in HTML 4.0 and additional events which are
supported in DOM Level 0 [p.450] browsers.

A DOM consumer can use the hasFeature of the DOMImplementation [p.26] interface to
determine whether the User Interface event set has been implemented by a DOM implementation. The
feature string for this event set is "UIEvents". This string is also used with the createEvent method.

Interface UIEvent (introduced in DOM Level 2)

The UIEvent interface provides specific contextual information associated with User Interface
events.
IDL Definition

// Introduced in DOM Level 2:
interface UIEvent : Event {
 readonly attribute views::AbstractView view;
 readonly attribute long detail;
 void initUIEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg);
};

Attributes
detail of type long, readonly

Specifies some detail information about the Event [p.227] , depending on the type of

232

6.6. Event set definitions

event.

view of type views::AbstractView, readonly
The view attribute identifies the AbstractView [p.127] from which the event was
generated.

Methods
initUIEvent

The initUIEvent method is used to initialize the value of a UIEvent created through
the DocumentEvent [p.231] interface. This method may only be called before the
UIEvent has been dispatched via the dispatchEvent method, though it may be called
multiple times during that phase if necessary. If called multiple times, the final invocation
takes precedence.
Parameters

DOMString [p.21] typeArg Specifies the event type.

boolean canBubbleArg Specifies whether or not
the event can bubble.

boolean cancelableArg Specifies whether or not
the event’s default action
can be prevented.

views::AbstractView viewArg Specifies the Event
[p.227] ’s
AbstractView
[p.127] .

long detailArg Specifies the Event
[p.227] ’s detail.

No Return Value
No Exceptions

The different types of such events that can occur are:

DOMFocusIn
The focusin event occurs when a node receives focus, for instance via a pointing device being moved
onto an element or by tabbing navigation to the element. Unlike the HTML event focus, focusin can
be applied to any node, not just FORM controls.

Bubbles: Yes
Cancelable: No
Context Info: None

DOMFocusOut
The focusout event occurs when a node loses focus, for instance via a pointing device being moved
out of an element or by tabbing navigation out of the element. Unlike the HTML event blur, focusout
can be applied to any node, not just FORM controls.

233

6.6.1. User Interface event types

Bubbles: Yes
Cancelable: No
Context Info: None

DOMActivate
The activate event occurs when an element is activated, for instance, thru a mouse click or a
keypress. A numerical argument is provided to give an indication of the type of activation that
occurs: 1 for a simple activation (e.g. a simple click or Enter), 2 for hyperactivation (for instance a
double click or Shift Enter).

Bubbles: Yes
Cancelable: Yes
Context Info: detail (the numerical value)

6.6.2. Mouse event types

The Mouse event set is composed of events listed in HTML 4.0 and additional events which are supported
in DOM Level 0 [p.450] browsers. This event set is specifically designed for use with mouse input
devices.

A DOM consumer can use the hasFeature of the DOMImplementation [p.26] interface to
determine whether the User Interface event set has been implemented by a DOM implementation. The
feature string for this event set is "MouseEvents". This string is also used with the createEvent
method.

Interface MouseEvent (introduced in DOM Level 2)

The MouseEvent interface provides specific contextual information associated with Mouse events.

The detail attribute inherited from UIEvent [p.232] indicates the number of times a mouse
button has been pressed and released over the same screen location during a user action. The attribute
value is 1 when the user begins this action and increments by 1 for each full sequence of pressing and
releasing. If the user moves the mouse between the mousedown and mouseup the value will be set to
0, indicating that no click is occurring.

In the case of nested elements mouse events are always targeted at the most deeply nested element.
Ancestors of the targeted element may use bubbling to obtain notification of mouse events which
occur within its descendent elements.
IDL Definition

// Introduced in DOM Level 2:
interface MouseEvent : UIEvent {
 readonly attribute long screenX;
 readonly attribute long screenY;
 readonly attribute long clientX;
 readonly attribute long clientY;
 readonly attribute boolean ctrlKey;
 readonly attribute boolean shiftKey;
 readonly attribute boolean altKey;
 readonly attribute boolean metaKey;
 readonly attribute unsigned short button;

234

6.6.2. Mouse event types

 readonly attribute Node relatedNode;
 void initMouseEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg,
 in long screenXArg,
 in long screenYArg,
 in long clientXArg,
 in long clientYArg,
 in boolean ctrlKeyArg,
 in boolean altKeyArg,
 in boolean shiftKeyArg,
 in boolean metaKeyArg,
 in unsigned short buttonArg,
 in Node relatedNodeArg);
};

Attributes
altKey of type boolean, readonly

Used to indicate whether the ’alt’ key was depressed during the firing of the event. On
some platforms this key may map to an alternative key name.

button of type unsigned short, readonly
During mouse events caused by the depression or release of a mouse button, button is
used to indicate which mouse button changed state. The values for button range from
zero to indicate the left button of the mouse, one to indicate the middle button if present,
and two to indicate the right button. For mice configured for left handed use in which the
button actions are reversed the values are instead read from right to left.

clientX of type long, readonly
The horizontal coordinate at which the event occurred relative to the DOM
implementation’s client area.

clientY of type long, readonly
The vertical coordinate at which the event occurred relative to the DOM implementation’s
client area.

ctrlKey of type boolean, readonly
Used to indicate whether the ’ctrl’ key was depressed during the firing of the event.

metaKey of type boolean, readonly
Used to indicate whether the ’meta’ key was depressed during the firing of the event. On
some platforms this key may map to an alternative key name.

relatedNode of type Node [p.39] , readonly
Used to identify a secondary node related to a UI event. Currently this attribute is used with
the mouseover event to indicate the Node [p.39] which the pointing device exited and with
the mouseout event to indicate the Node which the pointing device entered.

235

6.6.2. Mouse event types

screenX of type long, readonly
The horizontal coordinate at which the event occurred relative to the origin of the screen
coordinate system.

screenY of type long, readonly
The vertical coordinate at which the event occurred relative to the origin of the screen
coordinate system.

shiftKey of type boolean, readonly
Used to indicate whether the ’shift’ key was depressed during the firing of the event.

Methods
initMouseEvent

The initMouseEvent method is used to initialize the value of a MouseEvent created
through the DocumentEvent [p.231] interface. This method may only be called before
the MouseEvent has been dispatched via the dispatchEvent method, though it may
be called multiple times during that phase if necessary. If called multiple times, the final
invocation takes precedence.
Parameters

DOMString [p.21] typeArg Specifies the event
type.

boolean canBubbleArg Specifies whether or
not the event can
bubble.

boolean cancelableArg Specifies whether or
not the event’s default
action can be
prevented.

views::AbstractView viewArg Specifies the Event
[p.227] ’s
AbstractView
[p.127] .

long detailArg Specifies the Event
[p.227] ’s mouse click
count.

long screenXArg Specifies the Event
[p.227] ’s screen x
coordinate

long screenYArg Specifies the Event
[p.227] ’s screen y
coordinate

236

6.6.2. Mouse event types

long clientXArg Specifies the Event
[p.227] ’s client x
coordinate

long clientYArg Specifies the Event
[p.227] ’s client y
coordinate

boolean ctrlKeyArg Specifies whether or
not control key was
depressed during the
Event [p.227] .

boolean altKeyArg Specifies whether or
not alt key was
depressed during the
Event [p.227] .

boolean shiftKeyArg Specifies whether or
not shift key was
depressed during the
Event [p.227] .

boolean metaKeyArg Specifies whether or
not meta key was
depressed during the
Event [p.227] .

unsigned short buttonArg Specifies the Event
[p.227] ’s mouse
button.

Node [p.39] relatedNodeArg Specifies the Event
[p.227] ’s related Node.

No Return Value
No Exceptions

The different types of Mouse events that can occur are:

click
The click event occurs when the pointing device button is clicked over an element. A click is defined
as a mousedown and mouseup over the same screen location. The sequence of these events is:

 mousedown
 mouseup
 click

If multiple clicks occur at the same screen location, the sequence repeats with the detail attribute
incrementing with each repetition. This event is valid for most elements.

237

6.6.2. Mouse event types

Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey, button,
detail

mousedown
The mousedown event occurs when the pointing device button is pressed over an element. This event
is valid for most elements.

Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey, button,
detail

mouseup
The mouseup event occurs when the pointing device button is released over an element. This event is
valid for most elements.

Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey, button,
detail

mouseover
The mouseover event occurs when the pointing device is moved onto an element. This event is valid
for most elements.

Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey,
relatedNode indicates the Node [p.39] the pointing device is exiting.

mousemove
The mousemove event occurs when the pointing device is moved while it is over an element. This
event is valid for most elements.

Bubbles: Yes
Cancelable: No
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey

mouseout
The mouseout event occurs when the pointing device is moved away from an element. This event is
valid for most elements..

Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey,
relatedNode indicates the Node [p.39] the pointing device is entering.

6.6.3. Key events

The DOM Level 2 Event specification does not provide a key event set. An event set designed for use
with keyboard input devices will be included in a later version of the DOM specification.

238

6.6.3. Key events

6.6.4. Mutation event types

The mutation event set is designed to allow notification of any changes to the structure of a document,
including attr and text modifications. It may be noted that none of the mutation events listed are
designated as cancelable. This stems from the fact that it is very difficult to make use of existing DOM
interfaces which cause document modifications if any change to the document might or might not take
place due to cancelation of the related event. Although this is still a desired capability, it was decided that
it would be better left until the addition of transactions into the DOM.

Many single modifications of the tree can cause multiple mutation events to be fired. Rather than attempt
to specify the ordering of mutation events due to every possible modification of the tree, the ordering of
these events is left to the implementation.

A DOM consumer can use the hasFeature of the DOMImplementation [p.26] interface to
determine whether the mutation event set has been implemented by a DOM implementation. The feature
string for this event set is "MutationEvents". This string is also used with the createEvent method.

Interface MutationEvent (introduced in DOM Level 2)

The MutationEvent interface provides specific contextual information associated with Mutation
events.
IDL Definition

// Introduced in DOM Level 2:
interface MutationEvent : Event {
 readonly attribute Node relatedNode;
 readonly attribute DOMString prevValue;
 readonly attribute DOMString newValue;
 readonly attribute DOMString attrName;
 void initMutationEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in Node relatedNodeArg,
 in DOMString prevValueArg,
 in DOMString newValueArg,
 in DOMString attrNameArg);
};

Attributes
attrName of type DOMString [p.21] , readonly

attrName indicates the name of the changed Attr [p.57] node in a DOMAttrModified
event.

newValue of type DOMString [p.21] , readonly
newValue indicates the new value of the Attr [p.57] node in DOMAttrModified events,
and of the CharacterData [p.53] node in DOMCharDataModified events.

prevValue of type DOMString [p.21] , readonly
prevValue indicates the previous value of the Attr [p.57] node in DOMAttrModified
events, and of the CharacterData [p.53] node in DOMCharDataModified events.

239

6.6.4. Mutation event types

relatedNode of type Node [p.39] , readonly
relatedNode is used to identify a secondary node related to a mutation event. For
example, if a mutation event is dispatched to a node indicating that its parent has changed,
the relatedNode is the changed parent. If an event is instead dispatch to a subtree
indicating a node was changed within it, the relatedNode is the changed node.

Methods
initMutationEvent

The initMutationEvent method is used to initialize the value of a
MutationEvent created through the DocumentEvent [p.231] interface. This method
may only be called before the MutationEvent has been dispatched via the
dispatchEvent method, though it may be called multiple times during that phase if
necessary. If called multiple times, the final invocation takes precedence.
Parameters

DOMString
[p.21]

typeArg
Specifies the event type.

boolean canBubbleArg Specifies whether or not the event
can bubble.

boolean cancelableArg Specifies whether or not the event’s
default action can be prevented.

Node [p.39] relatedNodeArg Specifies the Event [p.227] ’s
related Node

DOMString prevValueArg Specifies the Event [p.227] ’s
prevValue attribute

DOMString newValueArg Specifies the Event [p.227] ’s
newValue attribute

DOMString attrNameArg Specifies the Event [p.227] ’s
attrName attribute

No Return Value
No Exceptions

The different types of Mutation events that can occur are:

DOMSubtreeModified
This is a general event for notification of all changes to the document. It can be used instead of the
more specific events listed below. It may be fired after a single modification to the document or, at
the implementation’s discretion, after multiple changes have occurred. The latter use should
generally be used to accomodate multiple changes which occur either simultaneously or in rapid
succession. The target of this event is the lowest common parent of the changes which have taken
place. This event is dispatched after any other events caused by the mutation have fired.

240

6.6.4. Mutation event types

Bubbles: Yes
Cancelable: No
Context Info: None

DOMNodeInserted
Fired when a node has been added as a child of another node. This event is dispatched after the
insertion has taken place. The target of this event is the node being inserted.

Bubbles: Yes
Cancelable: No
Context Info: relatedNode holds the parent node

DOMNodeRemoved
Fired when a node is being removed from another node. This event is dispatched before the node is
removed from the tree. The target of this event is the node being removed.

Bubbles: Yes
Cancelable: No
Context Info: relatedNode holds the parent node

DOMNodeRemovedFromDocument
Fired when a node is being removed from a document, either through direct removal of the Node or
removal of a subtree in which it is contained. This event is dispatched before the removal takes place.
The target of this event is the node being removed. If the Node is being directly removed the
nodeRemoved event will fire before the nodeRemovedFromDocument event.

Bubbles: No
Cancelable: No
Context Info: None

DOMNodeInsertedIntoDocument
Fired when a node is being inserted into a document, either through direct insertion of the Node or
insertion of a subtree in which it is contained. This event is dispatched after the insertion has taken
place. The target of this event is the node being inserted. If the Node is being directly inserted the
nodeInserted event will fire before the nodeInsertedIntoDocument event.

Bubbles: No
Cancelable: No
Context Info: None

DOMAttrModified
Fired after an Attr [p.57] has been modified on a node. The target of this event is the Node [p.39]
whose Attr changed. The values of prevValue and newValue may be the empty string in cases
where an attribute has been added or removed.

Bubbles: Yes
Cancelable: No
Context Info: attrName, prevValue, newValue

DOMCharacterDataModified
Fired after CharacterData within a node has been modified but the node itself has not been inserted or
deleted. This event is also triggered by modifications to PI elements. The target of this event is the
CharacterData node.

Bubbles: Yes
Cancelable: No
Context Info: prevValue, newValue

241

6.6.4. Mutation event types

6.6.5. HTML event types

The HTML event set is composed of events listed in HTML 4.0 and additional events which are supported
in DOM Level 0 [p.450] browsers.

A DOM consumer can use the hasFeature of the DOMImplementation [p.26] interface to
determine whether the HTML event set has been implemented by a DOM implementation. The feature
string for this event set is "HTMLEvents". This string is also used with the createEvent method.

The HTML events use the base DOM Event interface to pass contextual information.

The different types of such events that can occur are:

load
The load event occurs when the DOM implementation finishes loading all content within a
document, all frames within a FRAMESET, or an OBJECT element.

Bubbles: No
Cancelable: No
Context Info: None

unload
The unload event occurs when the DOM implementation removes a document from a window or
frame. This event is valid for BODY and FRAMESET elements.

Bubbles: No
Cancelable: No
Context Info: None

abort
The abort event occurs when page loading is stopped before an image has been allowed to
completely load. This event applies to OBJECT elements.

Bubbles: Yes
Cancelable: No
Context Info: None

error
The error event occurs when an image does not load properly or when an error occurs during script
execution. This event is valid for OBJECT elements, BODY elements, and FRAMESET element.

Bubbles: Yes
Cancelable: No
Context Info: None

select
The select event occurs when a user selects some text in a text field. This event is valid for INPUT
and TEXTAREA elements.

Bubbles: Yes
Cancelable: No
Context Info: None

change
The change event occurs when a control loses the input focus and its value has been modified since
gaining focus. This event is valid for INPUT, SELECT, and TEXTAREA. element.

242

6.6.5. HTML event types

Bubbles: Yes
Cancelable: No
Context Info: None

submit
The submit event occurs when a form is submitted. This event only applies to the FORM element.

Bubbles: Yes
Cancelable: Yes
Context Info: None

reset
The reset event occurs when a form is reset. This event only applies to the FORM element.

Bubbles: Yes
Cancelable: No
Context Info: None

focus
The focus event occurs when an element receives focus either via a pointing device or by tabbing
navigation. This event is valid for the following elements: LABEL, INPUT, SELECT, TEXTAREA,
and BUTTON.

Bubbles: No
Cancelable: No
Context Info: None

blur
The blur event occurs when an element loses focus either via the pointing device or by tabbing
navigation. This event is valid for the following elements: LABEL, INPUT, SELECT, TEXTAREA,
and BUTTON.

Bubbles: No
Cancelable: No
Context Info: None

resize
The resize event occurs when a document view is resized.

Bubbles: Yes
Cancelable: No
Context Info: None

scroll
The scroll event occurs when a document view is scrolled.

Bubbles: Yes
Cancelable: No
Context Info: None

243

6.6.5. HTML event types

244

6.6.5. HTML event types

7. Document Object Model Traversal
Editors

Mike Champion, Software AG
Joe Kesselman, IBM
Jonathan Robie, Software AG

7.1. Overview
This chapter describes the optional DOM Level 2 Traversal feature. Its TreeWalker, NodeIterator, and
Filter interfaces provide easy-to-use, robust, selective traversal for document nodes. A DOM application
can use the hasFeature method of the DOMImplementation [p.26] interface to determine whether
they are supported or not. The feature string for all the interfaces listed in this section is "Traversal".
Iterators and TreeWalkers are two different ways of representing the nodes of a document subtree and a
position within the nodes they present. A NodeIterator presents a flattened view of the subtree as an
ordered sequence of document nodes, presented in document order. Because this view is presented
without respect to hierarchy, iterators have methods to move forward and backward, but not to move up
and down. A TreeWalker maintains the hierarchical relationships of the subtree, allowing navigation of
this hierarchy. In general, TreeWalkers are better for tasks in which the structure of the document around
selected nodes will be manipulated, while iterators are better for tasks that focus on the content of each
selected node.

Iterators and TreeWalkers each present a view of a document subtree that may not contain all nodes found
in the subtree. In this specification, we refer to this as the logical view to distinguish it from the physical
view, which corresponds to the document subtree per se. When an iterator or TreeWalker is created, it may
be associated with a Filter, which examines a node and determines whether it should appear in the logical
view. In addition, flags may be used to specify which node types should occur in the logical view.

Iterators and TreeWalkers are dynamic - the logical view changes to reflect changes made to the
underlying document. However, they differ in how they respond to those changes. NodeIterators, which
present the nodes sequentially, attempt to maintain their location relative to a position in that sequence
when the sequence’s contents change. TreeWalkers, which present the nodes as a filtered tree, maintain
their location relative to their current node, and remain attached to that node if it is moved to a new
context. We will discuss these behaviors in greater detail below.

7.1.1. Iterators

An iterator allows the members of a list of nodes to be returned sequentially. In the current DOM
interfaces, this list will always consist of the nodes of a subtree, presented in document order. When an
iterator is first created, calling nextNode() returns the first node in the logical view of the subtree; in most
cases, this is the root of the subtree. When no more nodes are present, nextNode() returns null.

Iterators are created using the createNodeIterator method found in the DocumentTraversal [p.263]
interface. When a NodeIterator is created, flags can be used to determine which node types will be
"visible" and which nodes will be "invisible" while traversing the tree; these flags can be combined using
the OR operator. Nodes that are "invisible" are skipped over by the iterator as though they did not exist.

245

7. Document Object Model Traversal

The following code creates an iterator, then calls a function to print the name of each element:

 NodeIterator iter=((DocumentTraversal)document).createNodeIterator(root, NodeFilter.SHOW_ELEMENT, null);

 while (Node n = iter.nextNode())
 printMe(n);

7.1.1.1. Moving Forward and Backward

Iterators present nodes as an ordered list, and move forward and backward within this list. The iterator’s
position is always between two nodes, before the first node, or after the last node. When an iterator is first
created, the position is set before the first item. The following diagram shows the list view that an iterator
might provide for a particular subtree, with the position indicated by an asterisk ’*’ :

 * A B C D E F G H I

Each call to nextNode() returns the next node and advances the position. For instance, if we start with the
above position, the first call to nextNode() returns "A" and advances the iterator:

 [A] * B C D E F G H I

The position of an iterator can best be described with respect to the last node returned, which we will call
the reference node. When an iterator is created, the first node is the reference node, and the iterator is
positioned before the reference node. In these diagrams, we use square brackets to indicate the reference
node.

A call to previousNode() returns the previous node and moves the position backward. For instance, if we
start with the iterator between "A" and "B", it would return "A" and move to the position shown below:

 * [A] B C D E F G H I

If nextNode() is called at the end of a list, or previousNode() is called at the beginning of a list, it returns
null and does not change the position of the iterator. When an iterator is first created, the reference node
is the first node:

 * [A] B C D E F G H I

7.1.1.2. Robustness

An iterator may be active while the data structure it navigates is being edited, so an iterator must behave
gracefully in the face of change. Additions and removals in the underlying data structure do not invalidate
an iterator; in fact, an iterator is never invalidated unless its detach() method is invoked. To make this
possible, the iterator uses the reference node to maintain its position. The state of an iterator also depends
on whether the iterator is positioned before or after the reference node. If the reference node is removed,
another node becomes the reference node.

If changes to the iterated list do not remove the reference node, they do not affect the state of the iterator.
For instance, the iterator’s state is not affected by inserting new nodes in the vicinity of the iterator or
removing nodes other than the reference node. Suppose we start from the following position:

246

7.1.1. Iterators

A B C [D] * E F G H I

Now let’s remove "E". The resulting state is:

A B C [D] * F G H I

If a new node is inserted, the iterator stays close to the reference node, so if a node is inserted between "D"
and "F", it will occur between the iterator and "F":

A B C [D] * X F G H I

Moving a node is equivalent to a removal followed by an insertion. If we move "I" to the position before
"X" the result is:

A B C [D] * I X F G H

If the reference node is removed, a different node is selected as the reference node. If the reference node is
before the iterator, which is usually the case after nextNode() has been called, the nearest node before the
iterator is chosen as the new reference node. Suppose we remove the "D" node, starting from the
following state:

A B C [D] * F G H I

The "C" node becomes the new reference node, since it is the nearest node to the iterator that is before the
iterator:

A B [C] * F G H I

If the reference node is after the iterator, which is usually the case after previousNode() has been called,
the nearest node after the iterator is chosen as the new reference node. Suppose we remove "E", starting
from the following state:

A B C D * [E] F G H I

The "F" node becomes the new reference node, since it is the nearest node to the iterator that is after the
iterator:

A B C D * [F] G H I

Moving a node is equivalent to a removal followed by an insertion. Suppose we wish to move the "D"
node to the end of the list, starting from the following state:

A B C [D] * F G H I C

The resulting state is as follows:

A B [C] * F G H I D

One special case arises when the reference node is the last node in the list and the reference node is
removed. Suppose we remove node "C", starting from the following state:

247

7.1.1. Iterators

A B * [C]

According to the rules we have given, the new reference node should be the nearest node after the iterator,
but there are no further nodes after "C". The same situation can arise when previousNode() has just
returned the first node in the list, which is then removed. Hence: If there is no node in the original
direction of the reference node, the nearest node in the opposite direction is selected as the reference node:

A [B] *

If the iterator is positioned within a block of nodes that is removed, the above rules clearly indicate what is
to be done. For instance, suppose "C" is the parent node of "D", "E", and "F", and we remove "C", starting
with the following state:

A B C [D] * E F G H I D

The resulting state is as follows:

A [B] * G H I D

7.1.1.3. Visibility of Nodes

The underlying data structure that is being iterated may contain nodes that are not part of the logical view,
and therefore will not be returned by the iterator. If invisible nodes are present, nextNode() returns the
next visible node, skipping over nodes that are to be excluded because of the value of the whatToShow
flag. If a filter is present, it is applied before returning a node; if the filter does not accept the node, the
process is repeated until a node is accepted by the filter. That node is returned. If no visible nodes are
encountered, a null is returned and the iterator is positioned at the end of the list. In this case, the reference
node is the last node in the list, whether or not it is visible. The same approach is taken, in the opposite
direction, for previousNode().

In the following examples, we will use lowercase letters to represent nodes that are in the data structure,
but which are not in the logical view. For instance, consider the following list:

A [B] * c d E F G

A call to nextNode() returns E and advances to the following position:

A B c d [E] * F G

Nodes that are not visible may nevertheless be used as reference nodes if a reference node is removed.
Suppose node "E" is removed, started from the state given above. The resulting state is:

A B c [d] * F G

Suppose a new node "X", which is visible, is inserted before "d". The resulting state is:

A B c X [d] * F G

248

7.1.1. Iterators

Note that a call to previousNode() now returns node X. It is important not to skip over invisible nodes
when the reference node is removed, because there are cases, like the one just given above, where the
wrong results will be returned. When "E" was removed, if the new reference node had been "B" rather
than "d", calling previousNode() would not return "X".

7.1.2. Filters

Filters allow the user to create objects that "filter out" nodes. Each filter contains a user-written function
that looks at a node and determines whether or not it should be filtered out. To use a filter, you create a
NodeIterator or a TreeWalker that uses the filter. The Iterator or TreeWalker applies the filter to each
node, and if the filter does not accept the node, the iterator or TreeWalker skips over the node as though it
were not present in the document. Filters need not know how to navigate the structure that contains the
nodes on which they operate.

Filters will be consulted when a traversal operation is performed, or when a NodeIterator’s reference node
is removed from the subtree being iterated over and it must select a new one. However, the exact timing of
these filter calls may vary from one DOM implementation to another. For that reason, filters should not
attempt to maintain state based on the history of past invocations; the resulting behavior may not be
portable.

Similarly, TreeWalkers and NodeIterators should behave as if they have no memory of past filter results,
and no anticipation of future results. If the conditions a filter is examining have changed (e.g., an attribute
which it tests has been added or removed) since the last time the traversal logic examined this node, this
change in visibility will be discovered only when the next traversal operation is performed. For example:
if the filtering for the current node changes from FILTER_SHOW to FILTER_SKIP, a TreeWalker will
be able to navigate off that node in any direction, but not back to it unless the filtering conditions change
again. Filters which change during a traversal can be written, but their behavior may be confusing and
they should be avoided when possible.

7.1.2.1. Using Filters

A Filter contains one method named acceptNode(), which allows an iterator or TreeWalker to pass a Node
to a filter and ask whether it should be present in the logical view. The acceptNode() function returns one
of three values to state how the Node should be treated. If acceptNode() returns FILTER_ACCEPT, the
Node will be present in the logical view; if it returns FILTER_SKIP, the Node will not be present in the
logical view, but the children of the Node may; if it returns FILTER_REJECT, neither the Node nor its
descendants will be present in the logical view. Since iterators present nodes as an ordered list, without
hierarchy, FILTER_REJECT and FILTER_SKIP are synonyms for iterators, skipping only the single
current node.

Consider a filter that accepts the named anchors in an HTML document. In HTML, an HREF can refer to
any A element that has a NAME attribute. Here is a filter in Java that looks at a node and determines
whether it is a named anchor:

 class NamedAnchorFilter implements NodeFilter
 {
 short acceptNode(Node n) {
 if (n.getNodeType()==Node.ELEMENT_NODE) {

249

7.1.2. Filters

 Element e = (Element)n;
 if (! e.getNodeName().equals("A"))
 return FILTER_SKIP;
 if (e.getAttributeNode("NAME") != null) {
 return FILTER_ACCEPT;
 }
 }
 return FILTER_SKIP;
 }
 }

If the above Filter were to be used only with NodeIterators, it could have used FILTER_REJECT
wherever FILTER_SKIP is used, and the behavior would not change. For TreeWalker, though,
FILTER_REJECT would reject the children of any element that is not a named anchor, and since named
anchors are always contained within other elements, this would have meant that no named anchors would
be found. FILTER_SKIP rejects the given node, but continues to examine the children; therefore, the
above filter will work with either a NodeIterator or a TreeWalker.

To use this filter, the user would create an instance of the filter and create an iterator using it:

 NamedAnchorFilter myFilter = new NamedAnchorFilter();
 NodeIterator iter=((DocumentTraversal)document).createNodeIterator(node, NodeFilter.SHOW_ELEMENT, myFilter);

Note that the use of the SHOW_ELEMENT flag is not strictly necessary in this example, since our sample
Filter tests the nodeType. However, some implementations of the Traversal interfaces may be able to
improve whatToShow performance by taking advantage of knowledge of the document’s structure, which
makes the use of SHOW_ELEMENT worthwhile. Conversely, while we could remove the nodeType test
from our Filter, that would make it dependent upon whatToShow to distinguish between Elements, Attr’s,
and ProcessingInstructions.

7.1.2.2. Filters and Exceptions

When writing a Filter, users should avoid writing code that can throw an exception. However, because an
implementation can not prevent users from doing so, it is important that the behavior of filters that throw
an exception be well-defined. A TreeWalker or NodeIterator does not catch or alter an exception thrown
by a filter, but lets it propagate up to the user’s code. The following functions may invoke a Filter, and
may therefore propagate an exception if one is thrown by a Filter:

1. NodeIterator.nextNode()
2. NodeIterator.previousNode()
3. TreeWalker.firstChild()
4. TreeWalker.lastChild()
5. TreeWalker.nextSibling()
6. TreeWalker.previousSibling()
7. TreeWalker.nextNode()
8. TreeWalker.previousNode()
9. TreeWalker.parentNode()

250

7.1.2. Filters

7.1.2.3. Filters and Document Mutation

Well-designed Filters do not modify the underlying document structure, but a Filter implementation can
not prevent a user from writing code that does modify the document structure. Filters do not provide any
special processing to handle this case. For instance, if a Filter removes a node from a document, it can still
accept the node, which means that the node may be returned by the NodeIterator or TreeWalker even
though it is no longer in the document. In general, this may lead to inconsistent, confusing results, so we
encourage users to write Filters that make no changes to document structures.

7.1.2.4. Filters and whatToShow flags

Iterator and TreeWalker apply whatToShow flags before applying Filters. If a node is skipped by the
active whatToShow flags, a Filter will not be called to evaluate that node. Please note that this behavior is
similar to that of FILTER_SKIP; children of that node will be considered, and Filters may be called to
evaluate them. Also note that it will in fact be a "skip" even if the Filter would have preferred to reject the
entire subtree; if this would cause a problem in your application, consider setting whatToShow to
SHOW_ALL and performing the nodeType test inside your filter.

7.1.3. TreeWalker

The TreeWalker [p.260] interface provides many of the same benefits as the NodeIterator interface.
The main difference between these two interfaces is that the TreeWalker presents a tree-oriented view
of the nodes in a subtree, and an iterator presents a list-oriented view. In other words, an iterator allows
you to move forward or back, but a TreeWalker allows you to move to the parent of a node, to one of
its children, or to a sibling.

Using a TreeWalker [p.260] is quite similar to navigation using the Node directly, and the navigation
methods for the two interfaces are analogous. For instance, here is a function that walks over a tree of
nodes in document order, taking separate actions when first entering a node and after processing any
children:

 processMe(Node n) {
 nodeStartActions(n);
 for (Node child=n.firstChild(); child != null; child=child.nextSibling())
 processMe(child);
 }
 nodeEndActions(n);
 }

Doing the same thing using a TreeWalker [p.260] is quite similar. There is one difference: since
navigation on the TreeWalker changes the current position, the position at the end of the function has
changed. A read/write attribute named currentNode allows the current node for a TreeWalker to be
set. We will use this to ensure that the position of the TreeWalker is restored when this function is
completed:

251

7.1.3. TreeWalker

 processMe(TreeWalker tw) {
 Node n = tw.getCurrentNode();
 nodeStartActions(tw);
 for (Node child=tw.firstChild(); child!=null; child=tw.nextSibling()) {
 processMe(tw);
 }

 tw.setCurrentNode(n);
 nodeEndActions(tw);
 }

The advantage of using a TreeWalker [p.260] instead of direct Node navigation is that the
TreeWalker allows the user to choose an appropriate view of the tree. Flags may be used to show or
hide comments or processing instructions, entities may be expanded or left as entity references. In
addition, Filters may be used to present a custom view of the tree. Suppose a program needs a view of a
document that shows which tables occur in each chapter, listed by chapter. In this view, only the chapter
elements and the tables that they contain are seen. The first step is to write an appropriate filter:

class TablesInChapters implements NodeFilter {

 short acceptNode(Node n) {
 if (n.getNodeType()==Node.ELEMENT_NODE) {

 if (n.getNodeName().equals("CHAPTER"))
 return FILTER_ACCEPT;

 if (n.getNodeName().equals("TABLE"))
 return FILTER_ACCEPT;

 if (n.getNodeName().equals("SECT1")
 || n.getNodeName().equals("SECT2")
 || n.getNodeName().equals("SECT3")
 || n.getNodeName().equals("SECT4")
 || n.getNodeName().equals("SECT5")
 || n.getNodeName().equals("SECT6")
 || n.getNodeName().equals("SECT7"))
 return FILTER_SKIP;

 }

 return FILTER_REJECT;
 }
}

This filter assumes that TABLE elements are contained directly in CHAPTER or SECTn elements. If
another kind of element is encountered, it and its children are rejected. If a SECTn element is encountered,
it is skipped, but its children are explored to see if they contain any TABLE elements.

Now the program can create an instance of this Filter, create a TreeWalker [p.260] that uses it, and pass
this TreeWalker to our ProcessMe() function:

TablesInChapters tablesInChapters = new TablesInChapters();
 TreeWalker tw = ((DocumentTraversal)document).createTreeWalker(root, NodeFilter.SHOW_ELEMENT, tablesInChapters);
 processMe(tw);

252

7.1.3. TreeWalker

(Again, we’ve chosen to both test the nodeType in the filter’s logic and use SHOW_ELEMENT, for the
reasons discussed in the earlier NodeIterator example.)

Without making any changes to the above ProcessMe() function, it now processes only the CHAPTER
and TABLE elements. The programmer can write other filters or set other flags to choose different sets of
nodes; if functions use TreeWalker [p.260] to navigate, they will support any view of the document
defined with a TreeWalker.

Note that the structure of a TreeWalker [p.260] ’s filtered view of a document may differ significantly
from that of the document itself. For example, a TreeWalker with only SHOW_TEXT specified in its
whatToShow parameter would present all the Text Nodes as if they were siblings of each other yet had no
parent.

7.1.3.1. Robustness

As with iterators, a TreeWalker [p.260] may be active while the data structure it navigates is being
edited, and must behave gracefully in the face of change. Additions and removals in the underlying data
structure do not invalidate a TreeWalker; in fact, a TreeWalker is never invalidated.

But a TreeWalker [p.260] ’s response to these changes is quite different from that of a
NodeIterator [p.254] . While NodeIterators respond to editing by maintaining their position
within the subtree that they are iterating over, TreeWalkers will instead remain attached to their
currentNode. All the TreeWalker’s navigation methods operate in terms of the context of the
currentNode at the time they are invoked, no matter what has happened to, or around, that node since the
last time the TreeWalker was accessed. This remains true even if the currentNode is moved out of its
original subtree.

As an example, consider the following document fragment:

 ...
 <subtree>
 <twRoot>
 <currentNode/>
 <anotherNode/>
 </twRoot>
 </subtree>
 ...

Let’s say we have created a TreeWalker [p.260] whose root node is the <twRoot/> element and whose
currentNode is the <currentNode/> element. For this illustration, we will assume that all the nodes shown
above are accepted by the TreeWalker’s whatToShow and filter settings.

If we use removeChild() to remove the <currentNode/> element from its parent, that element remains the
TreeWalker [p.260] ’s currentNode, even though it is no longer within the root node’s subtree. We can
still use the TreeWalker to navigate through any children that the orphaned currentNode may have, but
are no longer able to navigate outward from the currentNode since there is no parent available.

253

7.1.3. TreeWalker

If we use insertBefore() or appendChild() to give the <currentNode/> a new parent, then TreeWalker
[p.260] navigation will operate from the currentNode’s new location. For example, if we inserted the
<currentNode> immediately after the <anotherNode/> element, the TreeWalker’s previousSibling()
operation would move it back to the <anotherNode/>, and calling parentNode() would move it up to the
<twRoot/>.

If we instead insert the currentNode into the <subtree/> element, like so:

 ...
 <subtree>
 <currentNode/>
 <twRoot>
 <anotherNode/>
 </twRoot>
 </subtree>
 ...

we have moved the currentNode out from under the TreeWalker [p.260] ’s root node. This does not
invalidate the TreeWalker; it may still be used to navigate relative to the currentNode. Calling its
parentNode() operation, for example, would move it to the <subtree/> element, even though that too is
outside the original root node. However, if the TreeWalker’s navigation should take it back into the
original root node’s subtree -- for example, if rather than calling parentNode() we called nextNode(),
moving the TreeWalker to the <twRoot/> element -- the root node will "recapture" the TreeWalker, and
prevent it from traversing back out.

This becomes a bit more complicated when filters are in use. Relocation of the currentNode -- or explicit
selection of a new currentNode, or changes in the conditions that the filter is basing its decisions on -- can
result in a TreeWalker having a currentNode which would not otherwise be visible in the filtered view of
the document. This node can be thought of as a "transient member" of that view. When you ask the
TreeWalker to navigate off this node the result will be just as if it had been visible, but you may be unable
to navigate back to it unless conditions change to make it visible again.

In particular: If the currentNode becomes part of a subtree that would otherwise have been Rejected by the
filter, that entire subtree may be added as transient members of the logical view. You will be able to
navigate within that subtree (subject to all the usual filtering) until you move upward past the Rejected
ancestor. The behavior is as if the Rejected node had only been Skipped (since we somehow wound up
inside its subtree) until we leave it; thereafter, standard filtering applies.

7.2. Formal Interface Definition
Interface NodeIterator (introduced in DOM Level 2)

NodeIterators are used to step through a set of nodes, e.g. the set of nodes in a NodeList, the
document subtree governed by a particular node, the results of a query, or any other set of nodes. The
set of nodes to be iterated is determined by the implementation of the NodeIterator. DOM Level 2
specifies a single NodeIterator implementation for document-order traversal of a document subtree.
Instances of these iterators are created by calling DocumentTraversal.createNodeIterator().

254

7.2. Formal Interface Definition

IDL Definition

// Introduced in DOM Level 2:
interface NodeIterator {
 readonly attribute Node root;
 readonly attribute unsigned long whatToShow;
 readonly attribute NodeFilter filter;
 readonly attribute boolean expandEntityReferences;
 Node nextNode()
 raises(DOMException);
 Node previousNode()
 raises(DOMException);
 void detach();
};

Attributes
expandEntityReferences of type boolean, readonly

The value of this flag determines whether the children of entity reference nodes are visible
to the iterator. If false, they and their descendents will be rejected. Note that this rejection
takes precedence over whatToShow and the filter. Also note that this is currently the only
situation where Iterators may reject a complete subtree rather than skipping individual
nodes.
To produce a view of the document that has entity references expanded and does not
expose the entity reference node itself, use the whatToShow flags to hide the entity
reference node and set expandEntityReferences to true when creating the iterator. To
produce a view of the document that has entity reference nodes but no entity expansion, use
the whatToShow flags to show the entity reference node and set expandEntityReferences to
false.

filter of type NodeFilter [p.256] , readonly
The filter used to screen nodes.

root of type Node [p.39] , readonly
The root node of the Iterator, as specified when it was created.

whatToShow of type unsigned long, readonly
This attribute determines which node types are presented via the iterator. The available set
of constants is defined in the NodeFilter [p.256] interface. Nodes not accepted by
whatToShow will be skipped, but their children may still be considered. Note that this skip
takes precedence over the filter, if any.

Methods
detach

Detaches the iterator from the set which it iterated over, releasing any computational
resources and placing the iterator in the INVALID state. After detach has been invoked,
calls to nextNode or previousNode will raise the exception INVALID_STATE_ERR.
No Parameters
No Return Value
No Exceptions

255

7.2. Formal Interface Definition

nextNode
Returns the next node in the set and advances the position of the iterator in the set. After a
NodeIterator is created, the first call to nextNode() returns the first node in the set.
Return Value

Node
[p.39]

The next Node in the set being iterated over, or null if there are no
more members in that set.

Exceptions

DOMException
[p.24]

INVALID_STATE_ERR: Raised if this method is called
after the detach method was invoked.

No Parameters

previousNode
Returns the previous node in the set and moves the position of the iterator backwards in the
set.
Return Value

Node
[p.39]

The previous Node in the set being iterated over, or null if there are
no more members in that set.

Exceptions

DOMException
[p.24]

INVALID_STATE_ERR: Raised if this method is called
after the detach method was invoked.

No Parameters

Interface NodeFilter (introduced in DOM Level 2)

Filters are objects that know how to "filter out" nodes. If a NodeIterator [p.254] or
TreeWalker [p.260] is given a filter, it applies the filter before it returns the next node. If the filter
says to accept the node, the iterator returns it; otherwise, the iterator looks for the next node and
pretends that the node that was rejected was not there.

The DOM does not provide any filters. Filter is just an interface that users can implement to provide
their own filters.

Filters do not need to know how to iterate, nor do they need to know anything about the data
structure that is being iterated. This makes it very easy to write filters, since the only thing they have
to know how to do is evaluate a single node. One filter may be used with a number of different kinds
of iterators, encouraging code reuse.

256

7.2. Formal Interface Definition

Note: This is an ECMAScript function reference. This method returns a short. The parameter is of
type Node [p.39] .

IDL Definition

// Introduced in DOM Level 2:
interface NodeFilter {
 // Constants returned by acceptNode
 const short FILTER_ACCEPT = 1;
 const short FILTER_REJECT = 2;
 const short FILTER_SKIP = 3;

 // Constants for whatToShow
 const unsigned long SHOW_ALL = 0xFFFFFFFF;
 const unsigned long SHOW_ELEMENT = 0x00000001;
 const unsigned long SHOW_ATTRIBUTE = 0x00000002;
 const unsigned long SHOW_TEXT = 0x00000004;
 const unsigned long SHOW_CDATA_SECTION = 0x00000008;
 const unsigned long SHOW_ENTITY_REFERENCE = 0x00000010;
 const unsigned long SHOW_ENTITY = 0x00000020;
 const unsigned long SHOW_PROCESSING_INSTRUCTION = 0x00000040;
 const unsigned long SHOW_COMMENT = 0x00000080;
 const unsigned long SHOW_DOCUMENT = 0x00000100;
 const unsigned long SHOW_DOCUMENT_TYPE = 0x00000200;
 const unsigned long SHOW_DOCUMENT_FRAGMENT = 0x00000400;
 const unsigned long SHOW_NOTATION = 0x00000800;

 short acceptNode(in Node n);
};

Definition group Constants returned by acceptNode

The following constants are returned by the acceptNode() method:
Defined Constants

FILTER_ACCEPT Accept the node. Navigation methods defined for
NodeIterator [p.254] or TreeWalker [p.260] will return
this node.

FILTER_REJECT Reject the node. Navigation methods defined for
NodeIterator [p.254] or TreeWalker [p.260] will not
return this node. For TreeWalker, the children of this node
will also be rejected. Iterators treat this as a synonym for
FILTER_SKIP.

FILTER_SKIP Skip this single node. Navigation methods defined for
NodeIterator [p.254] or TreeWalker [p.260] will not
return this node. For both NodeIterator and Treewalker, the
children of this node will still be considered.

257

7.2. Formal Interface Definition

Definition group Constants for whatToShow

These are the available values for the whatToShow parameter used in TreeWalkers and
Iterators. They are the same as the set of possible types for Node, and their values are derived by
using a bit position corresponding to the value of Node.nodeType for the equivalent node type.
If a bit in whatToShow is set false, that will be taken as a request to skip over this type of node;
the behavior in that case is similar to that of FILTER_SKIP.

Note that if node types greater than 32 are ever introduced, they may not be individually testable
via whatToShow. If that need should arise, it can be handled by selecting SHOW_ALL together
with an appropriate NodeFilter.
Defined Constants

258

7.2. Formal Interface Definition

SHOW_ALL Show all nodes.

SHOW_ATTRIBUTE Show attribute nodes. This is
meaningful only when creating an
iterator or tree-walker with an attribute
node as its root; in this case, it means
that the attribute node will appear in the
first position of the iteration or
traversal. Since attributes are not part of
the document tree, they do not appear
when traversing over the document tree.

SHOW_CDATA_SECTION Show CDATASection nodes.

SHOW_COMMENT Show Comment nodes.

SHOW_DOCUMENT Show Document nodes.

SHOW_DOCUMENT_FRAGMENT Show DocumentFragment nodes.

SHOW_DOCUMENT_TYPE Show DocumentType nodes.

SHOW_ELEMENT Show element nodes.

SHOW_ENTITY Show Entity nodes. This is meaningful
only when creating an iterator or
tree-walker with an Entity node as its
root; in this case, it means that the
Entity node will appear in the first
position of the traversal. Since entities
are not part of the document tree, they
do not appear when traversing over the
document tree.

SHOW_ENTITY_REFERENCE Show Entity Reference nodes.

SHOW_NOTATION Show Notation nodes. This is
meaningful only when creating an
iterator or tree-walker with a Notation
node as its root; in this case, it means
that the Notation node will appear in the
first position of the traversal. Since
notations are not part of the document
tree, they do not appear when traversing
over the document tree.

SHOW_PROCESSING_INSTRUCTION Show ProcessingInstruction nodes.

SHOW_TEXT Show text nodes.

259

7.2. Formal Interface Definition

Methods
acceptNode

Test whether a specified node is visible in the logical view of a TreeWalker or
NodeIterator. This function will be called by the implementation of TreeWalker and
NodeIterator; it is not intended to be called directly from user code.
Parameters

Node [p.39] n The node to check to see if it passes the filter or not.

Return Value

short a constant to determine whether the node is accepted, rejected, or
skipped, as defined above [p.257] .

No Exceptions

Interface TreeWalker (introduced in DOM Level 2)

TreeWalker objects are used to navigate a document tree or subtree using the view of the
document defined by its whatToShow flags and any filters that are defined for the TreeWalker.
Any function which performs navigation using a TreeWalker will automatically support any view
defined by a TreeWalker.

Omitting nodes from the logical view of a subtree can result in a structure that is substantially
different from the same subtree in the complete, unfiltered document. Nodes that are siblings in the
TreeWalker view may be children of different, widely separated nodes in the original view. For
instance, consider a Filter that skips all nodes except for Text nodes and the root node of a document.
In the logical view that results, all text nodes will be siblings and appear as direct children of the root
node, no matter how deeply nested the structure of the original document.
IDL Definition

// Introduced in DOM Level 2:
interface TreeWalker {
 readonly attribute Node root;
 readonly attribute unsigned long whatToShow;
 readonly attribute NodeFilter filter;
 readonly attribute boolean expandEntityReferences;
 attribute Node currentNode;
 // raises(DOMException) on setting

 Node parentNode();
 Node firstChild();
 Node lastChild();
 Node previousSibling();
 Node nextSibling();
 Node previousNode();
 Node nextNode();
};

260

7.2. Formal Interface Definition

Attributes
currentNode of type Node [p.39]

The node at which the TreeWalker is currently positioned.
The value must not be null. Alterations to the DOM tree may cause the current node to no
longer be accepted by the TreeWalker’s associated filter. currentNode may also be
explicitly set to any node, whether or not it is within the subtree specified by the root node
or would be accepted by the filter and whatToShow flags. Further traversal occurs relative
to currentNode even if it is not part of the current view by applying the filters in the
requested direction (not changing currentNode where no traversal is possible).
Exceptions on setting

DOMException
[p.24]

NOT_SUPPORTED_ERR: Raised if the specified
currentNode is null.

expandEntityReferences of type boolean, readonly
The value of this flag determines whether the children of entity reference nodes are visible
to the TreeWalker. If false, they and their descendents will be rejected. Note that this
rejection takes precedence over whatToShow and the filter, if any.
To produce a view of the document that has entity references expanded and does not
expose the entity reference node itself, use the whatToShow flags to hide the entity
reference node and set expandEntityReferences to true when creating the TreeWalker. To
produce a view of the document that has entity reference nodes but no entity expansion, use
the whatToShow flags to show the entity reference node and set expandEntityReferences to
false.

filter of type NodeFilter [p.256] , readonly
The filter used to screen nodes.

root of type Node [p.39] , readonly
The root node of the TreeWalker, as specified when it was created.

whatToShow of type unsigned long, readonly
This attribute determines which node types are presented via the TreeWalker. The available
set of constants is defined in the NodeFilter [p.256] interface. Nodes not accepted by
whatToShow will be skipped, but their children may still be considered. Note that this skip
takes precedence over the filter, if any.

Methods
firstChild

Moves the TreeWalker to the first visible child of the current node, and returns the new
node. If the current node has no visible children, returns null, and retains the current
node.
Return Value

Node
[p.39]

The new node, or null if the current node has no visible children in
the TreeWalker’s logical view.

261

7.2. Formal Interface Definition

No Parameters
No Exceptions

lastChild
Moves the TreeWalker to the last visible child of the current node, and returns the new
node. If the current node has no visible children, returns null, and retains the current
node.
Return Value

Node
[p.39]

The new node, or null if the current node has no children in the
TreeWalker’s logical view.

No Parameters
No Exceptions

nextNode
Moves the TreeWalker to the next visible node in document order relative to the current
node, and returns the new node. If the current node has no next node, or if the search for
nextNode attempts to step upward from the TreeWalker’s root node, returns null, and
retains the current node.
Return Value

Node
[p.39]

The new node, or null if the current node has no next node in the
TreeWalker’s logical view.

No Parameters
No Exceptions

nextSibling
Moves the TreeWalker to the next sibling of the current node, and returns the new node.
If the current node has no visible next sibling, returns null, and retains the current node.
Return Value

Node
[p.39]

The new node, or null if the current node has no next sibling in the
TreeWalker’s logical view.

No Parameters
No Exceptions

parentNode
Moves to and returns the closest visible ancestor node of the current node. If the search for
parentNode attempts to step upward from the TreeWalker’s root node, or if it fails to find a
visible ancestor node, this method retains the current position and returns null.
Return Value

262

7.2. Formal Interface Definition

Node
[p.39]

The new parent node, or null if the current node has no parent in the
TreeWalker’s logical view.

No Parameters
No Exceptions

previousNode
Moves the TreeWalker to the previous visible node in document order relative to the
current node, and returns the new node. If the current node has no previous node, or if the
search for previousNode attempts to step upward from the TreeWalker’s root node, returns
null, and retains the current node.
Return Value

Node
[p.39]

The new node, or null if the current node has no previous node in
the TreeWalker’s logical view.

No Parameters
No Exceptions

previousSibling
Moves the TreeWalker to the previous sibling of the current node, and returns the new
node. If the current node has no visible previous sibling, returns null, and retains the
current node.
Return Value

Node
[p.39]

The new node, or null if the current node has no previous sibling in
the TreeWalker’s logical view.

No Parameters
No Exceptions

Interface DocumentTraversal (introduced in DOM Level 2)

DocumentTraversal contains methods that create iterators and tree-walkers to traverse a node
and its children in document order (depth first, pre-order traversal, which is equivalent to the order in
which the start tags occur in the text representation of the document). In DOMs which support the
Traversal feature, DocumentTraversal will be implemented by the same objects that implement the
Document interface.
IDL Definition

// Introduced in DOM Level 2:
interface DocumentTraversal {
 NodeIterator createNodeIterator(in Node root,
 in unsigned long whatToShow,
 in NodeFilter filter,
 in boolean entityReferenceExpansion);
 TreeWalker createTreeWalker(in Node root,

263

7.2. Formal Interface Definition

 in unsigned long whatToShow,
 in NodeFilter filter,
 in boolean entityReferenceExpansion)
 raises(DOMException);
};

Methods
createNodeIterator

Create a new NodeIterator over the subtree rooted at the specified node.
Parameters

Node [p.39] root The node which will
be iterated together
with its children. The
iterator is initially
positioned just before
this node. The
whatToShow flags
and the filter, if any,
are not considered
when setting this
position.

unsigned
long

whatToShow This flag specifies
which node types
may appear in the
logical view of the
tree presented by the
iterator. See the
description of iterator
for the set of possible
values.

These flags can be
combined using OR.

NodeFilter
[p.256]

filter The Filter to be used
with this TreeWalker,
or null to indicate no
filter.

boolean entityReferenceExpansion The value of this flag
determines whether
entity reference nodes
are expanded.

Return Value

264

7.2. Formal Interface Definition

NodeIterator [p.254] The newly created NodeIterator.

No Exceptions

createTreeWalker
Create a new TreeWalker over the subtree rooted at the specified node.
Parameters

Node [p.39] root The node which will
serve as the root for
the TreeWalker
[p.260] . The
whatToShow flags
and the NodeFilter
are not considered
when setting this
value; any node type
will be accepted as
the root. The
currentNode of the
TreeWalker is
initialized to this
node, whether or not
it is visible. The root
functions as a
stopping point for
traversal methods that
look upward in the
document structure,
such as parentNode
and nextNode. The
root must not be null.

unsigned
long

whatToShow This flag specifies
which node types
may appear in the
logical view of the
tree presented by the
iterator. See the
description of
TreeWalker for the
set of possible values.

These flags can be
combined using OR.

265

7.2. Formal Interface Definition

NodeFilter
[p.256]

filter The Filter to be used
with this TreeWalker,
or null to indicate no
filter.

boolean entityReferenceExpansion The value of this flag
determines whether
entity reference nodes
are expanded.

Return Value

TreeWalker [p.260] The newly created TreeWalker.

Exceptions

DOMException
[p.24]

Raises the exception NOT_SUPPORTED_ERR if the
specified root node is null.

266

7.2. Formal Interface Definition

8. Document Object Model Range
Editors

Vidur Apparao, Netscape Communications
Peter Sharpe, SoftQuad Software Inc.

8.1. Introduction
A Range identifies a range of content in a Document, DocumentFragment or Attr. It is contiguous in the
sense that it can be characterized as selecting all of the content between a pair of boundary-points.

Note: In a text editor or a word processor, a user can make a selection by pressing down the mouse at one
point in a document, moving the mouse to another point, and releasing the mouse. The resulting selection
is contiguous and consists of the content between the two points.

The term ’selecting’ does not mean that every Range corresponds to a selection made by a GUI user;
however, such a selection can be returned to a DOM user as a Range.

Note: In bidirectional writing (Arabic, Hebrew), a range may correspond to a logical selection that is not
necessarily contiguous when displayed. A visually contiguous selection, also used in some cases, may not
correspond to a single logical selection, and may therefore have to be represented by more than one range.

The Range interface provides methods for accessing and manipulating the document tree at a higher level
than similar methods in the Node interface. The expectation is that each of the methods provided by the
Range interface for the insertion, deletion and copying of content can be directly mapped to a series of
Node editing operations enabled by DOM Core. In this sense, the Range operations can be viewed as
convenience methods that also enable the implementation to optimize common editing patterns.

This chapter describes the Range interface, including methods for creating and moving a Range and
methods for manipulating content with Ranges. The feature string for the interfaces listed in this section is
"Range".

8.2. Definitions and Notation

8.2.1. Position

This chapter refers to two different representations of a document: the text or source form that includes the
document markup and the tree representation similar to the one described in the What is the Document
Object Model? [p.13] section.

A Range consists of two boundary-points corresponding to the start and the end of the Range. A
boundary-point’s position in a document or document fragment tree can be characterized by a node and an
offset. The node is called the container of the boundary-point and of its position. The container and its
ancestors are the ancestor containers of the boundary-point and of its position. The offset within the node
is called the offset of the boundary-point and its position. If the container is an Attr, Document, Document
Fragment, Element or EntityReference node, the offset is between its child nodes. If the container is a

267

8. Document Object Model Range

CharacterData, Comment or ProcessingInstruction node, the offset is between the 16-bit units of the
UTF-16 encoded string contained by it.

The boundary-points [p.267] of a Range must have a common ancestor container [p.267] which is either a
Document, DocumentFragment or Attr node. That is, the content of a Range must be entirely within the
subtree rooted by a single Document, DocumentFragment or Attr Node. This common ancestor container
[p.267] is known as the root container of the Range. The tree rooted by the root container [p.268] is
known as the Range’s context tree.

The container [p.267] of an boundary-point [p.267] of a Range must be an Element, Comment,
ProcessingInstruction, EntityReference, CDATASection, Document, DocumentFragment, Attr, or Text
node. None of the ancestor container [p.267] s of the boundary-point of a Range can be a DocumentType,
Entity or Notation node.

In terms of the text representation of a document, the boundary-points [p.267] of a Range can only be on
token boundaries. That is, the boundary-point of the text range cannot be in the middle of a start- or
end-tag of an element or within the name of an entity or character reference. A Range locates a contiguous
portion of the content of the structure model.

The relationship between locations in a text representation of the document and in the Node tree interface
of the DOM is illustrated in the following diagram:

Range Example

268

8.2.1. Position

In this diagram, four different Ranges are illustrated. The boundary-points [p.267] of each range are
labelled with s# (the start of the range) and e# (the end of the range), where # is the number of the Range.
For Range 2, the start is in the BODY element and is immediately after the H1 element and immediately
before the P element, so its position is between the H1 and P children of BODY. The offset [p.267] of a
boundary-point whose container [p.267] is not a CharacterData node is 0 if it is before the first child, 1 if
between the first and second child, and so on. So, for the start of the Range 2, the container is BODY and
the offset is 1. The offset of a boundary-point whose container is a CharacterData node is obtained
similarly but using 16-bit unit positions instead. For example, the boundary-point labelled s1 of the Range
1 has a Text node (the one containing "Title") as its container and an offset of 2 since it is between the
second and third 16-bit unit.

Notice that the boundary-point [p.267] s of Ranges 3 and 4 correspond to the same location in the text
representation. An important feature of the Range is that a boundary-point of a Range can unambiguously
represent every position within the document tree.

The container [p.267] s and offset [p.267] s of the boundary-point [p.267] s can be obtained through the
following read-only Range attributes:

 readonly attribute Node startContainer;
 readonly attribute long startOffset;
 readonly attribute Node endContainer;
 readonly attribute long endOffset;

If the boundary-point [p.267] s of a Range have the same container [p.267] s and offset [p.267] s, the
Range is said to be a collapsed Range. (This is often referred to as an insertion point in a user agent.)

8.2.2. Selection and Partial Selection

A node or 16-bit unit is said to be selected by a Range if it is between the two boundary-point [p.267] s of
the Range, that is, if the position immediately before the node or 16-bit unit is before the end of the Range
and the position immediately after the node or 16-bit unit is after the start of the range. For example, in
terms of a text representation of the document, an element would be selected [p.269] by a Range if its
corresponding start-tag was located after the start of the Range and its end-tag was located before the end
of the Range. In the examples in the above diagram, the Range 2 selects the P node and the Range 3
selects the text node containing the text "Blah xyz."

A node is said to be partially selected by a Range if it is an ancestor container [p.267] of exactly one
boundary-point [p.267] of the Range. For example, consider Range 1 in the above diagram. The element
H1 is partially selected [p.269] by that Range since the start of the Range is within one of its children.

8.2.3. Notation

Many of the examples in this chapter are illustrated using a text representation of a document. The
boundary-point [p.267] s of a range are indicated by displaying the characters (be they markup or data
characters) between the two boundary-points in bold, as in

269

8.2.2. Selection and Partial Selection

 <FOO>ABC<BAR>DEF</BAR></FOO>

When both boundary-point [p.267] s are at the same position, they are indicated with a bold caret (’^ ’), as
in

 <FOO>A^BC<BAR>DEF</BAR></FOO>

And when referring to a single boundary-point [p.267] , it will be shown as a bold asterisk (’* ’) as in

 <FOO>A*BC<BAR>DEF</BAR></FOO>

8.3. Creating a Range
A range is created by calling the createRange() method on the DocumentRange [p.289] interface.
This interface can be obtained from the object implementing the Document [p.29] interface using
binding-specific casting methods.

 interface DocumentRange {
 Range createRange();
 }

The initial state of the range returned from this method is such that both of its boundary-point [p.267] s
are positioned at the beginning of the corresponding Document, before any content. In other words, the
container [p.267] of each boundary-point is the Document node and the offset within that node is 0.

Like some objects created using methods in the Document interface (such as Nodes and
DocumentFragments), Ranges created via a particular document instance can select only content
associated with that Document, or with DocumentFragments and Attrs for which that Document is the
ownerDocument. Such Ranges, then, can not be used with other Document instances.

8.4. Changing a Range’s Position
A Range’s position can be specified by setting the container [p.267] and offset [p.267] of each
boundary-point with the setStart and setEnd methods.

 void setStart(in Node parent, in long offset)
 raises(RangeException);
 void setEnd(in Node parent, in long offset)
 raises(RangeException);

If one boundary-point of a Range is set to have a root container [p.268] other than the current one for the
range, the range is collapsed [p.269] to the new position. This enforces the restriction that both
boundary-points of a Range must have the same root container.

The start position of a Range is guaranteed to never be after the end position. To enforce this restriction, if
the start is set to be at a position after the end, the range is collapsed [p.269] to that position. Similarly, if
the end is set to be at a position before the start, the range is collapsed to that position.

270

8.3. Creating a Range

It is also possible to set a Range’s position relative to nodes in the tree:

 void setStartBefore(in Node node);
 raises(RangeException);
 void setStartAfter(in Node node);
 raises(RangeException);
 void setEndBefore(in Node node);
 raises(RangeException);
 void setEndAfter(in Node node);
 raises(RangeException);

The parent of the node becomes the container [p.267] of the boundary-point [p.267] and the Range is
subject to the same restrictions as given above in the description of setStart() and setEnd().

A Range can be collapsed [p.269] to either boundary-point:

 void collapse(in boolean toStart);

Passing TRUE as the parameter toStart will collapse [p.269] the Range to its start , FALSE to its end.

Testing whether a Range is collapsed [p.269] can be done by examining the collapsed attribute:

 readonly attribute boolean collapsed;

The following methods can be used to make a range select the contents of a node or the node itself.

 void selectNode(in Node n);
 void selectNodeContents(in Node n);

The following examples demonstrate the operation of the methods selectNode and
selectNodeContents:

Before:
 ^<BAR><FOO>A<MOO>B</MOO>C</FOO></BAR>
After range.selectNodeContents(FOO):
 <BAR><FOO>A<MOO>B</MOO>C</FOO></BAR>
(In this case, FOO is the parent of both boundary-points)
After range.selectNode(FOO):

<BAR><FOO>A<MOO>B</MOO>C</FOO></BAR>

8.5. Comparing Range Boundary-Points
It is possible to compare two Ranges by comparing their boundary-points:

 int compareBoundaryPoints(in CompareHow how, in Range sourceRange) raises(RangeException);

where CompareHow is one of four values: START_TO_START, START_TO_END, END_TO_END and
END_TO_START. The return value is -1, 0 or 1 depending on whether the corresponding boundary-point
of the Range is before, equal to, or after the corresponding boundary-point of sourceRange. An
exception is thrown if the two Ranges have different root container [p.268] s.

271

8.5. Comparing Range Boundary-Points

The result of comparing two boundary-points (or positions) is specified below. An informal but not
always correct specification is that an boundary-point is before, equal to, or after another if it corresponds
to a location in a text representation before, equal to, or after the other’s corresponding location.

Let A and B be two boundary-points or positions. Then one of the following holds: A is before B, A is
equal to B, or A is after B. Which one holds is specified in the following by examining four cases:

In the first case the boundary-points have the same container [p.267] . A is before B if its offset [p.267] is
less than the offset of B, A is equal to B if its offset is equal to the offset of B, and A if after B if its offset
is greater than the offset of B.

In the second case a child C of the container [p.267] of A is an ancestor container [p.267] of B. In this
case, A is before B if the offset [p.267] of A is less than or equal to the index of the child C and A is after
B otherwise.

In the third case a child C of the container [p.267] of B is an ancestor container [p.267] of A. In this case,
A is before B if the index of the child C is less than the offset [p.267] of B and A is after B otherwise.

In the fourth case, none of three other cases hold: the containers of A and B are siblings or descendants of
sibling nodes. In this case, A is before B if the container [p.267] of A is before the container of B in a
pre-order traversal of the Ranges’ context tree [p.268] and A is after B otherwise.

Note that because the same location in a text representation of the document can correspond to two
different positions in the DOM tree, it is possible for two boundary-points to not compare equal even
though they would be equal in the text representation. For this reason, the informal definition above can
sometimes be incorrect.

8.6. Deleting Content with a Range
One can delete the contents selected by a Range with:

 void deleteContents();

deleteContents() deletes all nodes and characters selected by the Range. All other nodes and
characters remain in the context tree [p.268] of the Range. Some examples of this deletion operation are:

(1) <FOO>AB<MOO>CD</MOO>CD</FOO> -->
<FOO>A^CD</FOO>

(2) <FOO>A<MOO>BC</MOO>DE</FOO> -->
<FOO>A<MOO>B</MOO>^E</FOO>

(3) <FOO>XY<BAR>ZW</BAR>Q</FOO> -->
<FOO>X^<BAR>W</BAR>Q</FOO>

(4)
<FOO><BAR1>AB</BAR1><BAR2/><BAR3>CD</BAR3></FOO>
--> <FOO><BAR1>A</BAR1>^<BAR3>D</BAR3>

272

8.6. Deleting Content with a Range

After deleteContents() is invoked on a Range, the Range is collapsed [p.269] . If no node was
partially selected [p.269] by the Range, then it is collapsed to its original start point, as in example (1). If
a node was partially selected by the Range and was an ancestor container [p.267] of the start of the Range
and no ancestor of the node satisfies these two conditions, then the Range is collapsed to the position
immediately after the node, as in examples (2) and (4). If a node waspartially selected by the Range and
was an ancestor container of the end of the Range and no ancestor of the node satisfies these two
conditions, then the Range is collapsed to the position immediately before the node, as in examples (3)
and (4).

8.7. Extracting Content
If the contents of a range need to be extracted rather than deleted, the following method may be used:

 DocumentFragment extractContents();

The extractContents() method removes nodes from the Range’s context tree [p.268] similarly to
the deleteContents() method. In addition, it places the deleted contents in a new
DocumentFragment. The following examples illustrate the contents of the returned document fragment:

(1) <FOO>AB<MOO>CD</MOO>CD</FOO> -->
B<MOO>CD</MOO>

(2) <FOO>A<MOO>BC</MOO>DE</FOO> -->
<MOO>C<MOO>D

(3) <FOO>XY<BAR>ZW</BAR>Q</FOO> -->
Y<BAR>Z</BAR>

(4)
<FOO><BAR1>AB</BAR1><BAR2/><BAR3>CD</BAR3></FOO>
--> <BAR1>B</BAR1><BAR2/><BAR3>C</BAR3>

It is important to note that nodes that are partially selected [p.269] by the range are cloned. Since part of
such a node’s contents must remain in the Range’s context tree [p.268] and part of the contents must be
moved to the new fragment, a clone of the partially selected node is included in the new fragment. Note
that cloning does not take place for selected [p.269] elements; these nodes are moved to the new fragment.

8.8. Cloning Content
The contents of a range may be duplicated using the following method:

 DocumentFragment cloneContents();

This method returns a DocumentFragment that is similar to the one returned by the method
extractContents(). However, in this case, the original nodes and character data in the Range are
not removed from the Range’s context tree [p.268] . Instead, all of the nodes and text content within the
returned DocumentFragment are cloned.

273

8.7. Extracting Content

8.9. Inserting Content
A node may be inserted into a range using the following method:

 void insertNode(in Node n) raises(RangeException);

The insertNode() method inserts the specified node into the Range’s context tree [p.268] . For this
method, the end of the range is ignored and the node is inserted at the start of the range.

The Node passed into this method can be a DocumentFragment. In that case, the contents of the fragment
are inserted at the start position of the range, but the fragment itself is not. Note that if the Node represents
the root of a sub-tree, the entire sub-tree is inserted.

The same rules that apply to the insertBefore() method on the Node interface apply here.
Specifically, the Node passed in, if it already has a parent, will be removed from its existing position.

8.10. Surrounding Content
The insertion of a single node to subsume the content selected by a Range can be performed with:

 void surroundContents(in Node n);

The surroundContents() method causes all of the content selected by the range to be rooted by the
specified node. Calling surroundContents() with the node FOO in the following examples yields:

 Before:
 <BAR>AB<MOO>C</MOO>DE</BAR>
 After surroundContents(FOO):

<BAR>A<FOO>B<MOO>C</MOO>D</FOO>E</BAR>

Another way of describing the effect of this method on the Range’s context tree [p.268] is to decompose it
in terms of other operations:

1. Remove the contents selected by the range with a call to extractContents().
2. Insert node where the range is now collapsed (after the extraction) with insertNode()
3. Insert the entire contents of the extracted fragment into node. Specifically, invoke the

appendChild() on node passing in the DocumentFragment returned as a result of the call to
extractContents()

4. Select node and all of its contents with selectNode().

The surroundContents() method raises an exception if the range partially selects [p.269] a
non-Text node. An example of a range for which surroundContents() raises an exception is:

 <FOO>AB<BAR>CD</BAR>E</FOO>

If node has any children, those children are removed before its insertion. Also, if node already has a
parent, it is removed from the original parent’s childNodes list.

274

8.9. Inserting Content

8.11. Miscellaneous Members
One can clone a Range:

 Range cloneRange();

This creates a new Range which selects exactly the same content as that selected by the Range on which
the method cloneRange was invoked. No content is affected by this operation.

Because the boundary-points of a range do not necessarily have the same container [p.267] s, use:

 readonly attribute Node commonAncestorContainer;

to get the ancestor container [p.267] of both boundary-points that is furthest down from the Range’s root
container [p.268]

One can get a copy of all the character data selected or partially selected by a range with:

 DOMString toString();

This does nothing more than simply concatenate all the character data selected by the range. This includes
character data in both Text [p.67] and CDATASection [p.69] nodes.

8.12. Range modification under document mutation
As a document is modified, the Ranges within the document need to be updated. For example, if one
boundary-point of a Range is within a node and that node is removed from the document, then the Range
would be invalid unless it is fixed up in some way. This section describes how Ranges are modified under
document mutations so that they remain valid.

There are two general principles which apply to Ranges under document mutation: The first is that all
Ranges in a document will remain valid after any mutation operation and the second is that, as much as
possible, all Ranges will select the same portion of the document after any mutation operation.

Any mutation of the document tree which affect Ranges can be considered to be a combination of basic
delete and insertion operations. In fact, it can be convenient to think of those operations as being
accomplished using the deleteContents() and insertNode() Range methods.

8.12.1. Insertions

An insertion occurs at a single point, the insertion point, in the document. For any Range in the document
tree, consider each boundary-point. The only case in which the boundary-point will be changed after the
insertion is when the boundary-point and the insertion point have the same container [p.267] and the offset
[p.267] of the insertion point is strictly less than the offset of the Range’s boundary-point. In that case the
offset of the Range’s boundary-point will be increased so that it is between the same nodes or characters as
it was before the insertion.

275

8.11. Miscellaneous Members

Note that when content is inserted at a boundary-point, it is ambiguous as to where the boundary-point
should be repositioned if its relative position is to be maintained. There are two possibilities: at the start or
at the end of the newly inserted content. We have chosen that in this case neither the container [p.267] nor
offset [p.267] of the boundary-point is changed. As a result, it will be positioned at the start of the newly
inserted content.

Examples:

Suppose the Range selects the following:

<P>Abcd efgh XY blah ijkl</P>

Consider the insertion of the text "inserted text" at the following positions:

1. Before the ’X’:

<P>Abcd efgh inserted textXY blah ijkl</P>

2. After the ’X’:

<P>Abcd efgh Xinserted textY blah ijkl</P>

3. After the ’Y’:

<P>Abcd efgh XYinserted text blah ijkl</P>

4. After the ’h’ in "Y blah":

<P>Abcd efgh XY blahinserted text ijkl</P>

8.12.2. Deletions

Any deletion from the document tree can be considered as a sequence of deleteContents()
operations applied to a minimal set of disjoint Ranges. To specify how a Range is modified under
deletions we need only to consider what happens to a Range under a single deleteContents()
operation of another Range. And, in fact, we need only to consider what happens to a single
boundary-point of the Range since both boundary-points are modified using the same algorithm.

If a boundary-point is within the content being deleted, then after the deletion it will be at the same
position as the one common to the boundary-points of the Range used to delete the contents.

If a boundary-point is after the content being deleted then it is not affected by the deletion unless its
container [p.267] is also the container of one of the boundary-points of the range being deleted. If there is
such a common container, then the index of the boundary-point is modified so that the boundary-point
maintains its position relative to the content of the container.

If a boundary-point is before the content being deleted then it is not affected by the deletion at all.

276

8.12.2. Deletions

Examples:

In these examples, the Range on which deleteContents() is invoked is indicated by the underline.

Example 1.

Before:

<P>Abcd efgh The Range
ijkl</P>

After:

<P>Abcd Range ijkl</P>

Example 2.

Before:

<p>Abcd efgh The Range ijkl</p>

After:

<p>Abcd ^kl</p>

Example 3.

Before:

<P>ABCD efgh The
Range ijkl</P>

After:

<P>ABCD ange ijkl</P>

In this example, the container of the start boundary-point after the deletion is the Text node holding the
string "ange".

Example 4.

Before:

<P>Abcd efgh The Range ijkl</P>

After:

<P>Abcd he Range ijkl</P>

Example 5.

277

8.12.2. Deletions

Before:

<P>Abcd efgh The Range
ijkl</P>

After:

<P>Abcd ^kl</P>

8.13. Formal Description of the Range Interface
To summarize, the complete, formal description of the Range [p.278] interface is given below:

Interface Range (introduced in DOM Level 2)
IDL Definition

// Introduced in DOM Level 2:
interface Range {
 readonly attribute Node startContainer;
 // raises(DOMException) on retrieval

 readonly attribute long startOffset;
 // raises(DOMException) on retrieval

 readonly attribute Node endContainer;
 // raises(DOMException) on retrieval

 readonly attribute long endOffset;
 // raises(DOMException) on retrieval

 readonly attribute boolean collapsed;
 // raises(DOMException) on retrieval

 readonly attribute Node commonAncestorContainer;
 // raises(DOMException) on retrieval

 void setStart(in Node refNode,
 in long offset)
 raises(RangeException,
 DOMException);
 void setEnd(in Node refNode,
 in long offset)
 raises(RangeException,
 DOMException);
 void setStartBefore(in Node refNode)
 raises(RangeException,
 DOMException);
 void setStartAfter(in Node refNode)
 raises(RangeException,
 DOMException);
 void setEndBefore(in Node refNode)
 raises(RangeException,
 DOMException);
 void setEndAfter(in Node refNode)
 raises(RangeException,

278

8.13. Formal Description of the Range Interface

 DOMException);
 void collapse(in boolean toStart)
 raises(DOMException);
 void selectNode(in Node refNode)
 raises(RangeException,
 DOMException);
 void selectNodeContents(in Node refNode)
 raises(RangeException,
 DOMException);
 // CompareHow
 const unsigned short START_TO_START = 0;
 const unsigned short START_TO_END = 1;
 const unsigned short END_TO_END = 2;
 const unsigned short END_TO_START = 3;

 short compareBoundaryPoints(in unsigned short how,
 in Range sourceRange)
 raises(DOMException);
 void deleteContents()
 raises(DOMException);
 DocumentFragment extractContents()
 raises(DOMException);
 DocumentFragment cloneContents()
 raises(DOMException);
 void insertNode(in Node newNode)
 raises(DOMException,
 RangeException);
 void surroundContents(in Node newParent)
 raises(DOMException,
 RangeException);
 Range cloneRange()
 raises(DOMException);
 DOMString toString()
 raises(DOMException);
 void detach()
 raises(DOMException);
};

Definition group CompareHow

Passed as a parameter to the compareBoundaryPoints method.
Defined Constants

279

8.13. Formal Description of the Range Interface

END_TO_END Compare end boundary-point of sourceRange to end
boundary-point of Range on which
compareBoundaryPoints is invoked.

END_TO_START Compare end boundary-point of sourceRange to start
boundary-point of Range on which
compareBoundaryPoints is invoked.

START_TO_END Compare start boundary-point of sourceRange to end
boundary-point of Range on which
compareBoundaryPoints is invoked.

START_TO_START Compare start boundary-point of sourceRange to start
boundary-point of Range on which
compareBoundaryPoints is invoked.

Attributes
collapsed of type boolean, readonly

TRUE if the range is collapsed
Exceptions on retrieval

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

commonAncestorContainer of type Node [p.39] , readonly
The deepest common ancestor container [p.267] of the range’s two boundary-points.
Exceptions on retrieval

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

endContainer of type Node [p.39] , readonly
Node within which the range ends
Exceptions on retrieval

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

endOffset of type long, readonly
Offset within the ending node of the range.
Exceptions on retrieval

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

280

8.13. Formal Description of the Range Interface

startContainer of type Node [p.39] , readonly
Node within which the range begins
Exceptions on retrieval

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

startOffset of type long, readonly
Offset within the starting node of the range.
Exceptions on retrieval

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

Methods
cloneContents

Duplicates the contents of a range
Return Value

DocumentFragment
[p.29]

A DocumentFragment containing contents
equivalent to those of this range.

Exceptions

DOMException
[p.24]

HIERARCHY_REQUEST_ERR: Raised if a
DocumentType node would be extracted into the new
DocumentFragment.

INVALID_STATE_ERR: Raised if detach() has already
been invoked on this object.

No Parameters

cloneRange
Produces a new range whose boundary-points are equal to the boundary-points of the
range.
Return Value

Range [p.278] The duplicated range.

Exceptions

281

8.13. Formal Description of the Range Interface

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

No Parameters

collapse
Collapse a range onto one of its boundary-points
Parameters

boolean toStart If TRUE, collapses the Range onto its start; if
FALSE, collapses it onto its end.

Exceptions

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

No Return Value

compareBoundaryPoints
Compare the boundary-points of two ranges in a document.
Parameters

unsigned short how

Range [p.278] sourceRange

Return Value

short -1, 0 or 1 depending on whether the corresponding boundary-point of the
Range is before, equal to, or after the corresponding boundary-point of
sourceRange.

Exceptions

DOMException
[p.24]

WRONG_DOCUMENT_ERR: Raised if the two Ranges
are not in the same document or document fragment.

INVALID_STATE_ERR: Raised if detach() has already
been invoked on this object.

deleteContents
Removes the contents of a range from the containing document or document fragment
without returning a reference to the removed content.

282

8.13. Formal Description of the Range Interface

Exceptions

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if any
portion of the content of the range is read-only or any of the
nodes that contain any of the content of the range are
read-only.

INVALID_STATE_ERR: Raised if detach() has already
been invoked on this object.

No Parameters
No Return Value

detach
Called to indicate that the range is no longer in use and that the implementation may
relinquish any resources associated with this range. Subsequent calls to any methods or
attribute getters on this range will result in a DOMException [p.24] being thrown with an
error code of INVALID_STATE_ERR.
Exceptions

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

No Parameters
No Return Value

extractContents
Moves the contents of a range from the containing document or document fragment to a
new DocumentFragment.
Return Value

DocumentFragment
[p.29]

A DocumentFragment containing the extracted
contents.

Exceptions

283

8.13. Formal Description of the Range Interface

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if any
portion of the content of the range is read-only or any of the
nodes which contain any of the content of the range are
read-only.

HIERARCHY_REQUEST_ERR: Raised if a DocumentType
node would be extracted into the new DocumentFragment.

INVALID_STATE_ERR: Raised if detach() has already
been invoked on this object.

No Parameters

insertNode
Inserts a node into the document or document fragment at the start of the range.
Parameters

Node [p.39] newNode The node to insert at the start of the range

Exceptions

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if an
ancestor container [p.267] of the start of the range is
read-only.

WRONG_DOCUMENT_ERR: Raised if newNode and
the container [p.267] of the start of the Range were not
created from the same document.

HIERARCHY_REQUEST_ERR: Raised if the container
[p.267] of the start of the Range is of a type that does not
allow children of the type of newNode or if newNode is
an ancestor of the container.

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

RangeException
[p.290]

INVALID_NODE_TYPE_ERR: Raised if node is an
Attr, Entity, Notation, DocumentFragment, or Document
node.

No Return Value

selectNode
Select a node and its contents
Parameters

284

8.13. Formal Description of the Range Interface

Node [p.39] refNode The node to select.

Exceptions

RangeException
[p.290]

INVALID_NODE_TYPE_ERR: Raised if an ancestor of
refNode is an Entity, Notation or DocumentType node
or if refNode is a Document, DocumentFragment, Attr,
Entity, or Notation node.

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

No Return Value

selectNodeContents
Select the contents within a node
Parameters

Node [p.39] refNode Node to select from

Exceptions

RangeException
[p.290]

INVALID_NODE_TYPE_ERR: Raised if refNode or
an ancestor of refNode is an Entity, Notation or
DocumentType node.

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

No Return Value

setEnd
Sets the attributes describing the end of a range.
Parameters

Node
[p.39]

refNode The refNode value. This parameter must be
different from null.

long offset The endOffset value.

Exceptions

285

8.13. Formal Description of the Range Interface

RangeException
[p.290]

INVALID_NODE_TYPE_ERR: Raised if refNode or
an ancestor of refNode is an Entity, Notation, or
DocumentType node.

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if offset is negative or
greater than the number of child units in refNode. Child
units are 16-bit units if refNode is a CharacterData,
Comment or ProcessingInstruction node. Child units are
Nodes in all other cases.

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

No Return Value

setEndAfter
Sets the end of a range to be after a node
Parameters

Node [p.39] refNode Range ends after refNode.

Exceptions

RangeException
[p.290]

INVALID_NODE_TYPE_ERR: Raised if the root
container of refNode is not an Attr, Document or
DocumentFragment node or if refNode is a Document,
DocumentFragment, Attr, Entity, or Notation node.

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

No Return Value

setEndBefore
Sets the end position to be before a node.
Parameters

Node [p.39] refNode Range ends before refNode

Exceptions

286

8.13. Formal Description of the Range Interface

RangeException
[p.290]

INVALID_NODE_TYPE_ERR: Raised if the root
container of refNode is not an Attr, Document, or
DocumentFragment node or if refNode is a Document,
DocumentFragment, Attr, Entity, or Notation node.

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

No Return Value

setStart
Sets the attributes describing the start of the range.
Parameters

Node
[p.39]

refNode The refNode value. This parameter must be
different from null.

long offset The startOffset value.

Exceptions

RangeException
[p.290]

INVALID_NODE_TYPE_ERR: Raised if refNode or
an ancestor of refNode is an Entity, Notation, or
DocumentType node.

DOMException
[p.24]

INDEX_SIZE_ERR: Raised if offset is negative or
greater than the number of child units in refNode. Child
units are 16-bit units if refNode is a CharacterData,
Comment or ProcessingInstruction node. Child units are
Nodes in all other cases.

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

No Return Value

setStartAfter
Sets the start position to be after a node
Parameters

Node [p.39] refNode Range starts after refNode

Exceptions

287

8.13. Formal Description of the Range Interface

RangeException
[p.290]

INVALID_NODE_TYPE_ERR: Raised if the root
container of refNode is not an Attr, Document, or
DocumentFragment node or if refNode is a Document,
DocumentFragment, Attr, Entity, or Notation node.

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

No Return Value

setStartBefore
Sets the start position to be before a node
Parameters

Node [p.39] refNode Range starts before refNode

Exceptions

RangeException
[p.290]

INVALID_NODE_TYPE_ERR: Raised if the root
container of refNode is not an Attr, Document, or
DocumentFragment node or if refNode is a Document,
DocumentFragment, Attr, Entity, or Notation node.

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

No Return Value

surroundContents
Reparents the contents of the range to the given node and inserts the node at the position of
the start of the range.
Parameters

Node [p.39] newParent The node to surround the contents with.

Exceptions

288

8.13. Formal Description of the Range Interface

DOMException
[p.24]

NO_MODIFICATION_ALLOWED_ERR: Raised if an
ancestor container [p.267] of either boundary-point of the
range is read-only.

WRONG_DOCUMENT_ERR: Raised if newParent
and the container [p.267] of the start of the Range were
not created from the same document.

HIERARCHY_REQUEST_ERR: Raised if the container
[p.267] of the start of the Range is of a type that does not
allow children of the type of newParent or if
newParent is an ancestor of the container or if node
would end up with a child node of a type not allowed by
the type of node.

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

RangeException
[p.290]

BAD_BOUNDARYPOINTS_ERR: Raised if the range
partially selects [p.269] a non-text node.

INVALID_NODE_TYPE_ERR: Raised if node is an
Attr, Entity, DocumentType, Notation, Document, or
DocumentFragment node.

No Return Value

toString
Returns the contents of a range as a string.
Return Value

DOMString [p.21] The contents of the range.

Exceptions

DOMException
[p.24]

INVALID_STATE_ERR: Raised if detach() has
already been invoked on this object.

No Parameters

Interface DocumentRange (introduced in DOM Level 2)
IDL Definition

// Introduced in DOM Level 2:
interface DocumentRange {
 Range createRange();
};

289

8.13. Formal Description of the Range Interface

Methods
createRange

This interface can be obtained from the object implementing the Document [p.29]
interface using binding-specific casting methods.
Return Value

Range
[p.278]

The initial state of the range returned from this method is such that both
of its boundary-points are positioned at the beginning of the
corresponding Document, before any content. The range returned can
only be used to select content associated with this Document, or with
DocumentFragments and Attrs for which this Document is the
ownerDocument.

No Parameters
No Exceptions

Exception RangeException introduced in DOM Level 2

Range operations may throw a RangeException [p.290] as specified in their method descriptions.
IDL Definition

// Introduced in DOM Level 2:
exception RangeException {
 unsigned short code;
};

// RangeExceptionCode
const unsigned short BAD_BOUNDARYPOINTS_ERR = 1;
const unsigned short INVALID_NODE_TYPE_ERR = 2;

Definition group RangeExceptionCode

An integer indicating the type of error generated.
Defined Constants

BAD_BOUNDARYPOINTS_ERR If the boundary-points of a range do not meet
specific requirements.

INVALID_NODE_TYPE_ERR If the container [p.267] of an boundary-point
of a range is being set to either a node of an
invalid type or a node with an ancestor of an
invalid type.

290

8.13. Formal Description of the Range Interface

Appendix A: Changes
Editors

Arnaud Le Hors, W3C
Philippe Le Hégaret, W3C

A.1: Changes between DOM Level 1 and DOM Level 2

A.1.1: Changes to DOM Level 1 interfaces and exceptions

Interface Attr [p.57]
The Attr [p.57] interface has one new attribute: ownerElement.

Interface Document [p.29]
The Document [p.29] interface has five new methods: importNode, createElementNS,
createAttributeNS, getElementsByTagNameNS and getElementById.

Interface NamedNodeMap [p.49]
The NamedNodeMap [p.49] interface has three new methods: getNamedItemNS,
setNamedItemNS, removeNamedItemNS.

Interface Node [p.39]
The Node [p.39] interface has two new methods: supports and normalize.
The Node [p.39] interface has three new attributes: namespaceURI, prefix and localName.
The ownerDocument attribute was specified to be null when the node is a Document [p.29] . It
now is also null when the node is a DocumentType [p.69] which is not used with any
Document yet.

Interface DocumentType [p.69]
The DocumentType [p.69] interface has three attributes: publicId, systemId and
internalSubset.

Interface DOMImplementation [p.26]
The DOMImplementation [p.26] interface has two new methods: createDocumentType and
createDocument.

Interface Element [p.59]
The Element [p.59] interface has eight new methods: getAttributeNS, setAttributeNS,
removeAttributeNS, getAttributeNodeNS, setAttributeNodeNS,
getElementsByTagNameNS, hasAttribute and hasAttributeNS.
The method normalize is now inherited from the Node [p.39] interface where it was moved.

Exception DOMException [p.24]
The DOMException [p.24] has five new exception codes: INVALID_STATE_ERR,
SYNTAX_ERR, INVALID_MODIFICATION_ERR, NAMESPACE_ERR and
INVALID_ACCESS_ERR.

291

Appendix A: Changes

A.1.2: New features

A.1.2.1: New types

DOMTimeStamp [p.22]
The DOMTimeStamp [p.22] type was added to the Core module.

A.1.2.2: New interfaces

HTML [p.75]
The HTMLDOMImplementation [p.76] interface was added to the HTML module.
On the HTMLDocument [p.78] interface, the method getElementById is now inherited from the
Document [p.29] interface where it was moved.
On the HTMLFrameElement [p.123] , HTMLIFrameElement [p.124] , and
HTMLObjectElement [p.108] interfaces the attribute contentDocument was added.

Views [p.127]
This new module defines the interfaces AbstractView [p.127] and DocumentView [p.128] .

StyleSheets [p.129]
This new module defines the following interfaces: StyleSheet [p.129] , StyleSheetList
[p.130] , MediaList [p.131] , DocumentStyle [p.133] and LinkStyle [p.133] .

CSS [p.135]
This new module defines the following interfaces: CSS2Azimuth [p.165] ,
CSS2BackgroundPosition [p.167] , CSS2BorderSpacing [p.170] ,
CSS2CounterIncrement [p.173] , CSS2CounterReset [p.173] , CSS2Cursor [p.174] ,
CSS2FontFaceSrc [p.178] , CSS2FontFaceWidths [p.178] , CSS2PageSize [p.179] ,
CSS2PlayDuring [p.175] , CSS2Properties [p.182] , CSS2TextShadow [p.176] ,
CSSCharsetRule [p.144] , CSSFontFaceRule [p.142] , CSSImportRule [p.143] ,
CSSMediaRule [p.140] , CSSPageRule [p.143] , CSSPrimitiveValue [p.149] , CSSRule
[p.138] , CSSRuleList [p.138] , CSSStyleDeclaration [p.145] , CSSStyleRule [p.140] ,
CSSStyleSheet [p.136] , CSSUnknownRule [p.144] , CSSValue [p.148] , CSSValueList
[p.156] , Counter [p.157] , RGBColor [p.156] , Rect [p.157] , ViewCSS [p.158] ,
DocumentCSS [p.159] , DOMImplementationCSS [p.160] and ElementCSSInlineStyle
[p.161] .

Events [p.221]
This new module defines the following interfaces: Event [p.227] , EventListener [p.226] ,
EventTarget [p.224] , DocumentEvent [p.231] , MutationEvent [p.239] , UIEvent
[p.232] and MouseEvent [p.234] , and the exception EventException [p.230] .

Traversal [p.245]
This new module defines the following interfaces: NodeFilter [p.256] , NodeIterator [p.254]
, TreeWalker [p.260] , and DocumentTraversal [p.263] .

Range [p.267]
This new module defines the interfaces Range [p.278] , DocumentRange [p.289] and the
exception RangeException [p.290] .

292

A.1.2: New features

Appendix B: Accessing code point boundaries
Mark Davis, IBM
Lauren Wood, SoftQuad Software Inc.

B.1: Introduction
This appendix is an informative, not a normative, part of the Level 2 DOM specification.

Characters are represented in Unicode by numbers called code points (also called scalar values). These
numbers can range from 0 up to 1,114,111 = 10FFFF16 (although some of these values are illegal). Each

code point can be directly encoded with a 32-bit code unit. This encoding is termed UCS-4 (or UTF-32).
The DOM specification, however, uses UTF-16, in which the most frequent characters (which have values
less than FFFF16) are represented by a single 16-bit code unit, while characters above FFFF16 use a

special pair of code units called a surrogate pair. For more information, see [Unicode] or the Unicode
Web site.

While indexing by code points as opposed to code units is not common in programs, some specifications
such as XPath (and therefore XSLT and XPointer) use code point indices. For interfacing with such
formats it is recommended that the programming language provide string processing methods for
converting code point indices to code unit indices and back. Some languages do not provide these
functions natively; for these it is recommended that the native String type that is bound to DOMString
[p.21] be extended to enable this conversion. An example of how such an API might look is supplied
below.

Note: Since these methods are supplied as an illustrative example of the type of functionality that is
required, the names of the methods, exceptions, and interface may differ from those given here.

B.2: Methods
Interface StringExtend

Extensions to a language’s native String class or interface
IDL Definition

interface StringExtend {
 int findOffset16(in int offset32)
 raises(StringIndexOutOfBoundsException);
 int findOffset32(in int offset16)
 raises(StringIndexOutOfBoundsException);
};

Methods
findOffset16

Returns the UTF-16 offset that corresponds to a UTF-32 offset. Used for random access.

293

Appendix B: Accessing code point boundaries

Note: You can always roundtrip from a UTF-32 offset to a UTF-16 offset and back. You
can roundtrip from a UTF-16 offset to a UTF-32 offset and back if and only if the offset16
is not in the middle of a surrogate pair. Unmatched surrogates count as a single UTF-16
value.

Parameters

int offset32 UTF-32 offset.

Return Value

int UTF-16 offset

Exceptions

StringIndexOutOfBoundsException if offset32 is out of bounds.

findOffset32
Returns the UTF-32 offset corresponding to a UTF-16 offset. Used for random access. To
find the UTF-32 length of a string, use:

len32 = findOffset32(source, source.length());

Note: If the UTF-16 offset is into the middle of a surrogate pair, then the UTF-32 offset of
the end of the pair is returned; that is, the index of the char after the end of the pair. You
can always roundtrip from a UTF-32 offset to a UTF-16 offset and back. You can roundtrip
from a UTF-16 offset to a UTF-32 offset and back if and only if the offset16 is not in the
middle of a surrogate pair. Unmatched surrogates count as a single UTF-16 value.

Parameters

int offset16 UTF-16 offset

Return Value

int UTF-32 offset

Exceptions

StringIndexOutOfBoundsException if offset16 is out of bounds.

294

B.2: Methods

Appendix C: IDL Definitions
This appendix contains the complete OMG IDL for the Level 2 Document Object Model definitions. The
definitions are divided into Core [p.295] , HTML [p.300] , Stylesheets [p.310] , CSS [p.311] , Events
[p.325] , TreeWalkers, Filters, and Iterators [p.327] , and Range [p.329] .

The IDL files are also available as: http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307/idl.zip

C.1: Document Object Model Core

dom.idl:
// File: dom.idl
#ifndef _DOM_IDL_
#define _DOM_IDL_

#pragma prefix "w3c.org"
module dom
{
 typedef sequence<unsigned short> DOMString;

 typedef unsigned long long DOMTimeStamp;

 interface DocumentType;
 interface Document;
 interface NodeList;
 interface NamedNodeMap;
 interface Element;

 exception DOMException {
 unsigned short code;
 };

 // ExceptionCode
 const unsigned short INDEX_SIZE_ERR = 1;
 const unsigned short DOMSTRING_SIZE_ERR = 2;
 const unsigned short HIERARCHY_REQUEST_ERR = 3;
 const unsigned short WRONG_DOCUMENT_ERR = 4;
 const unsigned short INVALID_CHARACTER_ERR = 5;
 const unsigned short NO_DATA_ALLOWED_ERR = 6;
 const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
 const unsigned short NOT_FOUND_ERR = 8;
 const unsigned short NOT_SUPPORTED_ERR = 9;
 const unsigned short INUSE_ATTRIBUTE_ERR = 10;
 // Introduced in DOM Level 2:
 const unsigned short INVALID_STATE_ERR = 11;
 // Introduced in DOM Level 2:
 const unsigned short SYNTAX_ERR = 12;
 // Introduced in DOM Level 2:
 const unsigned short INVALID_MODIFICATION_ERR = 13;
 // Introduced in DOM Level 2:
 const unsigned short NAMESPACE_ERR = 14;
 // Introduced in DOM Level 2:

295

Appendix C: IDL Definitions

http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307/idl/dom.idl

 const unsigned short INVALID_ACCESS_ERR = 15;

 interface DOMImplementation {
 boolean hasFeature(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 DocumentType createDocumentType(in DOMString qualifiedName,
 in DOMString publicId,
 in DOMString systemId)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Document createDocument(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DocumentType doctype)
 raises(DOMException);
 };

 interface Node {
 // NodeType
 const unsigned short ELEMENT_NODE = 1;
 const unsigned short ATTRIBUTE_NODE = 2;
 const unsigned short TEXT_NODE = 3;
 const unsigned short CDATA_SECTION_NODE = 4;
 const unsigned short ENTITY_REFERENCE_NODE = 5;
 const unsigned short ENTITY_NODE = 6;
 const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
 const unsigned short COMMENT_NODE = 8;
 const unsigned short DOCUMENT_NODE = 9;
 const unsigned short DOCUMENT_TYPE_NODE = 10;
 const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
 const unsigned short NOTATION_NODE = 12;

 readonly attribute DOMString nodeName;
 attribute DOMString nodeValue;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned short nodeType;
 readonly attribute Node parentNode;
 readonly attribute NodeList childNodes;
 readonly attribute Node firstChild;
 readonly attribute Node lastChild;
 readonly attribute Node previousSibling;
 readonly attribute Node nextSibling;
 readonly attribute NamedNodeMap attributes;
 // Modified in DOM Level 2:
 readonly attribute Document ownerDocument;
 Node insertBefore(in Node newChild,
 in Node refChild)
 raises(DOMException);
 Node replaceChild(in Node newChild,
 in Node oldChild)
 raises(DOMException);
 Node removeChild(in Node oldChild)
 raises(DOMException);
 Node appendChild(in Node newChild)

296

dom.idl:

 raises(DOMException);
 boolean hasChildNodes();
 Node cloneNode(in boolean deep);
 // Introduced in DOM Level 2:
 void normalize();
 // Introduced in DOM Level 2:
 boolean supports(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 readonly attribute DOMString namespaceURI;
 // Introduced in DOM Level 2:
 attribute DOMString prefix;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute DOMString localName;
 };

 interface NodeList {
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
 };

 interface NamedNodeMap {
 Node getNamedItem(in DOMString name);
 Node setNamedItem(in Node arg)
 raises(DOMException);
 Node removeNamedItem(in DOMString name)
 raises(DOMException);
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
 // Introduced in DOM Level 2:
 Node getNamedItemNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Node setNamedItemNS(in Node arg)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Node removeNamedItemNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 };

 interface CharacterData : Node {
 attribute DOMString data;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned long length;
 DOMString substringData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void appendData(in DOMString arg)
 raises(DOMException);
 void insertData(in unsigned long offset,
 in DOMString arg)
 raises(DOMException);

297

dom.idl:

 void deleteData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void replaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg)
 raises(DOMException);
 };

 interface Attr : Node {
 readonly attribute DOMString name;
 readonly attribute boolean specified;
 attribute DOMString value;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute Element ownerElement;
 };

 interface Element : Node {
 readonly attribute DOMString tagName;
 DOMString getAttribute(in DOMString name);
 void setAttribute(in DOMString name,
 in DOMString value)
 raises(DOMException);
 void removeAttribute(in DOMString name)
 raises(DOMException);
 Attr getAttributeNode(in DOMString name);
 Attr setAttributeNode(in Attr newAttr)
 raises(DOMException);
 Attr removeAttributeNode(in Attr oldAttr)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString name);
 // Introduced in DOM Level 2:
 DOMString getAttributeNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 void setAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DOMString value)
 raises(DOMException);
 // Introduced in DOM Level 2:
 void removeAttributeNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr getAttributeNodeNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Attr setAttributeNodeNS(in Attr newAttr)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 boolean hasAttribute(in DOMString name);
 // Introduced in DOM Level 2:

298

dom.idl:

 boolean hasAttributeNS(in DOMString namespaceURI,
 in DOMString localName);
 };

 interface Text : CharacterData {
 Text splitText(in unsigned long offset)
 raises(DOMException);
 };

 interface Comment : CharacterData {
 };

 interface CDATASection : Text {
 };

 interface DocumentType : Node {
 readonly attribute DOMString name;
 readonly attribute NamedNodeMap entities;
 readonly attribute NamedNodeMap notations;
 // Introduced in DOM Level 2:
 readonly attribute DOMString publicId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString systemId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString internalSubset;
 };

 interface Notation : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 };

 interface Entity : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 readonly attribute DOMString notationName;
 };

 interface EntityReference : Node {
 };

 interface ProcessingInstruction : Node {
 readonly attribute DOMString target;
 attribute DOMString data;
 // raises(DOMException) on setting

 };

 interface DocumentFragment : Node {
 };

 interface Document : Node {
 readonly attribute DocumentType doctype;
 readonly attribute DOMImplementation implementation;
 readonly attribute Element documentElement;
 Element createElement(in DOMString tagName)
 raises(DOMException);

299

dom.idl:

 DocumentFragment createDocumentFragment();
 Text createTextNode(in DOMString data);
 Comment createComment(in DOMString data);
 CDATASection createCDATASection(in DOMString data)
 raises(DOMException);
 ProcessingInstruction createProcessingInstruction(in DOMString target,
 in DOMString data)
 raises(DOMException);
 Attr createAttribute(in DOMString name)
 raises(DOMException);
 EntityReference createEntityReference(in DOMString name)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString tagname);
 // Introduced in DOM Level 2:
 Node importNode(in Node importedNode,
 in boolean deep)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Element createElementNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr createAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Element getElementById(in DOMString elementId);
 };
};

#endif // _DOM_IDL_

C.2: Document Object Model HTML

html.idl :
// File: html.idl
#ifndef _HTML_IDL_
#define _HTML_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"
module html
{
 typedef dom::DOMString DOMString;
 typedef dom::Node Node;
 typedef dom::DOMImplementation DOMImplementation;
 typedef dom::Document Document;
 typedef dom::NodeList NodeList;
 typedef dom::Element Element;

300

C.2: Document Object Model HTML

http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307/idl/html.idl

 interface HTMLDocument;
 interface HTMLElement;
 interface HTMLFormElement;
 interface HTMLTableCaptionElement;
 interface HTMLTableSectionElement;

 interface HTMLCollection {
 readonly attribute unsigned long length;
 Node item(in unsigned long index);
 Node namedItem(in DOMString name);
 };

 // Introduced in DOM Level 2:
 interface HTMLDOMImplementation : DOMImplementation {
 HTMLDocument createHTMLDocument(in DOMString title);
 };

 interface HTMLDocument : Document {
 attribute DOMString title;
 readonly attribute DOMString referrer;
 readonly attribute DOMString domain;
 readonly attribute DOMString URL;
 attribute HTMLElement body;
 readonly attribute HTMLCollection images;
 readonly attribute HTMLCollection applets;
 readonly attribute HTMLCollection links;
 readonly attribute HTMLCollection forms;
 readonly attribute HTMLCollection anchors;
 attribute DOMString cookie;
 void open();
 void close();
 void write(in DOMString text);
 void writeln(in DOMString text);
 NodeList getElementsByName(in DOMString elementName);
 };

 interface HTMLElement : Element {
 attribute DOMString id;
 attribute DOMString title;
 attribute DOMString lang;
 attribute DOMString dir;
 attribute DOMString className;
 };

 interface HTMLHtmlElement : HTMLElement {
 attribute DOMString version;
 };

 interface HTMLHeadElement : HTMLElement {
 attribute DOMString profile;
 };

 interface HTMLLinkElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString charset;
 attribute DOMString href;
 attribute DOMString hreflang;

301

html.idl:

 attribute DOMString media;
 attribute DOMString rel;
 attribute DOMString rev;
 attribute DOMString target;
 attribute DOMString type;
 };

 interface HTMLTitleElement : HTMLElement {
 attribute DOMString text;
 };

 interface HTMLMetaElement : HTMLElement {
 attribute DOMString content;
 attribute DOMString httpEquiv;
 attribute DOMString name;
 attribute DOMString scheme;
 };

 interface HTMLBaseElement : HTMLElement {
 attribute DOMString href;
 attribute DOMString target;
 };

 interface HTMLIsIndexElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString prompt;
 };

 interface HTMLStyleElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString media;
 attribute DOMString type;
 };

 interface HTMLBodyElement : HTMLElement {
 attribute DOMString aLink;
 attribute DOMString background;
 attribute DOMString bgColor;
 attribute DOMString link;
 attribute DOMString text;
 attribute DOMString vLink;
 };

 interface HTMLFormElement : HTMLElement {
 readonly attribute HTMLCollection elements;
 readonly attribute long length;
 attribute DOMString name;
 attribute DOMString acceptCharset;
 attribute DOMString action;
 attribute DOMString enctype;
 attribute DOMString method;
 attribute DOMString target;
 void submit();
 void reset();
 };

 interface HTMLSelectElement : HTMLElement {

302

html.idl:

 readonly attribute DOMString type;
 attribute long selectedIndex;
 attribute DOMString value;
 readonly attribute long length;
 readonly attribute HTMLFormElement form;
 readonly attribute HTMLCollection options;
 attribute boolean disabled;
 attribute boolean multiple;
 attribute DOMString name;
 attribute long size;
 attribute long tabIndex;
 void add(in HTMLElement element,
 in HTMLElement before)
 raises(dom::DOMException);
 void remove(in long index);
 void blur();
 void focus();
 };

 interface HTMLOptGroupElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString label;
 };

 interface HTMLOptionElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute boolean defaultSelected;
 readonly attribute DOMString text;
 readonly attribute long index;
 attribute boolean disabled;
 attribute DOMString label;
 attribute boolean selected;
 attribute DOMString value;
 };

 interface HTMLInputElement : HTMLElement {
 attribute DOMString defaultValue;
 attribute boolean defaultChecked;
 readonly attribute HTMLFormElement form;
 attribute DOMString accept;
 attribute DOMString accessKey;
 attribute DOMString align;
 attribute DOMString alt;
 attribute boolean checked;
 attribute boolean disabled;
 attribute long maxLength;
 attribute DOMString name;
 attribute boolean readOnly;
 attribute DOMString size;
 attribute DOMString src;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString useMap;
 attribute DOMString value;
 void blur();
 void focus();
 void select();

303

html.idl:

 void click();
 };

 interface HTMLTextAreaElement : HTMLElement {
 attribute DOMString defaultValue;
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute long cols;
 attribute boolean disabled;
 attribute DOMString name;
 attribute boolean readOnly;
 attribute long rows;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString value;
 void blur();
 void focus();
 void select();
 };

 interface HTMLButtonElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute boolean disabled;
 attribute DOMString name;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString value;
 };

 interface HTMLLabelElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute DOMString htmlFor;
 };

 interface HTMLFieldSetElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 };

 interface HTMLLegendElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute DOMString align;
 };

 interface HTMLUListElement : HTMLElement {
 attribute boolean compact;
 attribute DOMString type;
 };

 interface HTMLOListElement : HTMLElement {
 attribute boolean compact;
 attribute long start;
 attribute DOMString type;
 };

304

html.idl:

 interface HTMLDListElement : HTMLElement {
 attribute boolean compact;
 };

 interface HTMLDirectoryElement : HTMLElement {
 attribute boolean compact;
 };

 interface HTMLMenuElement : HTMLElement {
 attribute boolean compact;
 };

 interface HTMLLIElement : HTMLElement {
 attribute DOMString type;
 attribute long value;
 };

 interface HTMLDivElement : HTMLElement {
 attribute DOMString align;
 };

 interface HTMLParagraphElement : HTMLElement {
 attribute DOMString align;
 };

 interface HTMLHeadingElement : HTMLElement {
 attribute DOMString align;
 };

 interface HTMLQuoteElement : HTMLElement {
 attribute DOMString cite;
 };

 interface HTMLPreElement : HTMLElement {
 attribute long width;
 };

 interface HTMLBRElement : HTMLElement {
 attribute DOMString clear;
 };

 interface HTMLBaseFontElement : HTMLElement {
 attribute DOMString color;
 attribute DOMString face;
 attribute DOMString size;
 };

 interface HTMLFontElement : HTMLElement {
 attribute DOMString color;
 attribute DOMString face;
 attribute DOMString size;
 };

 interface HTMLHRElement : HTMLElement {
 attribute DOMString align;
 attribute boolean noShade;
 attribute DOMString size;

305

html.idl:

 attribute DOMString width;
 };

 interface HTMLModElement : HTMLElement {
 attribute DOMString cite;
 attribute DOMString dateTime;
 };

 interface HTMLAnchorElement : HTMLElement {
 attribute DOMString accessKey;
 attribute DOMString charset;
 attribute DOMString coords;
 attribute DOMString href;
 attribute DOMString hreflang;
 attribute DOMString name;
 attribute DOMString rel;
 attribute DOMString rev;
 attribute DOMString shape;
 attribute long tabIndex;
 attribute DOMString target;
 attribute DOMString type;
 void blur();
 void focus();
 };

 interface HTMLImageElement : HTMLElement {
 attribute DOMString lowSrc;
 attribute DOMString name;
 attribute DOMString align;
 attribute DOMString alt;
 attribute DOMString border;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute boolean isMap;
 attribute DOMString longDesc;
 attribute DOMString src;
 attribute DOMString useMap;
 attribute DOMString vspace;
 attribute DOMString width;
 };

 interface HTMLObjectElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString code;
 attribute DOMString align;
 attribute DOMString archive;
 attribute DOMString border;
 attribute DOMString codeBase;
 attribute DOMString codeType;
 attribute DOMString data;
 attribute boolean declare;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute DOMString name;
 attribute DOMString standby;
 attribute long tabIndex;
 attribute DOMString type;

306

html.idl:

 attribute DOMString useMap;
 attribute DOMString vspace;
 attribute DOMString width;
 // Introduced in DOM Level 2:
 attribute Document contentDocument;
 };

 interface HTMLParamElement : HTMLElement {
 attribute DOMString name;
 attribute DOMString type;
 attribute DOMString value;
 attribute DOMString valueType;
 };

 interface HTMLAppletElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString alt;
 attribute DOMString archive;
 attribute DOMString code;
 attribute DOMString codeBase;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute DOMString name;
 attribute DOMString object;
 attribute DOMString vspace;
 attribute DOMString width;
 };

 interface HTMLMapElement : HTMLElement {
 readonly attribute HTMLCollection areas;
 attribute DOMString name;
 };

 interface HTMLAreaElement : HTMLElement {
 attribute DOMString accessKey;
 attribute DOMString alt;
 attribute DOMString coords;
 attribute DOMString href;
 attribute boolean noHref;
 attribute DOMString shape;
 attribute long tabIndex;
 attribute DOMString target;
 };

 interface HTMLScriptElement : HTMLElement {
 attribute DOMString text;
 attribute DOMString htmlFor;
 attribute DOMString event;
 attribute DOMString charset;
 attribute boolean defer;
 attribute DOMString src;
 attribute DOMString type;
 };

 interface HTMLTableElement : HTMLElement {
 attribute HTMLTableCaptionElement caption;
 attribute HTMLTableSectionElement tHead;

307

html.idl:

 attribute HTMLTableSectionElement tFoot;
 readonly attribute HTMLCollection rows;
 readonly attribute HTMLCollection tBodies;
 attribute DOMString align;
 attribute DOMString bgColor;
 attribute DOMString border;
 attribute DOMString cellPadding;
 attribute DOMString cellSpacing;
 attribute DOMString frame;
 attribute DOMString rules;
 attribute DOMString summary;
 attribute DOMString width;
 HTMLElement createTHead();
 void deleteTHead();
 HTMLElement createTFoot();
 void deleteTFoot();
 HTMLElement createCaption();
 void deleteCaption();
 HTMLElement insertRow(in long index)
 raises(dom::DOMException);
 void deleteRow(in long index)
 raises(dom::DOMException);
 };

 interface HTMLTableCaptionElement : HTMLElement {
 attribute DOMString align;
 };

 interface HTMLTableColElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute long span;
 attribute DOMString vAlign;
 attribute DOMString width;
 };

 interface HTMLTableSectionElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
 readonly attribute HTMLCollection rows;
 HTMLElement insertRow(in long index)
 raises(dom::DOMException);
 void deleteRow(in long index)
 raises(dom::DOMException);
 };

 interface HTMLTableRowElement : HTMLElement {
 readonly attribute long rowIndex;
 readonly attribute long sectionRowIndex;
 readonly attribute HTMLCollection cells;
 attribute DOMString align;
 attribute DOMString bgColor;
 attribute DOMString ch;
 attribute DOMString chOff;

308

html.idl:

 attribute DOMString vAlign;
 HTMLElement insertCell(in long index)
 raises(dom::DOMException);
 void deleteCell(in long index)
 raises(dom::DOMException);
 };

 interface HTMLTableCellElement : HTMLElement {
 readonly attribute long cellIndex;
 attribute DOMString abbr;
 attribute DOMString align;
 attribute DOMString axis;
 attribute DOMString bgColor;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute long colSpan;
 attribute DOMString headers;
 attribute DOMString height;
 attribute boolean noWrap;
 attribute long rowSpan;
 attribute DOMString scope;
 attribute DOMString vAlign;
 attribute DOMString width;
 };

 interface HTMLFrameSetElement : HTMLElement {
 attribute DOMString cols;
 attribute DOMString rows;
 };

 interface HTMLFrameElement : HTMLElement {
 attribute DOMString frameBorder;
 attribute DOMString longDesc;
 attribute DOMString marginHeight;
 attribute DOMString marginWidth;
 attribute DOMString name;
 attribute boolean noResize;
 attribute DOMString scrolling;
 attribute DOMString src;
 // Introduced in DOM Level 2:
 attribute Document contentDocument;
 };

 interface HTMLIFrameElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString frameBorder;
 attribute DOMString height;
 attribute DOMString longDesc;
 attribute DOMString marginHeight;
 attribute DOMString marginWidth;
 attribute DOMString name;
 attribute DOMString scrolling;
 attribute DOMString src;
 attribute DOMString width;
 // Introduced in DOM Level 2:
 attribute Document contentDocument;

309

html.idl:

 };
};

#endif // _HTML_IDL_

C.3: Document Object Model Views

views.idl:
// File: views.idl
#ifndef _VIEWS_IDL_
#define _VIEWS_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"
module views
{
 interface DocumentView;

 // Introduced in DOM Level 2:
 interface AbstractView {
 readonly attribute DocumentView document;
 };

 // Introduced in DOM Level 2:
 interface DocumentView {
 readonly attribute AbstractView defaultView;
 };
};

#endif // _VIEWS_IDL_

C.4: Document Object Model StyleSheets

stylesheets.idl:
// File: stylesheets.idl
#ifndef _STYLESHEETS_IDL_
#define _STYLESHEETS_IDL_

#include "dom.idl"
#include "html.idl"

#pragma prefix "dom.w3c.org"
module stylesheets
{
 typedef dom::DOMString DOMString;
 typedef dom::Node Node;

 interface MediaList;

 // Introduced in DOM Level 2:

310

C.3: Document Object Model Views

http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307/idl/stylesheets.idl
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307/idl/views.idl

 interface StyleSheet {
 readonly attribute DOMString type;
 attribute boolean disabled;
 readonly attribute Node ownerNode;
 readonly attribute StyleSheet parentStyleSheet;
 readonly attribute DOMString href;
 readonly attribute DOMString title;
 readonly attribute MediaList media;
 };

 // Introduced in DOM Level 2:
 interface StyleSheetList {
 readonly attribute unsigned long length;
 StyleSheet item(in unsigned long index);
 };

 // Introduced in DOM Level 2:
 interface MediaList {
 attribute DOMString mediaText;
 // raises(dom::DOMException) on setting

 readonly attribute unsigned long length;
 DOMString item(in unsigned long index);
 void delete(in DOMString oldMedium)
 raises(dom::DOMException);
 void append(in DOMString newMedium)
 raises(dom::DOMException);
 };

 // Introduced in DOM Level 2:
 interface LinkStyle {
 readonly attribute StyleSheet sheet;
 };

 // Introduced in DOM Level 2:
 interface DocumentStyle {
 readonly attribute StyleSheetList styleSheets;
 };
};

#endif // _STYLESHEETS_IDL_

C.5: Document Object Model CSS

css.idl:
// File: css.idl
#ifndef _CSS_IDL_
#define _CSS_IDL_

#include "dom.idl"
#include "stylesheets.idl"
#include "html.idl"
#include "views.idl"

311

C.5: Document Object Model CSS

http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307/idl/css.idl

#pragma prefix "dom.w3c.org"
module css
{
 typedef dom::DOMString DOMString;
 typedef dom::Element Element;
 typedef dom::DOMImplementation DOMImplementation;

 interface CSSRule;
 interface CSSStyleSheet;
 interface CSSStyleDeclaration;
 interface CSSValue;
 interface Counter;
 interface Rect;
 interface RGBColor;

 // Introduced in DOM Level 2:
 interface CSSRuleList {
 readonly attribute unsigned long length;
 CSSRule item(in unsigned long index);
 };

 // Introduced in DOM Level 2:
 interface CSSRule {
 // RuleType
 const unsigned short UNKNOWN_RULE = 0;
 const unsigned short STYLE_RULE = 1;
 const unsigned short CHARSET_RULE = 2;
 const unsigned short IMPORT_RULE = 3;
 const unsigned short MEDIA_RULE = 4;
 const unsigned short FONT_FACE_RULE = 5;
 const unsigned short PAGE_RULE = 6;

 readonly attribute unsigned short type;
 attribute DOMString cssText;
 // raises(dom::DOMException) on setting

 readonly attribute CSSStyleSheet parentStyleSheet;
 readonly attribute CSSRule parentRule;
 };

 // Introduced in DOM Level 2:
 interface CSSStyleRule : CSSRule {
 attribute DOMString selectorText;
 // raises(dom::DOMException) on setting

 readonly attribute CSSStyleDeclaration style;
 };

 // Introduced in DOM Level 2:
 interface CSSMediaRule : CSSRule {
 readonly attribute stylesheets::MediaList media;
 readonly attribute CSSRuleList cssRules;
 unsigned long insertRule(in DOMString rule,
 in unsigned long index)
 raises(dom::DOMException);
 void deleteRule(in unsigned long index)
 raises(dom::DOMException);

312

css.idl:

 };

 // Introduced in DOM Level 2:
 interface CSSFontFaceRule : CSSRule {
 readonly attribute CSSStyleDeclaration style;
 };

 // Introduced in DOM Level 2:
 interface CSSPageRule : CSSRule {
 attribute DOMString selectorText;
 // raises(dom::DOMException) on setting

 readonly attribute CSSStyleDeclaration style;
 };

 // Introduced in DOM Level 2:
 interface CSSImportRule : CSSRule {
 readonly attribute DOMString href;
 readonly attribute stylesheets::MediaList media;
 readonly attribute CSSStyleSheet styleSheet;
 };

 // Introduced in DOM Level 2:
 interface CSSCharsetRule : CSSRule {
 attribute DOMString encoding;
 // raises(dom::DOMException) on setting

 };

 // Introduced in DOM Level 2:
 interface CSSUnknownRule : CSSRule {
 };

 // Introduced in DOM Level 2:
 interface CSSStyleDeclaration {
 attribute DOMString cssText;
 // raises(dom::DOMException) on setting

 DOMString getPropertyValue(in DOMString propertyName);
 CSSValue getPropertyCSSValue(in DOMString propertyName);
 DOMString removeProperty(in DOMString propertyName)
 raises(dom::DOMException);
 DOMString getPropertyPriority(in DOMString propertyName);
 void setProperty(in DOMString propertyName,
 in DOMString value,
 in DOMString priority)
 raises(dom::DOMException);
 readonly attribute unsigned long length;
 DOMString item(in unsigned long index);
 readonly attribute CSSRule parentRule;
 };

 // Introduced in DOM Level 2:
 interface CSSValue {
 // UnitTypes
 const unsigned short CSS_INHERIT = 0;
 const unsigned short CSS_PRIMITIVE_VALUE = 1;

313

css.idl:

 const unsigned short CSS_VALUE_LIST = 2;
 const unsigned short CSS_CUSTOM = 3;

 attribute DOMString cssText;
 // raises(dom::DOMException) on setting

 readonly attribute unsigned short valueType;
 };

 // Introduced in DOM Level 2:
 interface CSSPrimitiveValue : CSSValue {
 // UnitTypes
 const unsigned short CSS_UNKNOWN = 0;
 const unsigned short CSS_NUMBER = 1;
 const unsigned short CSS_PERCENTAGE = 2;
 const unsigned short CSS_EMS = 3;
 const unsigned short CSS_EXS = 4;
 const unsigned short CSS_PX = 5;
 const unsigned short CSS_CM = 6;
 const unsigned short CSS_MM = 7;
 const unsigned short CSS_IN = 8;
 const unsigned short CSS_PT = 9;
 const unsigned short CSS_PC = 10;
 const unsigned short CSS_DEG = 11;
 const unsigned short CSS_RAD = 12;
 const unsigned short CSS_GRAD = 13;
 const unsigned short CSS_MS = 14;
 const unsigned short CSS_S = 15;
 const unsigned short CSS_HZ = 16;
 const unsigned short CSS_KHZ = 17;
 const unsigned short CSS_DIMENSION = 18;
 const unsigned short CSS_STRING = 19;
 const unsigned short CSS_URI = 20;
 const unsigned short CSS_IDENT = 21;
 const unsigned short CSS_ATTR = 22;
 const unsigned short CSS_COUNTER = 23;
 const unsigned short CSS_RECT = 24;
 const unsigned short CSS_RGBCOLOR = 25;

 readonly attribute unsigned short primitiveType;
 void setFloatValue(in unsigned short unitType,
 in float floatValue)
 raises(dom::DOMException);
 float getFloatValue(in unsigned short unitType)
 raises(dom::DOMException);
 void setStringValue(in unsigned short stringType,
 in DOMString stringValue)
 raises(dom::DOMException);
 DOMString getStringValue()
 raises(dom::DOMException);
 Counter getCounterValue()
 raises(dom::DOMException);
 Rect getRectValue()
 raises(dom::DOMException);
 RGBColor getRGBColorValue()
 raises(dom::DOMException);
 };

314

css.idl:

 // Introduced in DOM Level 2:
 interface CSSValueList : CSSValue {
 readonly attribute unsigned long length;
 CSSValue item(in unsigned long index);
 };

 // Introduced in DOM Level 2:
 interface RGBColor {
 readonly attribute CSSPrimitiveValue red;
 readonly attribute CSSPrimitiveValue green;
 readonly attribute CSSPrimitiveValue blue;
 };

 // Introduced in DOM Level 2:
 interface Rect {
 readonly attribute CSSPrimitiveValue top;
 readonly attribute CSSPrimitiveValue right;
 readonly attribute CSSPrimitiveValue bottom;
 readonly attribute CSSPrimitiveValue left;
 };

 // Introduced in DOM Level 2:
 interface Counter {
 readonly attribute DOMString identifier;
 readonly attribute DOMString listStyle;
 readonly attribute DOMString separator;
 };

 // Introduced in DOM Level 2:
 interface ElementCSSInlineStyle {
 readonly attribute CSSStyleDeclaration style;
 };

 // Introduced in DOM Level 2:
 interface CSS2Azimuth : CSSValue {
 readonly attribute unsigned short azimuthType;
 readonly attribute DOMString identifier;
 readonly attribute boolean behind;
 void setAngleValue(in unsigned short uType,
 in float fValue)
 raises(dom::DOMException);
 float getAngleValue(in unsigned short uType)
 raises(dom::DOMException);
 void setIdentifier(in DOMString ident,
 in boolean b)
 raises(dom::DOMException);
 };

 // Introduced in DOM Level 2:
 interface CSS2BackgroundPosition : CSSValue {
 readonly attribute unsigned short horizontalType;
 readonly attribute unsigned short verticalType;
 readonly attribute DOMString horizontalIdentifier;
 readonly attribute DOMString verticalIdentifier;
 float getHorizontalPosition(in float hType)
 raises(dom::DOMException);

315

css.idl:

 float getVerticalPosition(in float vType)
 raises(dom::DOMException);
 void setHorizontalPosition(in unsigned short hType,
 in float value)
 raises(dom::DOMException);
 void setVerticalPosition(in unsigned short vType,
 in float value)
 raises(dom::DOMException);
 void setPositionIdentifier(in DOMString hIdentifier,
 in DOMString vIdentifier)
 raises(dom::DOMException);
 };

 // Introduced in DOM Level 2:
 interface CSS2BorderSpacing : CSSValue {
 readonly attribute unsigned short horizontalType;
 readonly attribute unsigned short verticalType;
 float getHorizontalSpacing(in float hType)
 raises(dom::DOMException);
 float getVerticalSpacing(in float vType)
 raises(dom::DOMException);
 void setHorizontalSpacing(in unsigned short hType,
 in float value)
 raises(dom::DOMException);
 void setVerticalSpacing(in unsigned short vType,
 in float value)
 raises(dom::DOMException);
 };

 // Introduced in DOM Level 2:
 interface CSS2CounterReset : CSSValue {
 attribute DOMString identifier;
 // raises(dom::DOMException) on setting

 attribute short reset;
 // raises(dom::DOMException) on setting

 };

 // Introduced in DOM Level 2:
 interface CSS2CounterIncrement : CSSValue {
 attribute DOMString identifier;
 // raises(dom::DOMException) on setting

 attribute short increment;
 // raises(dom::DOMException) on setting

 };

 // Introduced in DOM Level 2:
 interface CSS2Cursor : CSSValue {
 readonly attribute CSSValueList uris;
 attribute DOMString predefinedCursor;
 // raises(dom::DOMException) on setting

 };

316

css.idl:

 // Introduced in DOM Level 2:
 interface CSS2PlayDuring : CSSValue {
 readonly attribute unsigned short playDuringType;
 attribute DOMString playDuringIdentifier;
 // raises(dom::DOMException) on setting

 attribute DOMString uri;
 // raises(dom::DOMException) on setting

 attribute boolean mix;
 // raises(dom::DOMException) on setting

 attribute boolean repeat;
 // raises(dom::DOMException) on setting

 };

 // Introduced in DOM Level 2:
 interface CSS2TextShadow {
 readonly attribute CSSValue color;
 readonly attribute CSSValue horizontal;
 readonly attribute CSSValue vertical;
 readonly attribute CSSValue blur;
 };

 // Introduced in DOM Level 2:
 interface CSS2FontFaceSrc {
 attribute DOMString uri;
 // raises(dom::DOMException) on setting

 readonly attribute CSSValueList format;
 attribute DOMString fontFaceName;
 // raises(dom::DOMException) on setting

 };

 // Introduced in DOM Level 2:
 interface CSS2FontFaceWidths {
 attribute DOMString urange;
 // raises(dom::DOMException) on setting

 readonly attribute CSSValueList numbers;
 };

 // Introduced in DOM Level 2:
 interface CSS2PageSize : CSSValue {
 readonly attribute unsigned short widthType;
 readonly attribute unsigned short heightType;
 readonly attribute DOMString identifier;
 float getWidth(in float wType)
 raises(dom::DOMException);
 float getHeightSize(in float hType)
 raises(dom::DOMException);
 void setWidthSize(in unsigned short wType,
 in float value)
 raises(dom::DOMException);
 void setHeightSize(in unsigned short hType,

317

css.idl:

 in float value)
 raises(dom::DOMException);
 void setIdentifier(in DOMString ident)
 raises(dom::DOMException);
 };

 // Introduced in DOM Level 2:
 interface CSS2Properties {
 attribute DOMString azimuth;
 // raises(dom::DOMException) on setting

 attribute DOMString background;
 // raises(dom::DOMException) on setting

 attribute DOMString backgroundAttachment;
 // raises(dom::DOMException) on setting

 attribute DOMString backgroundColor;
 // raises(dom::DOMException) on setting

 attribute DOMString backgroundImage;
 // raises(dom::DOMException) on setting

 attribute DOMString backgroundPosition;
 // raises(dom::DOMException) on setting

 attribute DOMString backgroundRepeat;
 // raises(dom::DOMException) on setting

 attribute DOMString border;
 // raises(dom::DOMException) on setting

 attribute DOMString borderCollapse;
 // raises(dom::DOMException) on setting

 attribute DOMString borderColor;
 // raises(dom::DOMException) on setting

 attribute DOMString borderSpacing;
 // raises(dom::DOMException) on setting

 attribute DOMString borderStyle;
 // raises(dom::DOMException) on setting

 attribute DOMString borderTop;
 // raises(dom::DOMException) on setting

 attribute DOMString borderRight;
 // raises(dom::DOMException) on setting

 attribute DOMString borderBottom;
 // raises(dom::DOMException) on setting

 attribute DOMString borderLeft;
 // raises(dom::DOMException) on setting

 attribute DOMString borderTopColor;

318

css.idl:

 // raises(dom::DOMException) on setting

 attribute DOMString borderRightColor;
 // raises(dom::DOMException) on setting

 attribute DOMString borderBottomColor;
 // raises(dom::DOMException) on setting

 attribute DOMString borderLeftColor;
 // raises(dom::DOMException) on setting

 attribute DOMString borderTopStyle;
 // raises(dom::DOMException) on setting

 attribute DOMString borderRightStyle;
 // raises(dom::DOMException) on setting

 attribute DOMString borderBottomStyle;
 // raises(dom::DOMException) on setting

 attribute DOMString borderLeftStyle;
 // raises(dom::DOMException) on setting

 attribute DOMString borderTopWidth;
 // raises(dom::DOMException) on setting

 attribute DOMString borderRightWidth;
 // raises(dom::DOMException) on setting

 attribute DOMString borderBottomWidth;
 // raises(dom::DOMException) on setting

 attribute DOMString borderLeftWidth;
 // raises(dom::DOMException) on setting

 attribute DOMString borderWidth;
 // raises(dom::DOMException) on setting

 attribute DOMString bottom;
 // raises(dom::DOMException) on setting

 attribute DOMString captionSide;
 // raises(dom::DOMException) on setting

 attribute DOMString clear;
 // raises(dom::DOMException) on setting

 attribute DOMString clip;
 // raises(dom::DOMException) on setting

 attribute DOMString color;
 // raises(dom::DOMException) on setting

 attribute DOMString content;
 // raises(dom::DOMException) on setting

 attribute DOMString counterIncrement;

319

css.idl:

 // raises(dom::DOMException) on setting

 attribute DOMString counterReset;
 // raises(dom::DOMException) on setting

 attribute DOMString cue;
 // raises(dom::DOMException) on setting

 attribute DOMString cueAfter;
 // raises(dom::DOMException) on setting

 attribute DOMString cueBefore;
 // raises(dom::DOMException) on setting

 attribute DOMString cursor;
 // raises(dom::DOMException) on setting

 attribute DOMString direction;
 // raises(dom::DOMException) on setting

 attribute DOMString display;
 // raises(dom::DOMException) on setting

 attribute DOMString elevation;
 // raises(dom::DOMException) on setting

 attribute DOMString emptyCells;
 // raises(dom::DOMException) on setting

 attribute DOMString cssFloat;
 // raises(dom::DOMException) on setting

 attribute DOMString font;
 // raises(dom::DOMException) on setting

 attribute DOMString fontFamily;
 // raises(dom::DOMException) on setting

 attribute DOMString fontSize;
 // raises(dom::DOMException) on setting

 attribute DOMString fontSizeAdjust;
 // raises(dom::DOMException) on setting

 attribute DOMString fontStretch;
 // raises(dom::DOMException) on setting

 attribute DOMString fontStyle;
 // raises(dom::DOMException) on setting

 attribute DOMString fontVariant;
 // raises(dom::DOMException) on setting

 attribute DOMString fontWeight;
 // raises(dom::DOMException) on setting

 attribute DOMString height;

320

css.idl:

 // raises(dom::DOMException) on setting

 attribute DOMString left;
 // raises(dom::DOMException) on setting

 attribute DOMString letterSpacing;
 // raises(dom::DOMException) on setting

 attribute DOMString lineHeight;
 // raises(dom::DOMException) on setting

 attribute DOMString listStyle;
 // raises(dom::DOMException) on setting

 attribute DOMString listStyleImage;
 // raises(dom::DOMException) on setting

 attribute DOMString listStylePosition;
 // raises(dom::DOMException) on setting

 attribute DOMString listStyleType;
 // raises(dom::DOMException) on setting

 attribute DOMString margin;
 // raises(dom::DOMException) on setting

 attribute DOMString marginTop;
 // raises(dom::DOMException) on setting

 attribute DOMString marginRight;
 // raises(dom::DOMException) on setting

 attribute DOMString marginBottom;
 // raises(dom::DOMException) on setting

 attribute DOMString marginLeft;
 // raises(dom::DOMException) on setting

 attribute DOMString markerOffset;
 // raises(dom::DOMException) on setting

 attribute DOMString marks;
 // raises(dom::DOMException) on setting

 attribute DOMString maxHeight;
 // raises(dom::DOMException) on setting

 attribute DOMString maxWidth;
 // raises(dom::DOMException) on setting

 attribute DOMString minHeight;
 // raises(dom::DOMException) on setting

 attribute DOMString minWidth;
 // raises(dom::DOMException) on setting

 attribute DOMString orphans;

321

css.idl:

 // raises(dom::DOMException) on setting

 attribute DOMString outline;
 // raises(dom::DOMException) on setting

 attribute DOMString outlineColor;
 // raises(dom::DOMException) on setting

 attribute DOMString outlineStyle;
 // raises(dom::DOMException) on setting

 attribute DOMString outlineWidth;
 // raises(dom::DOMException) on setting

 attribute DOMString overflow;
 // raises(dom::DOMException) on setting

 attribute DOMString padding;
 // raises(dom::DOMException) on setting

 attribute DOMString paddingTop;
 // raises(dom::DOMException) on setting

 attribute DOMString paddingRight;
 // raises(dom::DOMException) on setting

 attribute DOMString paddingBottom;
 // raises(dom::DOMException) on setting

 attribute DOMString paddingLeft;
 // raises(dom::DOMException) on setting

 attribute DOMString page;
 // raises(dom::DOMException) on setting

 attribute DOMString pageBreakAfter;
 // raises(dom::DOMException) on setting

 attribute DOMString pageBreakBefore;
 // raises(dom::DOMException) on setting

 attribute DOMString pageBreakInside;
 // raises(dom::DOMException) on setting

 attribute DOMString pause;
 // raises(dom::DOMException) on setting

 attribute DOMString pauseAfter;
 // raises(dom::DOMException) on setting

 attribute DOMString pauseBefore;
 // raises(dom::DOMException) on setting

 attribute DOMString pitch;
 // raises(dom::DOMException) on setting

 attribute DOMString pitchRange;

322

css.idl:

 // raises(dom::DOMException) on setting

 attribute DOMString playDuring;
 // raises(dom::DOMException) on setting

 attribute DOMString position;
 // raises(dom::DOMException) on setting

 attribute DOMString quotes;
 // raises(dom::DOMException) on setting

 attribute DOMString richness;
 // raises(dom::DOMException) on setting

 attribute DOMString right;
 // raises(dom::DOMException) on setting

 attribute DOMString size;
 // raises(dom::DOMException) on setting

 attribute DOMString speak;
 // raises(dom::DOMException) on setting

 attribute DOMString speakHeader;
 // raises(dom::DOMException) on setting

 attribute DOMString speakNumeral;
 // raises(dom::DOMException) on setting

 attribute DOMString speakPunctuation;
 // raises(dom::DOMException) on setting

 attribute DOMString speechRate;
 // raises(dom::DOMException) on setting

 attribute DOMString stress;
 // raises(dom::DOMException) on setting

 attribute DOMString tableLayout;
 // raises(dom::DOMException) on setting

 attribute DOMString textAlign;
 // raises(dom::DOMException) on setting

 attribute DOMString textDecoration;
 // raises(dom::DOMException) on setting

 attribute DOMString textIndent;
 // raises(dom::DOMException) on setting

 attribute DOMString textShadow;
 // raises(dom::DOMException) on setting

 attribute DOMString textTransform;
 // raises(dom::DOMException) on setting

 attribute DOMString top;

323

css.idl:

 // raises(dom::DOMException) on setting

 attribute DOMString unicodeBidi;
 // raises(dom::DOMException) on setting

 attribute DOMString verticalAlign;
 // raises(dom::DOMException) on setting

 attribute DOMString visibility;
 // raises(dom::DOMException) on setting

 attribute DOMString voiceFamily;
 // raises(dom::DOMException) on setting

 attribute DOMString volume;
 // raises(dom::DOMException) on setting

 attribute DOMString whiteSpace;
 // raises(dom::DOMException) on setting

 attribute DOMString widows;
 // raises(dom::DOMException) on setting

 attribute DOMString width;
 // raises(dom::DOMException) on setting

 attribute DOMString wordSpacing;
 // raises(dom::DOMException) on setting

 attribute DOMString zIndex;
 // raises(dom::DOMException) on setting

 };

 // Introduced in DOM Level 2:
 interface CSSStyleSheet : stylesheets::StyleSheet {
 readonly attribute CSSRule ownerRule;
 readonly attribute CSSRuleList cssRules;
 unsigned long insertRule(in DOMString rule,
 in unsigned long index)
 raises(dom::DOMException);
 void deleteRule(in unsigned long index)
 raises(dom::DOMException);
 };

 // Introduced in DOM Level 2:
 interface ViewCSS : views::AbstractView {
 CSSStyleDeclaration getComputedStyle(in Element elt,
 in DOMString pseudoElt);
 };

 // Introduced in DOM Level 2:
 interface DocumentCSS : stylesheets::DocumentStyle {
 CSSStyleDeclaration getOverrideStyle(in Element elt,
 in DOMString pseudoElt);
 };

324

css.idl:

 // Introduced in DOM Level 2:
 interface DOMImplementationCSS : DOMImplementation {
 CSSStyleSheet createCSSStyleSheet(in DOMString title,
 in DOMString media);
 };
};

#endif // _CSS_IDL_

C.6: Document Object Model Events

events.idl:
// File: events.idl
#ifndef _EVENTS_IDL_
#define _EVENTS_IDL_

#include "dom.idl"
#include "views.idl"

#pragma prefix "dom.w3c.org"
module events
{
 typedef dom::DOMString DOMString;
 typedef dom::Node Node;
 typedef dom::DOMTimeStamp DOMTimeStamp;

 interface EventListener;
 interface Event;

 // Introduced in DOM Level 2:
 exception EventException {
 unsigned short code;
 };

 // EventExceptionCode
 const unsigned short UNSPECIFIED_EVENT_TYPE_ERR = 0;

 // Introduced in DOM Level 2:
 interface EventTarget {
 void addEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture);
 void removeEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture);
 boolean dispatchEvent(in Event evt)
 raises(EventException);
 };

 // Introduced in DOM Level 2:
 interface EventListener {
 void handleEvent(in Event evt);
 };

325

C.6: Document Object Model Events

http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307/idl/events.idl

 // Introduced in DOM Level 2:
 interface Event {
 // PhaseType
 const unsigned short CAPTURING_PHASE = 1;
 const unsigned short AT_TARGET = 2;
 const unsigned short BUBBLING_PHASE = 3;

 readonly attribute DOMString type;
 readonly attribute EventTarget target;
 readonly attribute Node currentNode;
 readonly attribute unsigned short eventPhase;
 readonly attribute boolean bubbles;
 readonly attribute boolean cancelable;
 readonly attribute DOMTimeStamp timeStamp;
 void stopPropagation();
 void preventDefault();
 void initEvent(in DOMString eventTypeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg);
 };

 // Introduced in DOM Level 2:
 interface DocumentEvent {
 Event createEvent(in DOMString eventType)
 raises(dom::DOMException);
 };

 // Introduced in DOM Level 2:
 interface UIEvent : Event {
 readonly attribute views::AbstractView view;
 readonly attribute long detail;
 void initUIEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg);
 };

 // Introduced in DOM Level 2:
 interface MouseEvent : UIEvent {
 readonly attribute long screenX;
 readonly attribute long screenY;
 readonly attribute long clientX;
 readonly attribute long clientY;
 readonly attribute boolean ctrlKey;
 readonly attribute boolean shiftKey;
 readonly attribute boolean altKey;
 readonly attribute boolean metaKey;
 readonly attribute unsigned short button;
 readonly attribute Node relatedNode;
 void initMouseEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg,
 in long screenXArg,

326

events.idl:

 in long screenYArg,
 in long clientXArg,
 in long clientYArg,
 in boolean ctrlKeyArg,
 in boolean altKeyArg,
 in boolean shiftKeyArg,
 in boolean metaKeyArg,
 in unsigned short buttonArg,
 in Node relatedNodeArg);
 };

 // Introduced in DOM Level 2:
 interface MutationEvent : Event {
 readonly attribute Node relatedNode;
 readonly attribute DOMString prevValue;
 readonly attribute DOMString newValue;
 readonly attribute DOMString attrName;
 void initMutationEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in Node relatedNodeArg,
 in DOMString prevValueArg,
 in DOMString newValueArg,
 in DOMString attrNameArg);
 };
};

#endif // _EVENTS_IDL_

C.7: Document Object Model Traversal

traversal.idl:
// File: traversal.idl
#ifndef _TRAVERSAL_IDL_
#define _TRAVERSAL_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"
module traversal
{
 typedef dom::Node Node;

 interface NodeFilter;

 // Introduced in DOM Level 2:
 interface NodeIterator {
 readonly attribute Node root;
 readonly attribute unsigned long whatToShow;
 readonly attribute NodeFilter filter;
 readonly attribute boolean expandEntityReferences;
 Node nextNode()
 raises(dom::DOMException);
 Node previousNode()

327

C.7: Document Object Model Traversal

http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307/idl/traversal.idl

 raises(dom::DOMException);
 void detach();
 };

 // Introduced in DOM Level 2:
 interface NodeFilter {
 // Constants returned by acceptNode
 const short FILTER_ACCEPT = 1;
 const short FILTER_REJECT = 2;
 const short FILTER_SKIP = 3;

 // Constants for whatToShow
 const unsigned long SHOW_ALL = 0xFFFFFFFF;
 const unsigned long SHOW_ELEMENT = 0x00000001;
 const unsigned long SHOW_ATTRIBUTE = 0x00000002;
 const unsigned long SHOW_TEXT = 0x00000004;
 const unsigned long SHOW_CDATA_SECTION = 0x00000008;
 const unsigned long SHOW_ENTITY_REFERENCE = 0x00000010;
 const unsigned long SHOW_ENTITY = 0x00000020;
 const unsigned long SHOW_PROCESSING_INSTRUCTION = 0x00000040;
 const unsigned long SHOW_COMMENT = 0x00000080;
 const unsigned long SHOW_DOCUMENT = 0x00000100;
 const unsigned long SHOW_DOCUMENT_TYPE = 0x00000200;
 const unsigned long SHOW_DOCUMENT_FRAGMENT = 0x00000400;
 const unsigned long SHOW_NOTATION = 0x00000800;

 short acceptNode(in Node n);
 };

 // Introduced in DOM Level 2:
 interface TreeWalker {
 readonly attribute Node root;
 readonly attribute unsigned long whatToShow;
 readonly attribute NodeFilter filter;
 readonly attribute boolean expandEntityReferences;
 attribute Node currentNode;
 // raises(dom::DOMException) on setting

 Node parentNode();
 Node firstChild();
 Node lastChild();
 Node previousSibling();
 Node nextSibling();
 Node previousNode();
 Node nextNode();
 };

 // Introduced in DOM Level 2:
 interface DocumentTraversal {
 NodeIterator createNodeIterator(in Node root,
 in unsigned long whatToShow,
 in NodeFilter filter,
 in boolean entityReferenceExpansion);
 TreeWalker createTreeWalker(in Node root,
 in unsigned long whatToShow,
 in NodeFilter filter,
 in boolean entityReferenceExpansion)

328

traversal.idl:

 raises(dom::DOMException);
 };
};

#endif // _TRAVERSAL_IDL_

C.8: Document Object Model Range

range.idl:
// File: range.idl
#ifndef _RANGE_IDL_
#define _RANGE_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"
module range
{
 typedef dom::Node Node;
 typedef dom::DocumentFragment DocumentFragment;
 typedef dom::DOMString DOMString;

 // Introduced in DOM Level 2:
 exception RangeException {
 unsigned short code;
 };

 // RangeExceptionCode
 const unsigned short BAD_BOUNDARYPOINTS_ERR = 1;
 const unsigned short INVALID_NODE_TYPE_ERR = 2;

 // Introduced in DOM Level 2:
 interface Range {
 readonly attribute Node startContainer;
 // raises(dom::DOMException) on retrieval

 readonly attribute long startOffset;
 // raises(dom::DOMException) on retrieval

 readonly attribute Node endContainer;
 // raises(dom::DOMException) on retrieval

 readonly attribute long endOffset;
 // raises(dom::DOMException) on retrieval

 readonly attribute boolean collapsed;
 // raises(dom::DOMException) on retrieval

 readonly attribute Node commonAncestorContainer;
 // raises(dom::DOMException) on retrieval

 void setStart(in Node refNode,
 in long offset)

329

C.8: Document Object Model Range

http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307/idl/range.idl

 raises(RangeException,
 dom::DOMException);
 void setEnd(in Node refNode,
 in long offset)
 raises(RangeException,
 dom::DOMException);
 void setStartBefore(in Node refNode)
 raises(RangeException,
 dom::DOMException);
 void setStartAfter(in Node refNode)
 raises(RangeException,
 dom::DOMException);
 void setEndBefore(in Node refNode)
 raises(RangeException,
 dom::DOMException);
 void setEndAfter(in Node refNode)
 raises(RangeException,
 dom::DOMException);
 void collapse(in boolean toStart)
 raises(dom::DOMException);
 void selectNode(in Node refNode)
 raises(RangeException,
 dom::DOMException);
 void selectNodeContents(in Node refNode)
 raises(RangeException,
 dom::DOMException);
 // CompareHow
 const unsigned short START_TO_START = 0;
 const unsigned short START_TO_END = 1;
 const unsigned short END_TO_END = 2;
 const unsigned short END_TO_START = 3;

 short compareBoundaryPoints(in unsigned short how,
 in Range sourceRange)
 raises(dom::DOMException);
 void deleteContents()
 raises(dom::DOMException);
 DocumentFragment extractContents()
 raises(dom::DOMException);
 DocumentFragment cloneContents()
 raises(dom::DOMException);
 void insertNode(in Node newNode)
 raises(dom::DOMException,
 RangeException);
 void surroundContents(in Node newParent)
 raises(dom::DOMException,
 RangeException);
 Range cloneRange()
 raises(dom::DOMException);
 DOMString toString()
 raises(dom::DOMException);
 void detach()
 raises(dom::DOMException);
 };

 // Introduced in DOM Level 2:
 interface DocumentRange {

330

range.idl:

 Range createRange();
 };
};

#endif // _RANGE_IDL_

331

range.idl:

332

range.idl:

Appendix D: Java Language Binding
This appendix contains the complete Java bindings for the Level 2 Document Object Model. The
definitions are divided into Core [p.333] , HTML [p.341] , StyleSheets [p.366] , CSS [p.367] , Events
[p.388] , Filters and Iterators [p.391] , and Range [p.393] .

The Java files are also available as
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307/java-binding.zip

D.1: Document Object Model Core

org/w3c/dom/DOMException.java:
package org.w3c.dom;

public class DOMException extends RuntimeException {
 public DOMException(short code, String message) {
 super(message);
 this.code = code;
 }
 public short code;
 // ExceptionCode
 public static final short INDEX_SIZE_ERR = 1;
 public static final short DOMSTRING_SIZE_ERR = 2;
 public static final short HIERARCHY_REQUEST_ERR = 3;
 public static final short WRONG_DOCUMENT_ERR = 4;
 public static final short INVALID_CHARACTER_ERR = 5;
 public static final short NO_DATA_ALLOWED_ERR = 6;
 public static final short NO_MODIFICATION_ALLOWED_ERR = 7;
 public static final short NOT_FOUND_ERR = 8;
 public static final short NOT_SUPPORTED_ERR = 9;
 public static final short INUSE_ATTRIBUTE_ERR = 10;
 /**
 * @since DOM Level 2
 */
 public static final short INVALID_STATE_ERR = 11;
 /**
 * @since DOM Level 2
 */
 public static final short SYNTAX_ERR = 12;
 /**
 * @since DOM Level 2
 */
 public static final short INVALID_MODIFICATION_ERR = 13;
 /**
 * @since DOM Level 2
 */
 public static final short NAMESPACE_ERR = 14;
 /**
 * @since DOM Level 2

333

Appendix D: Java Language Binding

 */
 public static final short INVALID_ACCESS_ERR = 15;

}

org/w3c/dom/DOMImplementation.java:
package org.w3c.dom;

public interface DOMImplementation {
 public boolean hasFeature(String feature,
 String version);

 public DocumentType createDocumentType(String qualifiedName,
 String publicId,
 String systemId)
 throws DOMException;

 public Document createDocument(String namespaceURI,
 String qualifiedName,
 DocumentType doctype)
 throws DOMException;

}

org/w3c/dom/DocumentFragment.java:
package org.w3c.dom;

public interface DocumentFragment extends Node {
}

org/w3c/dom/Document.java:
package org.w3c.dom;

public interface Document extends Node {
 public DocumentType getDoctype();

 public DOMImplementation getImplementation();

 public Element getDocumentElement();

 public Element createElement(String tagName)
 throws DOMException;

 public DocumentFragment createDocumentFragment();

 public Text createTextNode(String data);

 public Comment createComment(String data);

 public CDATASection createCDATASection(String data)
 throws DOMException;

334

org/w3c/dom/DOMImplementation.java:

 public ProcessingInstruction createProcessingInstruction(String target,
 String data)
 throws DOMException;

 public Attr createAttribute(String name)
 throws DOMException;

 public EntityReference createEntityReference(String name)
 throws DOMException;

 public NodeList getElementsByTagName(String tagname);

 public Node importNode(Node importedNode,
 boolean deep)
 throws DOMException;

 public Element createElementNS(String namespaceURI,
 String qualifiedName)
 throws DOMException;

 public Attr createAttributeNS(String namespaceURI,
 String qualifiedName)
 throws DOMException;

 public NodeList getElementsByTagNameNS(String namespaceURI,
 String localName);

 public Element getElementById(String elementId);

}

org/w3c/dom/Node.java:
package org.w3c.dom;

public interface Node {
 // NodeType
 public static final short ELEMENT_NODE = 1;
 public static final short ATTRIBUTE_NODE = 2;
 public static final short TEXT_NODE = 3;
 public static final short CDATA_SECTION_NODE = 4;
 public static final short ENTITY_REFERENCE_NODE = 5;
 public static final short ENTITY_NODE = 6;
 public static final short PROCESSING_INSTRUCTION_NODE = 7;
 public static final short COMMENT_NODE = 8;
 public static final short DOCUMENT_NODE = 9;
 public static final short DOCUMENT_TYPE_NODE = 10;
 public static final short DOCUMENT_FRAGMENT_NODE = 11;
 public static final short NOTATION_NODE = 12;

 public String getNodeName();

 public String getNodeValue()
 throws DOMException;
 public void setNodeValue(String nodeValue)
 throws DOMException;

335

org/w3c/dom/Node.java:

 public short getNodeType();

 public Node getParentNode();

 public NodeList getChildNodes();

 public Node getFirstChild();

 public Node getLastChild();

 public Node getPreviousSibling();

 public Node getNextSibling();

 public NamedNodeMap getAttributes();

 public Document getOwnerDocument();

 public Node insertBefore(Node newChild,
 Node refChild)
 throws DOMException;

 public Node replaceChild(Node newChild,
 Node oldChild)
 throws DOMException;

 public Node removeChild(Node oldChild)
 throws DOMException;

 public Node appendChild(Node newChild)
 throws DOMException;

 public boolean hasChildNodes();

 public Node cloneNode(boolean deep);

 public void normalize();

 public boolean supports(String feature,
 String version);

 public String getNamespaceURI();

 public String getPrefix();
 public void setPrefix(String prefix)
 throws DOMException;

 public String getLocalName();

}

336

org/w3c/dom/Node.java:

org/w3c/dom/NodeList.java:
package org.w3c.dom;

public interface NodeList {
 public Node item(int index);

 public int getLength();

}

org/w3c/dom/NamedNodeMap.java:
package org.w3c.dom;

public interface NamedNodeMap {
 public Node getNamedItem(String name);

 public Node setNamedItem(Node arg)
 throws DOMException;

 public Node removeNamedItem(String name)
 throws DOMException;

 public Node item(int index);

 public int getLength();

 public Node getNamedItemNS(String namespaceURI,
 String localName);

 public Node setNamedItemNS(Node arg)
 throws DOMException;

 public Node removeNamedItemNS(String namespaceURI,
 String localName)
 throws DOMException;

}

org/w3c/dom/CharacterData.java:
package org.w3c.dom;

public interface CharacterData extends Node {
 public String getData()
 throws DOMException;
 public void setData(String data)
 throws DOMException;

 public int getLength();

 public String substringData(int offset,
 int count)
 throws DOMException;

337

org/w3c/dom/NodeList.java:

 public void appendData(String arg)
 throws DOMException;

 public void insertData(int offset,
 String arg)
 throws DOMException;

 public void deleteData(int offset,
 int count)
 throws DOMException;

 public void replaceData(int offset,
 int count,
 String arg)
 throws DOMException;

}

org/w3c/dom/Attr.java:
package org.w3c.dom;

public interface Attr extends Node {
 public String getName();

 public boolean getSpecified();

 public String getValue();
 public void setValue(String value)
 throws DOMException;

 public Element getOwnerElement();

}

org/w3c/dom/Element.java:
package org.w3c.dom;

public interface Element extends Node {
 public String getTagName();

 public String getAttribute(String name);

 public void setAttribute(String name,
 String value)
 throws DOMException;

 public void removeAttribute(String name)
 throws DOMException;

 public Attr getAttributeNode(String name);

 public Attr setAttributeNode(Attr newAttr)
 throws DOMException;

338

org/w3c/dom/Attr.java:

 public Attr removeAttributeNode(Attr oldAttr)
 throws DOMException;

 public NodeList getElementsByTagName(String name);

 public String getAttributeNS(String namespaceURI,
 String localName);

 public void setAttributeNS(String namespaceURI,
 String qualifiedName,
 String value)
 throws DOMException;

 public void removeAttributeNS(String namespaceURI,
 String localName)
 throws DOMException;

 public Attr getAttributeNodeNS(String namespaceURI,
 String localName);

 public Attr setAttributeNodeNS(Attr newAttr)
 throws DOMException;

 public NodeList getElementsByTagNameNS(String namespaceURI,
 String localName);

 public boolean hasAttribute(String name);

 public boolean hasAttributeNS(String namespaceURI,
 String localName);

}

org/w3c/dom/Text.java:
package org.w3c.dom;

public interface Text extends CharacterData {
 public Text splitText(int offset)
 throws DOMException;

}

org/w3c/dom/Comment.java:
package org.w3c.dom;

public interface Comment extends CharacterData {
}

339

org/w3c/dom/Text.java:

org/w3c/dom/CDATASection.java:
package org.w3c.dom;

public interface CDATASection extends Text {
}

org/w3c/dom/DocumentType.java:
package org.w3c.dom;

public interface DocumentType extends Node {
 public String getName();

 public NamedNodeMap getEntities();

 public NamedNodeMap getNotations();

 public String getPublicId();

 public String getSystemId();

 public String getInternalSubset();

}

org/w3c/dom/Notation.java:
package org.w3c.dom;

public interface Notation extends Node {
 public String getPublicId();

 public String getSystemId();

}

org/w3c/dom/Entity.java:
package org.w3c.dom;

public interface Entity extends Node {
 public String getPublicId();

 public String getSystemId();

 public String getNotationName();

}

340

org/w3c/dom/CDATASection.java:

org/w3c/dom/EntityReference.java:
package org.w3c.dom;

public interface EntityReference extends Node {
}

org/w3c/dom/ProcessingInstruction.java:
package org.w3c.dom;

public interface ProcessingInstruction extends Node {
 public String getTarget();

 public String getData();
 public void setData(String data)
 throws DOMException;

}

D.2: Document Object Model HTML

org/w3c/dom/html/HTMLDOMImplementation.java:
package org.w3c.dom.html;

import org.w3c.dom.DOMImplementation;

public interface HTMLDOMImplementation extends DOMImplementation {
 public HTMLDocument createHTMLDocument(String title);

}

org/w3c/dom/html/HTMLCollection.java:
package org.w3c.dom.html;

import org.w3c.dom.Node;

public interface HTMLCollection {
 public int getLength();

 public Node item(int index);

 public Node namedItem(String name);

}

341

D.2: Document Object Model HTML

org/w3c/dom/html/HTMLDocument.java:
package org.w3c.dom.html;

import org.w3c.dom.Document;
import org.w3c.dom.NodeList;

public interface HTMLDocument extends Document {
 public String getTitle();
 public void setTitle(String title);

 public String getReferrer();

 public String getDomain();

 public String getURL();

 public HTMLElement getBody();
 public void setBody(HTMLElement body);

 public HTMLCollection getImages();

 public HTMLCollection getApplets();

 public HTMLCollection getLinks();

 public HTMLCollection getForms();

 public HTMLCollection getAnchors();

 public String getCookie();
 public void setCookie(String cookie);

 public void open();

 public void close();

 public void write(String text);

 public void writeln(String text);

 public NodeList getElementsByName(String elementName);

}

org/w3c/dom/html/HTMLElement.java:
package org.w3c.dom.html;

import org.w3c.dom.Element;

public interface HTMLElement extends Element {
 public String getId();
 public void setId(String id);

 public String getTitle();

342

org/w3c/dom/html/HTMLDocument.java:

 public void setTitle(String title);

 public String getLang();
 public void setLang(String lang);

 public String getDir();
 public void setDir(String dir);

 public String getClassName();
 public void setClassName(String className);

}

org/w3c/dom/html/HTMLHtmlElement.java:
package org.w3c.dom.html;

public interface HTMLHtmlElement extends HTMLElement {
 public String getVersion();
 public void setVersion(String version);

}

org/w3c/dom/html/HTMLHeadElement.java:
package org.w3c.dom.html;

public interface HTMLHeadElement extends HTMLElement {
 public String getProfile();
 public void setProfile(String profile);

}

org/w3c/dom/html/HTMLLinkElement.java:
package org.w3c.dom.html;

public interface HTMLLinkElement extends HTMLElement {
 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public String getCharset();
 public void setCharset(String charset);

 public String getHref();
 public void setHref(String href);

 public String getHreflang();
 public void setHreflang(String hreflang);

 public String getMedia();
 public void setMedia(String media);

 public String getRel();
 public void setRel(String rel);

343

org/w3c/dom/html/HTMLHtmlElement.java:

 public String getRev();
 public void setRev(String rev);

 public String getTarget();
 public void setTarget(String target);

 public String getType();
 public void setType(String type);

}

org/w3c/dom/html/HTMLTitleElement.java:
package org.w3c.dom.html;

public interface HTMLTitleElement extends HTMLElement {
 public String getText();
 public void setText(String text);

}

org/w3c/dom/html/HTMLMetaElement.java:
package org.w3c.dom.html;

public interface HTMLMetaElement extends HTMLElement {
 public String getContent();
 public void setContent(String content);

 public String getHttpEquiv();
 public void setHttpEquiv(String httpEquiv);

 public String getName();
 public void setName(String name);

 public String getScheme();
 public void setScheme(String scheme);

}

org/w3c/dom/html/HTMLBaseElement.java:
package org.w3c.dom.html;

public interface HTMLBaseElement extends HTMLElement {
 public String getHref();
 public void setHref(String href);

 public String getTarget();
 public void setTarget(String target);

}

344

org/w3c/dom/html/HTMLTitleElement.java:

org/w3c/dom/html/HTMLIsIndexElement.java:
package org.w3c.dom.html;

public interface HTMLIsIndexElement extends HTMLElement {
 public HTMLFormElement getForm();

 public String getPrompt();
 public void setPrompt(String prompt);

}

org/w3c/dom/html/HTMLStyleElement.java:
package org.w3c.dom.html;

public interface HTMLStyleElement extends HTMLElement {
 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public String getMedia();
 public void setMedia(String media);

 public String getType();
 public void setType(String type);

}

org/w3c/dom/html/HTMLBodyElement.java:
package org.w3c.dom.html;

public interface HTMLBodyElement extends HTMLElement {
 public String getALink();
 public void setALink(String aLink);

 public String getBackground();
 public void setBackground(String background);

 public String getBgColor();
 public void setBgColor(String bgColor);

 public String getLink();
 public void setLink(String link);

 public String getText();
 public void setText(String text);

 public String getVLink();
 public void setVLink(String vLink);

}

345

org/w3c/dom/html/HTMLIsIndexElement.java:

org/w3c/dom/html/HTMLFormElement.java:
package org.w3c.dom.html;

public interface HTMLFormElement extends HTMLElement {
 public HTMLCollection getElements();

 public int getLength();

 public String getName();
 public void setName(String name);

 public String getAcceptCharset();
 public void setAcceptCharset(String acceptCharset);

 public String getAction();
 public void setAction(String action);

 public String getEnctype();
 public void setEnctype(String enctype);

 public String getMethod();
 public void setMethod(String method);

 public String getTarget();
 public void setTarget(String target);

 public void submit();

 public void reset();

}

org/w3c/dom/html/HTMLSelectElement.java:
package org.w3c.dom.html;

import org.w3c.dom.DOMException;

public interface HTMLSelectElement extends HTMLElement {
 public String getType();

 public int getSelectedIndex();
 public void setSelectedIndex(int selectedIndex);

 public String getValue();
 public void setValue(String value);

 public int getLength();

 public HTMLFormElement getForm();

 public HTMLCollection getOptions();

 public boolean getDisabled();
 public void setDisabled(boolean disabled);

346

org/w3c/dom/html/HTMLFormElement.java:

 public boolean getMultiple();
 public void setMultiple(boolean multiple);

 public String getName();
 public void setName(String name);

 public int getSize();
 public void setSize(int size);

 public int getTabIndex();
 public void setTabIndex(int tabIndex);

 public void add(HTMLElement element,
 HTMLElement before)
 throws DOMException;

 public void remove(int index);

 public void blur();

 public void focus();

}

org/w3c/dom/html/HTMLOptGroupElement.java:
package org.w3c.dom.html;

public interface HTMLOptGroupElement extends HTMLElement {
 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public String getLabel();
 public void setLabel(String label);

}

org/w3c/dom/html/HTMLOptionElement.java:
package org.w3c.dom.html;

public interface HTMLOptionElement extends HTMLElement {
 public HTMLFormElement getForm();

 public boolean getDefaultSelected();
 public void setDefaultSelected(boolean defaultSelected);

 public String getText();

 public int getIndex();

 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public String getLabel();

347

org/w3c/dom/html/HTMLOptGroupElement.java:

 public void setLabel(String label);

 public boolean getSelected();
 public void setSelected(boolean selected);

 public String getValue();
 public void setValue(String value);

}

org/w3c/dom/html/HTMLInputElement.java:
package org.w3c.dom.html;

public interface HTMLInputElement extends HTMLElement {
 public String getDefaultValue();
 public void setDefaultValue(String defaultValue);

 public boolean getDefaultChecked();
 public void setDefaultChecked(boolean defaultChecked);

 public HTMLFormElement getForm();

 public String getAccept();
 public void setAccept(String accept);

 public String getAccessKey();
 public void setAccessKey(String accessKey);

 public String getAlign();
 public void setAlign(String align);

 public String getAlt();
 public void setAlt(String alt);

 public boolean getChecked();
 public void setChecked(boolean checked);

 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public int getMaxLength();
 public void setMaxLength(int maxLength);

 public String getName();
 public void setName(String name);

 public boolean getReadOnly();
 public void setReadOnly(boolean readOnly);

 public String getSize();
 public void setSize(String size);

 public String getSrc();
 public void setSrc(String src);

348

org/w3c/dom/html/HTMLInputElement.java:

 public int getTabIndex();
 public void setTabIndex(int tabIndex);

 public String getType();

 public String getUseMap();
 public void setUseMap(String useMap);

 public String getValue();
 public void setValue(String value);

 public void blur();

 public void focus();

 public void select();

 public void click();

}

org/w3c/dom/html/HTMLTextAreaElement.java:
package org.w3c.dom.html;

public interface HTMLTextAreaElement extends HTMLElement {
 public String getDefaultValue();
 public void setDefaultValue(String defaultValue);

 public HTMLFormElement getForm();

 public String getAccessKey();
 public void setAccessKey(String accessKey);

 public int getCols();
 public void setCols(int cols);

 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public String getName();
 public void setName(String name);

 public boolean getReadOnly();
 public void setReadOnly(boolean readOnly);

 public int getRows();
 public void setRows(int rows);

 public int getTabIndex();
 public void setTabIndex(int tabIndex);

 public String getType();

 public String getValue();
 public void setValue(String value);

349

org/w3c/dom/html/HTMLTextAreaElement.java:

 public void blur();

 public void focus();

 public void select();

}

org/w3c/dom/html/HTMLButtonElement.java:
package org.w3c.dom.html;

public interface HTMLButtonElement extends HTMLElement {
 public HTMLFormElement getForm();

 public String getAccessKey();
 public void setAccessKey(String accessKey);

 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public String getName();
 public void setName(String name);

 public int getTabIndex();
 public void setTabIndex(int tabIndex);

 public String getType();

 public String getValue();
 public void setValue(String value);

}

org/w3c/dom/html/HTMLLabelElement.java:
package org.w3c.dom.html;

public interface HTMLLabelElement extends HTMLElement {
 public HTMLFormElement getForm();

 public String getAccessKey();
 public void setAccessKey(String accessKey);

 public String getHtmlFor();
 public void setHtmlFor(String htmlFor);

}

350

org/w3c/dom/html/HTMLButtonElement.java:

org/w3c/dom/html/HTMLFieldSetElement.java:
package org.w3c.dom.html;

public interface HTMLFieldSetElement extends HTMLElement {
 public HTMLFormElement getForm();

}

org/w3c/dom/html/HTMLLegendElement.java:
package org.w3c.dom.html;

public interface HTMLLegendElement extends HTMLElement {
 public HTMLFormElement getForm();

 public String getAccessKey();
 public void setAccessKey(String accessKey);

 public String getAlign();
 public void setAlign(String align);

}

org/w3c/dom/html/HTMLUListElement.java:
package org.w3c.dom.html;

public interface HTMLUListElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);

 public String getType();
 public void setType(String type);

}

org/w3c/dom/html/HTMLOListElement.java:
package org.w3c.dom.html;

public interface HTMLOListElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);

 public int getStart();
 public void setStart(int start);

 public String getType();
 public void setType(String type);

}

351

org/w3c/dom/html/HTMLFieldSetElement.java:

org/w3c/dom/html/HTMLDListElement.java:
package org.w3c.dom.html;

public interface HTMLDListElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);

}

org/w3c/dom/html/HTMLDirectoryElement.java:
package org.w3c.dom.html;

public interface HTMLDirectoryElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);

}

org/w3c/dom/html/HTMLMenuElement.java:
package org.w3c.dom.html;

public interface HTMLMenuElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);

}

org/w3c/dom/html/HTMLLIElement.java:
package org.w3c.dom.html;

public interface HTMLLIElement extends HTMLElement {
 public String getType();
 public void setType(String type);

 public int getValue();
 public void setValue(int value);

}

org/w3c/dom/html/HTMLDivElement.java:
package org.w3c.dom.html;

public interface HTMLDivElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

}

352

org/w3c/dom/html/HTMLDListElement.java:

org/w3c/dom/html/HTMLParagraphElement.java:
package org.w3c.dom.html;

public interface HTMLParagraphElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

}

org/w3c/dom/html/HTMLHeadingElement.java:
package org.w3c.dom.html;

public interface HTMLHeadingElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

}

org/w3c/dom/html/HTMLQuoteElement.java:
package org.w3c.dom.html;

public interface HTMLQuoteElement extends HTMLElement {
 public String getCite();
 public void setCite(String cite);

}

org/w3c/dom/html/HTMLPreElement.java:
package org.w3c.dom.html;

public interface HTMLPreElement extends HTMLElement {
 public int getWidth();
 public void setWidth(int width);

}

org/w3c/dom/html/HTMLBRElement.java:
package org.w3c.dom.html;

public interface HTMLBRElement extends HTMLElement {
 public String getClear();
 public void setClear(String clear);

}

353

org/w3c/dom/html/HTMLParagraphElement.java:

org/w3c/dom/html/HTMLBaseFontElement.java:
package org.w3c.dom.html;

public interface HTMLBaseFontElement extends HTMLElement {
 public String getColor();
 public void setColor(String color);

 public String getFace();
 public void setFace(String face);

 public String getSize();
 public void setSize(String size);

}

org/w3c/dom/html/HTMLFontElement.java:
package org.w3c.dom.html;

public interface HTMLFontElement extends HTMLElement {
 public String getColor();
 public void setColor(String color);

 public String getFace();
 public void setFace(String face);

 public String getSize();
 public void setSize(String size);

}

org/w3c/dom/html/HTMLHRElement.java:
package org.w3c.dom.html;

public interface HTMLHRElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

 public boolean getNoShade();
 public void setNoShade(boolean noShade);

 public String getSize();
 public void setSize(String size);

 public String getWidth();
 public void setWidth(String width);

}

354

org/w3c/dom/html/HTMLBaseFontElement.java:

org/w3c/dom/html/HTMLModElement.java:
package org.w3c.dom.html;

public interface HTMLModElement extends HTMLElement {
 public String getCite();
 public void setCite(String cite);

 public String getDateTime();
 public void setDateTime(String dateTime);

}

org/w3c/dom/html/HTMLAnchorElement.java:
package org.w3c.dom.html;

public interface HTMLAnchorElement extends HTMLElement {
 public String getAccessKey();
 public void setAccessKey(String accessKey);

 public String getCharset();
 public void setCharset(String charset);

 public String getCoords();
 public void setCoords(String coords);

 public String getHref();
 public void setHref(String href);

 public String getHreflang();
 public void setHreflang(String hreflang);

 public String getName();
 public void setName(String name);

 public String getRel();
 public void setRel(String rel);

 public String getRev();
 public void setRev(String rev);

 public String getShape();
 public void setShape(String shape);

 public int getTabIndex();
 public void setTabIndex(int tabIndex);

 public String getTarget();
 public void setTarget(String target);

 public String getType();
 public void setType(String type);

 public void blur();

355

org/w3c/dom/html/HTMLModElement.java:

 public void focus();

}

org/w3c/dom/html/HTMLImageElement.java:
package org.w3c.dom.html;

public interface HTMLImageElement extends HTMLElement {
 public String getLowSrc();
 public void setLowSrc(String lowSrc);

 public String getName();
 public void setName(String name);

 public String getAlign();
 public void setAlign(String align);

 public String getAlt();
 public void setAlt(String alt);

 public String getBorder();
 public void setBorder(String border);

 public String getHeight();
 public void setHeight(String height);

 public String getHspace();
 public void setHspace(String hspace);

 public boolean getIsMap();
 public void setIsMap(boolean isMap);

 public String getLongDesc();
 public void setLongDesc(String longDesc);

 public String getSrc();
 public void setSrc(String src);

 public String getUseMap();
 public void setUseMap(String useMap);

 public String getVspace();
 public void setVspace(String vspace);

 public String getWidth();
 public void setWidth(String width);

}

356

org/w3c/dom/html/HTMLImageElement.java:

org/w3c/dom/html/HTMLObjectElement.java:
package org.w3c.dom.html;

import org.w3c.dom.Document;

public interface HTMLObjectElement extends HTMLElement {
 public HTMLFormElement getForm();

 public String getCode();
 public void setCode(String code);

 public String getAlign();
 public void setAlign(String align);

 public String getArchive();
 public void setArchive(String archive);

 public String getBorder();
 public void setBorder(String border);

 public String getCodeBase();
 public void setCodeBase(String codeBase);

 public String getCodeType();
 public void setCodeType(String codeType);

 public String getData();
 public void setData(String data);

 public boolean getDeclare();
 public void setDeclare(boolean declare);

 public String getHeight();
 public void setHeight(String height);

 public String getHspace();
 public void setHspace(String hspace);

 public String getName();
 public void setName(String name);

 public String getStandby();
 public void setStandby(String standby);

 public int getTabIndex();
 public void setTabIndex(int tabIndex);

 public String getType();
 public void setType(String type);

 public String getUseMap();
 public void setUseMap(String useMap);

 public String getVspace();
 public void setVspace(String vspace);

357

org/w3c/dom/html/HTMLObjectElement.java:

 public String getWidth();
 public void setWidth(String width);

 public Document getContentDocument();
 public void setContentDocument(Document contentDocument);

}

org/w3c/dom/html/HTMLParamElement.java:
package org.w3c.dom.html;

public interface HTMLParamElement extends HTMLElement {
 public String getName();
 public void setName(String name);

 public String getType();
 public void setType(String type);

 public String getValue();
 public void setValue(String value);

 public String getValueType();
 public void setValueType(String valueType);

}

org/w3c/dom/html/HTMLAppletElement.java:
package org.w3c.dom.html;

public interface HTMLAppletElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

 public String getAlt();
 public void setAlt(String alt);

 public String getArchive();
 public void setArchive(String archive);

 public String getCode();
 public void setCode(String code);

 public String getCodeBase();
 public void setCodeBase(String codeBase);

 public String getHeight();
 public void setHeight(String height);

 public String getHspace();
 public void setHspace(String hspace);

 public String getName();
 public void setName(String name);

358

org/w3c/dom/html/HTMLParamElement.java:

 public String getObject();
 public void setObject(String object);

 public String getVspace();
 public void setVspace(String vspace);

 public String getWidth();
 public void setWidth(String width);

}

org/w3c/dom/html/HTMLMapElement.java:
package org.w3c.dom.html;

public interface HTMLMapElement extends HTMLElement {
 public HTMLCollection getAreas();

 public String getName();
 public void setName(String name);

}

org/w3c/dom/html/HTMLAreaElement.java:
package org.w3c.dom.html;

public interface HTMLAreaElement extends HTMLElement {
 public String getAccessKey();
 public void setAccessKey(String accessKey);

 public String getAlt();
 public void setAlt(String alt);

 public String getCoords();
 public void setCoords(String coords);

 public String getHref();
 public void setHref(String href);

 public boolean getNoHref();
 public void setNoHref(boolean noHref);

 public String getShape();
 public void setShape(String shape);

 public int getTabIndex();
 public void setTabIndex(int tabIndex);

 public String getTarget();
 public void setTarget(String target);

}

359

org/w3c/dom/html/HTMLMapElement.java:

org/w3c/dom/html/HTMLScriptElement.java:
package org.w3c.dom.html;

public interface HTMLScriptElement extends HTMLElement {
 public String getText();
 public void setText(String text);

 public String getHtmlFor();
 public void setHtmlFor(String htmlFor);

 public String getEvent();
 public void setEvent(String event);

 public String getCharset();
 public void setCharset(String charset);

 public boolean getDefer();
 public void setDefer(boolean defer);

 public String getSrc();
 public void setSrc(String src);

 public String getType();
 public void setType(String type);

}

org/w3c/dom/html/HTMLTableElement.java:
package org.w3c.dom.html;

import org.w3c.dom.DOMException;

public interface HTMLTableElement extends HTMLElement {
 public HTMLTableCaptionElement getCaption();
 public void setCaption(HTMLTableCaptionElement caption);

 public HTMLTableSectionElement getTHead();
 public void setTHead(HTMLTableSectionElement tHead);

 public HTMLTableSectionElement getTFoot();
 public void setTFoot(HTMLTableSectionElement tFoot);

 public HTMLCollection getRows();

 public HTMLCollection getTBodies();

 public String getAlign();
 public void setAlign(String align);

 public String getBgColor();
 public void setBgColor(String bgColor);

 public String getBorder();
 public void setBorder(String border);

360

org/w3c/dom/html/HTMLScriptElement.java:

 public String getCellPadding();
 public void setCellPadding(String cellPadding);

 public String getCellSpacing();
 public void setCellSpacing(String cellSpacing);

 public String getFrame();
 public void setFrame(String frame);

 public String getRules();
 public void setRules(String rules);

 public String getSummary();
 public void setSummary(String summary);

 public String getWidth();
 public void setWidth(String width);

 public HTMLElement createTHead();

 public void deleteTHead();

 public HTMLElement createTFoot();

 public void deleteTFoot();

 public HTMLElement createCaption();

 public void deleteCaption();

 public HTMLElement insertRow(int index)
 throws DOMException;

 public void deleteRow(int index)
 throws DOMException;

}

org/w3c/dom/html/HTMLTableCaptionElement.java:
package org.w3c.dom.html;

public interface HTMLTableCaptionElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

}

org/w3c/dom/html/HTMLTableColElement.java:
package org.w3c.dom.html;

public interface HTMLTableColElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

361

org/w3c/dom/html/HTMLTableCaptionElement.java:

 public String getCh();
 public void setCh(String ch);

 public String getChOff();
 public void setChOff(String chOff);

 public int getSpan();
 public void setSpan(int span);

 public String getVAlign();
 public void setVAlign(String vAlign);

 public String getWidth();
 public void setWidth(String width);

}

org/w3c/dom/html/HTMLTableSectionElement.java:
package org.w3c.dom.html;

import org.w3c.dom.DOMException;

public interface HTMLTableSectionElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

 public String getCh();
 public void setCh(String ch);

 public String getChOff();
 public void setChOff(String chOff);

 public String getVAlign();
 public void setVAlign(String vAlign);

 public HTMLCollection getRows();

 public HTMLElement insertRow(int index)
 throws DOMException;

 public void deleteRow(int index)
 throws DOMException;

}

org/w3c/dom/html/HTMLTableRowElement.java:
package org.w3c.dom.html;

import org.w3c.dom.DOMException;

public interface HTMLTableRowElement extends HTMLElement {
 public int getRowIndex();

362

org/w3c/dom/html/HTMLTableSectionElement.java:

 public int getSectionRowIndex();

 public HTMLCollection getCells();

 public String getAlign();
 public void setAlign(String align);

 public String getBgColor();
 public void setBgColor(String bgColor);

 public String getCh();
 public void setCh(String ch);

 public String getChOff();
 public void setChOff(String chOff);

 public String getVAlign();
 public void setVAlign(String vAlign);

 public HTMLElement insertCell(int index)
 throws DOMException;

 public void deleteCell(int index)
 throws DOMException;

}

org/w3c/dom/html/HTMLTableCellElement.java:
package org.w3c.dom.html;

public interface HTMLTableCellElement extends HTMLElement {
 public int getCellIndex();

 public String getAbbr();
 public void setAbbr(String abbr);

 public String getAlign();
 public void setAlign(String align);

 public String getAxis();
 public void setAxis(String axis);

 public String getBgColor();
 public void setBgColor(String bgColor);

 public String getCh();
 public void setCh(String ch);

 public String getChOff();
 public void setChOff(String chOff);

 public int getColSpan();
 public void setColSpan(int colSpan);

 public String getHeaders();

363

org/w3c/dom/html/HTMLTableCellElement.java:

 public void setHeaders(String headers);

 public String getHeight();
 public void setHeight(String height);

 public boolean getNoWrap();
 public void setNoWrap(boolean noWrap);

 public int getRowSpan();
 public void setRowSpan(int rowSpan);

 public String getScope();
 public void setScope(String scope);

 public String getVAlign();
 public void setVAlign(String vAlign);

 public String getWidth();
 public void setWidth(String width);

}

org/w3c/dom/html/HTMLFrameSetElement.java:
package org.w3c.dom.html;

public interface HTMLFrameSetElement extends HTMLElement {
 public String getCols();
 public void setCols(String cols);

 public String getRows();
 public void setRows(String rows);

}

org/w3c/dom/html/HTMLFrameElement.java:
package org.w3c.dom.html;

import org.w3c.dom.Document;

public interface HTMLFrameElement extends HTMLElement {
 public String getFrameBorder();
 public void setFrameBorder(String frameBorder);

 public String getLongDesc();
 public void setLongDesc(String longDesc);

 public String getMarginHeight();
 public void setMarginHeight(String marginHeight);

 public String getMarginWidth();
 public void setMarginWidth(String marginWidth);

 public String getName();
 public void setName(String name);

364

org/w3c/dom/html/HTMLFrameSetElement.java:

 public boolean getNoResize();
 public void setNoResize(boolean noResize);

 public String getScrolling();
 public void setScrolling(String scrolling);

 public String getSrc();
 public void setSrc(String src);

 public Document getContentDocument();
 public void setContentDocument(Document contentDocument);

}

org/w3c/dom/html/HTMLIFrameElement.java:
package org.w3c.dom.html;

import org.w3c.dom.Document;

public interface HTMLIFrameElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

 public String getFrameBorder();
 public void setFrameBorder(String frameBorder);

 public String getHeight();
 public void setHeight(String height);

 public String getLongDesc();
 public void setLongDesc(String longDesc);

 public String getMarginHeight();
 public void setMarginHeight(String marginHeight);

 public String getMarginWidth();
 public void setMarginWidth(String marginWidth);

 public String getName();
 public void setName(String name);

 public String getScrolling();
 public void setScrolling(String scrolling);

 public String getSrc();
 public void setSrc(String src);

 public String getWidth();
 public void setWidth(String width);

 public Document getContentDocument();
 public void setContentDocument(Document contentDocument);

}

365

org/w3c/dom/html/HTMLIFrameElement.java:

D.3: Document Object Model Views

org/w3c/dom/views/AbstractView.java:
package org.w3c.dom.views;

public interface AbstractView {
 public DocumentView getDocument();

}

org/w3c/dom/views/DocumentView.java:
package org.w3c.dom.views;

public interface DocumentView {
 public AbstractView getDefaultView();

}

D.4: Document Object Model StyleSheets

org/w3c/dom/stylesheets/StyleSheet.java:
package org.w3c.dom.stylesheets;

import org.w3c.dom.Node;

public interface StyleSheet {
 public String getType();

 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public Node getOwnerNode();

 public StyleSheet getParentStyleSheet();

 public String getHref();

 public String getTitle();

 public MediaList getMedia();

}

org/w3c/dom/stylesheets/StyleSheetList.java:
package org.w3c.dom.stylesheets;

public interface StyleSheetList {
 public int getLength();

366

D.3: Document Object Model Views

 public StyleSheet item(int index);

}

org/w3c/dom/stylesheets/MediaList.java:
package org.w3c.dom.stylesheets;

import org.w3c.dom.DOMException;

public interface MediaList {
 public String getMediaText();
 public void setMediaText(String mediaText)
 throws DOMException;

 public int getLength();

 public String item(int index);

 public void delete(String oldMedium)
 throws DOMException;

 public void append(String newMedium)
 throws DOMException;

}

org/w3c/dom/stylesheets/LinkStyle.java:
package org.w3c.dom.stylesheets;

public interface LinkStyle {
 public StyleSheet getSheet();

}

org/w3c/dom/stylesheets/DocumentStyle.java:
package org.w3c.dom.stylesheets;

public interface DocumentStyle {
 public StyleSheetList getStyleSheets();

}

D.5: Document Object Model CSS

367

D.5: Document Object Model CSS

org/w3c/dom/css/CSSStyleSheet.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;
import org.w3c.dom.stylesheets.StyleSheet;

public interface CSSStyleSheet extends StyleSheet {
 public CSSRule getOwnerRule();

 public CSSRuleList getCssRules();

 public int insertRule(String rule,
 int index)
 throws DOMException;

 public void deleteRule(int index)
 throws DOMException;

}

org/w3c/dom/css/CSSRuleList.java:
package org.w3c.dom.css;

public interface CSSRuleList {
 public int getLength();

 public CSSRule item(int index);

}

org/w3c/dom/css/CSSRule.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSSRule {
 // RuleType
 public static final short UNKNOWN_RULE = 0;
 public static final short STYLE_RULE = 1;
 public static final short CHARSET_RULE = 2;
 public static final short IMPORT_RULE = 3;
 public static final short MEDIA_RULE = 4;
 public static final short FONT_FACE_RULE = 5;
 public static final short PAGE_RULE = 6;

 public short getType();

 public String getCssText();
 public void setCssText(String cssText)
 throws DOMException;

 public CSSStyleSheet getParentStyleSheet();

368

org/w3c/dom/css/CSSStyleSheet.java:

 public CSSRule getParentRule();

}

org/w3c/dom/css/CSSStyleRule.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSSStyleRule extends CSSRule {
 public String getSelectorText();
 public void setSelectorText(String selectorText)
 throws DOMException;

 public CSSStyleDeclaration getStyle();

}

org/w3c/dom/css/CSSMediaRule.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;
import org.w3c.dom.stylesheets.MediaList;

public interface CSSMediaRule extends CSSRule {
 public MediaList getMedia();

 public CSSRuleList getCssRules();

 public int insertRule(String rule,
 int index)
 throws DOMException;

 public void deleteRule(int index)
 throws DOMException;

}

org/w3c/dom/css/CSSFontFaceRule.java:
package org.w3c.dom.css;

public interface CSSFontFaceRule extends CSSRule {
 public CSSStyleDeclaration getStyle();

}

369

org/w3c/dom/css/CSSStyleRule.java:

org/w3c/dom/css/CSSPageRule.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSSPageRule extends CSSRule {
 public String getSelectorText();
 public void setSelectorText(String selectorText)
 throws DOMException;

 public CSSStyleDeclaration getStyle();

}

org/w3c/dom/css/CSSImportRule.java:
package org.w3c.dom.css;

import org.w3c.dom.stylesheets.MediaList;

public interface CSSImportRule extends CSSRule {
 public String getHref();

 public MediaList getMedia();

 public CSSStyleSheet getStyleSheet();

}

org/w3c/dom/css/CSSCharsetRule.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSSCharsetRule extends CSSRule {
 public String getEncoding();
 public void setEncoding(String encoding)
 throws DOMException;

}

org/w3c/dom/css/CSSUnknownRule.java:
package org.w3c.dom.css;

public interface CSSUnknownRule extends CSSRule {
}

370

org/w3c/dom/css/CSSPageRule.java:

org/w3c/dom/css/CSSStyleDeclaration.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSSStyleDeclaration {
 public String getCssText();
 public void setCssText(String cssText)
 throws DOMException;

 public String getPropertyValue(String propertyName);

 public CSSValue getPropertyCSSValue(String propertyName);

 public String removeProperty(String propertyName)
 throws DOMException;

 public String getPropertyPriority(String propertyName);

 public void setProperty(String propertyName,
 String value,
 String priority)
 throws DOMException;

 public int getLength();

 public String item(int index);

 public CSSRule getParentRule();

}

org/w3c/dom/css/CSSValue.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSSValue {
 // UnitTypes
 public static final short CSS_INHERIT = 0;
 public static final short CSS_PRIMITIVE_VALUE = 1;
 public static final short CSS_VALUE_LIST = 2;
 public static final short CSS_CUSTOM = 3;

 public String getCssText();
 public void setCssText(String cssText)
 throws DOMException;

 public short getValueType();

}

371

org/w3c/dom/css/CSSStyleDeclaration.java:

org/w3c/dom/css/CSSPrimitiveValue.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSSPrimitiveValue extends CSSValue {
 // UnitTypes
 public static final short CSS_UNKNOWN = 0;
 public static final short CSS_NUMBER = 1;
 public static final short CSS_PERCENTAGE = 2;
 public static final short CSS_EMS = 3;
 public static final short CSS_EXS = 4;
 public static final short CSS_PX = 5;
 public static final short CSS_CM = 6;
 public static final short CSS_MM = 7;
 public static final short CSS_IN = 8;
 public static final short CSS_PT = 9;
 public static final short CSS_PC = 10;
 public static final short CSS_DEG = 11;
 public static final short CSS_RAD = 12;
 public static final short CSS_GRAD = 13;
 public static final short CSS_MS = 14;
 public static final short CSS_S = 15;
 public static final short CSS_HZ = 16;
 public static final short CSS_KHZ = 17;
 public static final short CSS_DIMENSION = 18;
 public static final short CSS_STRING = 19;
 public static final short CSS_URI = 20;
 public static final short CSS_IDENT = 21;
 public static final short CSS_ATTR = 22;
 public static final short CSS_COUNTER = 23;
 public static final short CSS_RECT = 24;
 public static final short CSS_RGBCOLOR = 25;

 public short getPrimitiveType();

 public void setFloatValue(short unitType,
 float floatValue)
 throws DOMException;

 public float getFloatValue(short unitType)
 throws DOMException;

 public void setStringValue(short stringType,
 String stringValue)
 throws DOMException;

 public String getStringValue()
 throws DOMException;

 public Counter getCounterValue()
 throws DOMException;

 public Rect getRectValue()
 throws DOMException;

372

org/w3c/dom/css/CSSPrimitiveValue.java:

 public RGBColor getRGBColorValue()
 throws DOMException;

}

org/w3c/dom/css/CSSValueList.java:
package org.w3c.dom.css;

public interface CSSValueList extends CSSValue {
 public int getLength();

 public CSSValue item(int index);

}

org/w3c/dom/css/RGBColor.java:
package org.w3c.dom.css;

public interface RGBColor {
 public CSSPrimitiveValue getRed();

 public CSSPrimitiveValue getGreen();

 public CSSPrimitiveValue getBlue();

}

org/w3c/dom/css/Rect.java:
package org.w3c.dom.css;

public interface Rect {
 public CSSPrimitiveValue getTop();

 public CSSPrimitiveValue getRight();

 public CSSPrimitiveValue getBottom();

 public CSSPrimitiveValue getLeft();

}

org/w3c/dom/css/Counter.java:
package org.w3c.dom.css;

public interface Counter {
 public String getIdentifier();

 public String getListStyle();

373

org/w3c/dom/css/CSSValueList.java:

 public String getSeparator();

}

org/w3c/dom/css/ViewCSS.java:
package org.w3c.dom.css;

import org.w3c.dom.Element;
import org.w3c.dom.views.AbstractView;

public interface ViewCSS extends AbstractView {
 public CSSStyleDeclaration getComputedStyle(Element elt,
 String pseudoElt);

}

org/w3c/dom/css/DocumentCSS.java:
package org.w3c.dom.css;

import org.w3c.dom.Element;
import org.w3c.dom.stylesheets.DocumentStyle;

public interface DocumentCSS extends DocumentStyle {
 public CSSStyleDeclaration getOverrideStyle(Element elt,
 String pseudoElt);

}

org/w3c/dom/css/DOMImplementationCSS.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMImplementation;

public interface DOMImplementationCSS extends DOMImplementation {
 public CSSStyleSheet createCSSStyleSheet(String title,
 String media);

}

org/w3c/dom/css/ElementCSSInlineStyle.java:
package org.w3c.dom.css;

public interface ElementCSSInlineStyle {
 public CSSStyleDeclaration getStyle();

}

374

org/w3c/dom/css/ViewCSS.java:

org/w3c/dom/css/CSS2Azimuth.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSS2Azimuth extends CSSValue {
 public short getAzimuthType();

 public String getIdentifier();

 public boolean getBehind();

 public void setAngleValue(short uType,
 float fValue)
 throws DOMException;

 public float getAngleValue(short uType)
 throws DOMException;

 public void setIdentifier(String ident,
 boolean b)
 throws DOMException;

}

org/w3c/dom/css/CSS2BackgroundPosition.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSS2BackgroundPosition extends CSSValue {
 public short getHorizontalType();

 public short getVerticalType();

 public String getHorizontalIdentifier();

 public String getVerticalIdentifier();

 public float getHorizontalPosition(float hType)
 throws DOMException;

 public float getVerticalPosition(float vType)
 throws DOMException;

 public void setHorizontalPosition(short hType,
 float value)
 throws DOMException;

 public void setVerticalPosition(short vType,
 float value)
 throws DOMException;

 public void setPositionIdentifier(String hIdentifier,

375

org/w3c/dom/css/CSS2Azimuth.java:

 String vIdentifier)
 throws DOMException;

}

org/w3c/dom/css/CSS2BorderSpacing.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSS2BorderSpacing extends CSSValue {
 public short getHorizontalType();

 public short getVerticalType();

 public float getHorizontalSpacing(float hType)
 throws DOMException;

 public float getVerticalSpacing(float vType)
 throws DOMException;

 public void setHorizontalSpacing(short hType,
 float value)
 throws DOMException;

 public void setVerticalSpacing(short vType,
 float value)
 throws DOMException;

}

org/w3c/dom/css/CSS2CounterReset.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSS2CounterReset extends CSSValue {
 public String getIdentifier();
 public void setIdentifier(String identifier)
 throws DOMException;

 public short getReset();
 public void setReset(short reset)
 throws DOMException;

}

376

org/w3c/dom/css/CSS2BorderSpacing.java:

org/w3c/dom/css/CSS2CounterIncrement.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSS2CounterIncrement extends CSSValue {
 public String getIdentifier();
 public void setIdentifier(String identifier)
 throws DOMException;

 public short getIncrement();
 public void setIncrement(short increment)
 throws DOMException;

}

org/w3c/dom/css/CSS2Cursor.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSS2Cursor extends CSSValue {
 public CSSValueList getUris();

 public String getPredefinedCursor();
 public void setPredefinedCursor(String predefinedCursor)
 throws DOMException;

}

org/w3c/dom/css/CSS2PlayDuring.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSS2PlayDuring extends CSSValue {
 public short getPlayDuringType();

 public String getPlayDuringIdentifier();
 public void setPlayDuringIdentifier(String playDuringIdentifier)
 throws DOMException;

 public String getUri();
 public void setUri(String uri)
 throws DOMException;

 public boolean getMix();
 public void setMix(boolean mix)
 throws DOMException;

 public boolean getRepeat();

377

org/w3c/dom/css/CSS2CounterIncrement.java:

 public void setRepeat(boolean repeat)
 throws DOMException;

}

org/w3c/dom/css/CSS2TextShadow.java:
package org.w3c.dom.css;

public interface CSS2TextShadow {
 public CSSValue getColor();

 public CSSValue getHorizontal();

 public CSSValue getVertical();

 public CSSValue getBlur();

}

org/w3c/dom/css/CSS2FontFaceSrc.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSS2FontFaceSrc {
 public String getUri();
 public void setUri(String uri)
 throws DOMException;

 public CSSValueList getFormat();

 public String getFontFaceName();
 public void setFontFaceName(String fontFaceName)
 throws DOMException;

}

org/w3c/dom/css/CSS2FontFaceWidths.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSS2FontFaceWidths {
 public String getUrange();
 public void setUrange(String urange)
 throws DOMException;

 public CSSValueList getNumbers();

}

378

org/w3c/dom/css/CSS2TextShadow.java:

org/w3c/dom/css/CSS2PageSize.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSS2PageSize extends CSSValue {
 public short getWidthType();

 public short getHeightType();

 public String getIdentifier();

 public float getWidth(float wType)
 throws DOMException;

 public float getHeightSize(float hType)
 throws DOMException;

 public void setWidthSize(short wType,
 float value)
 throws DOMException;

 public void setHeightSize(short hType,
 float value)
 throws DOMException;

 public void setIdentifier(String ident)
 throws DOMException;

}

org/w3c/dom/css/CSS2Properties.java:
package org.w3c.dom.css;

import org.w3c.dom.DOMException;

public interface CSS2Properties {
 public String getAzimuth();
 public void setAzimuth(String azimuth)
 throws DOMException;

 public String getBackground();
 public void setBackground(String background)
 throws DOMException;

 public String getBackgroundAttachment();
 public void setBackgroundAttachment(String backgroundAttachment)
 throws DOMException;

 public String getBackgroundColor();
 public void setBackgroundColor(String backgroundColor)
 throws DOMException;

 public String getBackgroundImage();

379

org/w3c/dom/css/CSS2PageSize.java:

 public void setBackgroundImage(String backgroundImage)
 throws DOMException;

 public String getBackgroundPosition();
 public void setBackgroundPosition(String backgroundPosition)
 throws DOMException;

 public String getBackgroundRepeat();
 public void setBackgroundRepeat(String backgroundRepeat)
 throws DOMException;

 public String getBorder();
 public void setBorder(String border)
 throws DOMException;

 public String getBorderCollapse();
 public void setBorderCollapse(String borderCollapse)
 throws DOMException;

 public String getBorderColor();
 public void setBorderColor(String borderColor)
 throws DOMException;

 public String getBorderSpacing();
 public void setBorderSpacing(String borderSpacing)
 throws DOMException;

 public String getBorderStyle();
 public void setBorderStyle(String borderStyle)
 throws DOMException;

 public String getBorderTop();
 public void setBorderTop(String borderTop)
 throws DOMException;

 public String getBorderRight();
 public void setBorderRight(String borderRight)
 throws DOMException;

 public String getBorderBottom();
 public void setBorderBottom(String borderBottom)
 throws DOMException;

 public String getBorderLeft();
 public void setBorderLeft(String borderLeft)
 throws DOMException;

 public String getBorderTopColor();
 public void setBorderTopColor(String borderTopColor)
 throws DOMException;

 public String getBorderRightColor();
 public void setBorderRightColor(String borderRightColor)
 throws DOMException;

 public String getBorderBottomColor();
 public void setBorderBottomColor(String borderBottomColor)

380

org/w3c/dom/css/CSS2Properties.java:

 throws DOMException;

 public String getBorderLeftColor();
 public void setBorderLeftColor(String borderLeftColor)
 throws DOMException;

 public String getBorderTopStyle();
 public void setBorderTopStyle(String borderTopStyle)
 throws DOMException;

 public String getBorderRightStyle();
 public void setBorderRightStyle(String borderRightStyle)
 throws DOMException;

 public String getBorderBottomStyle();
 public void setBorderBottomStyle(String borderBottomStyle)
 throws DOMException;

 public String getBorderLeftStyle();
 public void setBorderLeftStyle(String borderLeftStyle)
 throws DOMException;

 public String getBorderTopWidth();
 public void setBorderTopWidth(String borderTopWidth)
 throws DOMException;

 public String getBorderRightWidth();
 public void setBorderRightWidth(String borderRightWidth)
 throws DOMException;

 public String getBorderBottomWidth();
 public void setBorderBottomWidth(String borderBottomWidth)
 throws DOMException;

 public String getBorderLeftWidth();
 public void setBorderLeftWidth(String borderLeftWidth)
 throws DOMException;

 public String getBorderWidth();
 public void setBorderWidth(String borderWidth)
 throws DOMException;

 public String getBottom();
 public void setBottom(String bottom)
 throws DOMException;

 public String getCaptionSide();
 public void setCaptionSide(String captionSide)
 throws DOMException;

 public String getClear();
 public void setClear(String clear)
 throws DOMException;

 public String getClip();
 public void setClip(String clip)
 throws DOMException;

381

org/w3c/dom/css/CSS2Properties.java:

 public String getColor();
 public void setColor(String color)
 throws DOMException;

 public String getContent();
 public void setContent(String content)
 throws DOMException;

 public String getCounterIncrement();
 public void setCounterIncrement(String counterIncrement)
 throws DOMException;

 public String getCounterReset();
 public void setCounterReset(String counterReset)
 throws DOMException;

 public String getCue();
 public void setCue(String cue)
 throws DOMException;

 public String getCueAfter();
 public void setCueAfter(String cueAfter)
 throws DOMException;

 public String getCueBefore();
 public void setCueBefore(String cueBefore)
 throws DOMException;

 public String getCursor();
 public void setCursor(String cursor)
 throws DOMException;

 public String getDirection();
 public void setDirection(String direction)
 throws DOMException;

 public String getDisplay();
 public void setDisplay(String display)
 throws DOMException;

 public String getElevation();
 public void setElevation(String elevation)
 throws DOMException;

 public String getEmptyCells();
 public void setEmptyCells(String emptyCells)
 throws DOMException;

 public String getCssFloat();
 public void setCssFloat(String cssFloat)
 throws DOMException;

 public String getFont();
 public void setFont(String font)
 throws DOMException;

382

org/w3c/dom/css/CSS2Properties.java:

 public String getFontFamily();
 public void setFontFamily(String fontFamily)
 throws DOMException;

 public String getFontSize();
 public void setFontSize(String fontSize)
 throws DOMException;

 public String getFontSizeAdjust();
 public void setFontSizeAdjust(String fontSizeAdjust)
 throws DOMException;

 public String getFontStretch();
 public void setFontStretch(String fontStretch)
 throws DOMException;

 public String getFontStyle();
 public void setFontStyle(String fontStyle)
 throws DOMException;

 public String getFontVariant();
 public void setFontVariant(String fontVariant)
 throws DOMException;

 public String getFontWeight();
 public void setFontWeight(String fontWeight)
 throws DOMException;

 public String getHeight();
 public void setHeight(String height)
 throws DOMException;

 public String getLeft();
 public void setLeft(String left)
 throws DOMException;

 public String getLetterSpacing();
 public void setLetterSpacing(String letterSpacing)
 throws DOMException;

 public String getLineHeight();
 public void setLineHeight(String lineHeight)
 throws DOMException;

 public String getListStyle();
 public void setListStyle(String listStyle)
 throws DOMException;

 public String getListStyleImage();
 public void setListStyleImage(String listStyleImage)
 throws DOMException;

 public String getListStylePosition();
 public void setListStylePosition(String listStylePosition)
 throws DOMException;

 public String getListStyleType();

383

org/w3c/dom/css/CSS2Properties.java:

 public void setListStyleType(String listStyleType)
 throws DOMException;

 public String getMargin();
 public void setMargin(String margin)
 throws DOMException;

 public String getMarginTop();
 public void setMarginTop(String marginTop)
 throws DOMException;

 public String getMarginRight();
 public void setMarginRight(String marginRight)
 throws DOMException;

 public String getMarginBottom();
 public void setMarginBottom(String marginBottom)
 throws DOMException;

 public String getMarginLeft();
 public void setMarginLeft(String marginLeft)
 throws DOMException;

 public String getMarkerOffset();
 public void setMarkerOffset(String markerOffset)
 throws DOMException;

 public String getMarks();
 public void setMarks(String marks)
 throws DOMException;

 public String getMaxHeight();
 public void setMaxHeight(String maxHeight)
 throws DOMException;

 public String getMaxWidth();
 public void setMaxWidth(String maxWidth)
 throws DOMException;

 public String getMinHeight();
 public void setMinHeight(String minHeight)
 throws DOMException;

 public String getMinWidth();
 public void setMinWidth(String minWidth)
 throws DOMException;

 public String getOrphans();
 public void setOrphans(String orphans)
 throws DOMException;

 public String getOutline();
 public void setOutline(String outline)
 throws DOMException;

 public String getOutlineColor();
 public void setOutlineColor(String outlineColor)

384

org/w3c/dom/css/CSS2Properties.java:

 throws DOMException;

 public String getOutlineStyle();
 public void setOutlineStyle(String outlineStyle)
 throws DOMException;

 public String getOutlineWidth();
 public void setOutlineWidth(String outlineWidth)
 throws DOMException;

 public String getOverflow();
 public void setOverflow(String overflow)
 throws DOMException;

 public String getPadding();
 public void setPadding(String padding)
 throws DOMException;

 public String getPaddingTop();
 public void setPaddingTop(String paddingTop)
 throws DOMException;

 public String getPaddingRight();
 public void setPaddingRight(String paddingRight)
 throws DOMException;

 public String getPaddingBottom();
 public void setPaddingBottom(String paddingBottom)
 throws DOMException;

 public String getPaddingLeft();
 public void setPaddingLeft(String paddingLeft)
 throws DOMException;

 public String getPage();
 public void setPage(String page)
 throws DOMException;

 public String getPageBreakAfter();
 public void setPageBreakAfter(String pageBreakAfter)
 throws DOMException;

 public String getPageBreakBefore();
 public void setPageBreakBefore(String pageBreakBefore)
 throws DOMException;

 public String getPageBreakInside();
 public void setPageBreakInside(String pageBreakInside)
 throws DOMException;

 public String getPause();
 public void setPause(String pause)
 throws DOMException;

 public String getPauseAfter();
 public void setPauseAfter(String pauseAfter)
 throws DOMException;

385

org/w3c/dom/css/CSS2Properties.java:

 public String getPauseBefore();
 public void setPauseBefore(String pauseBefore)
 throws DOMException;

 public String getPitch();
 public void setPitch(String pitch)
 throws DOMException;

 public String getPitchRange();
 public void setPitchRange(String pitchRange)
 throws DOMException;

 public String getPlayDuring();
 public void setPlayDuring(String playDuring)
 throws DOMException;

 public String getPosition();
 public void setPosition(String position)
 throws DOMException;

 public String getQuotes();
 public void setQuotes(String quotes)
 throws DOMException;

 public String getRichness();
 public void setRichness(String richness)
 throws DOMException;

 public String getRight();
 public void setRight(String right)
 throws DOMException;

 public String getSize();
 public void setSize(String size)
 throws DOMException;

 public String getSpeak();
 public void setSpeak(String speak)
 throws DOMException;

 public String getSpeakHeader();
 public void setSpeakHeader(String speakHeader)
 throws DOMException;

 public String getSpeakNumeral();
 public void setSpeakNumeral(String speakNumeral)
 throws DOMException;

 public String getSpeakPunctuation();
 public void setSpeakPunctuation(String speakPunctuation)
 throws DOMException;

 public String getSpeechRate();
 public void setSpeechRate(String speechRate)
 throws DOMException;

386

org/w3c/dom/css/CSS2Properties.java:

 public String getStress();
 public void setStress(String stress)
 throws DOMException;

 public String getTableLayout();
 public void setTableLayout(String tableLayout)
 throws DOMException;

 public String getTextAlign();
 public void setTextAlign(String textAlign)
 throws DOMException;

 public String getTextDecoration();
 public void setTextDecoration(String textDecoration)
 throws DOMException;

 public String getTextIndent();
 public void setTextIndent(String textIndent)
 throws DOMException;

 public String getTextShadow();
 public void setTextShadow(String textShadow)
 throws DOMException;

 public String getTextTransform();
 public void setTextTransform(String textTransform)
 throws DOMException;

 public String getTop();
 public void setTop(String top)
 throws DOMException;

 public String getUnicodeBidi();
 public void setUnicodeBidi(String unicodeBidi)
 throws DOMException;

 public String getVerticalAlign();
 public void setVerticalAlign(String verticalAlign)
 throws DOMException;

 public String getVisibility();
 public void setVisibility(String visibility)
 throws DOMException;

 public String getVoiceFamily();
 public void setVoiceFamily(String voiceFamily)
 throws DOMException;

 public String getVolume();
 public void setVolume(String volume)
 throws DOMException;

 public String getWhiteSpace();
 public void setWhiteSpace(String whiteSpace)
 throws DOMException;

 public String getWidows();

387

org/w3c/dom/css/CSS2Properties.java:

 public void setWidows(String widows)
 throws DOMException;

 public String getWidth();
 public void setWidth(String width)
 throws DOMException;

 public String getWordSpacing();
 public void setWordSpacing(String wordSpacing)
 throws DOMException;

 public String getZIndex();
 public void setZIndex(String zIndex)
 throws DOMException;

}

D.6: Document Object Model Events

org/w3c/dom/events/EventException.java:
package org.w3c.dom.events;

public class EventException extends RuntimeException {
 public EventException(short code, String message) {
 super(message);
 this.code = code;
 }
 public short code;
 // EventExceptionCode
 public static final short UNSPECIFIED_EVENT_TYPE_ERR = 0;

}

org/w3c/dom/events/EventTarget.java:
package org.w3c.dom.events;

public interface EventTarget {
 public void addEventListener(String type,
 EventListener listener,
 boolean useCapture);

 public void removeEventListener(String type,
 EventListener listener,
 boolean useCapture);

 public boolean dispatchEvent(Event evt)
 throws EventException;

}

388

D.6: Document Object Model Events

org/w3c/dom/events/EventListener.java:
package org.w3c.dom.events;

public interface EventListener {
 public void handleEvent(Event evt);

}

org/w3c/dom/events/Event.java:
package org.w3c.dom.events;

import org.w3c.dom.Node;

public interface Event {
 // PhaseType
 public static final short CAPTURING_PHASE = 1;
 public static final short AT_TARGET = 2;
 public static final short BUBBLING_PHASE = 3;

 public String getType();

 public EventTarget getTarget();

 public Node getCurrentNode();

 public short getEventPhase();

 public boolean getBubbles();

 public boolean getCancelable();

 public long getTimeStamp();

 public void stopPropagation();

 public void preventDefault();

 public void initEvent(String eventTypeArg,
 boolean canBubbleArg,
 boolean cancelableArg);

}

org/w3c/dom/events/DocumentEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.DOMException;

public interface DocumentEvent {

389

org/w3c/dom/events/EventListener.java:

 public Event createEvent(String eventType)
 throws DOMException;

}

org/w3c/dom/events/UIEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.views.AbstractView;

public interface UIEvent extends Event {
 public AbstractView getView();

 public int getDetail();

 public void initUIEvent(String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 AbstractView viewArg,
 int detailArg);

}

org/w3c/dom/events/MouseEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.Node;
import org.w3c.dom.views.AbstractView;

public interface MouseEvent extends UIEvent {
 public int getScreenX();

 public int getScreenY();

 public int getClientX();

 public int getClientY();

 public boolean getCtrlKey();

 public boolean getShiftKey();

 public boolean getAltKey();

 public boolean getMetaKey();

 public short getButton();

 public Node getRelatedNode();

 public void initMouseEvent(String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 AbstractView viewArg,

390

org/w3c/dom/events/UIEvent.java:

 int detailArg,
 int screenXArg,
 int screenYArg,
 int clientXArg,
 int clientYArg,
 boolean ctrlKeyArg,
 boolean altKeyArg,
 boolean shiftKeyArg,
 boolean metaKeyArg,
 short buttonArg,
 Node relatedNodeArg);

}

org/w3c/dom/events/MutationEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.Node;

public interface MutationEvent extends Event {
 public Node getRelatedNode();

 public String getPrevValue();

 public String getNewValue();

 public String getAttrName();

 public void initMutationEvent(String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 Node relatedNodeArg,
 String prevValueArg,
 String newValueArg,
 String attrNameArg);

}

D.7: Document Object Model Traversal

org/w3c/dom/traversal/NodeIterator.java:
package org.w3c.dom.traversal;

import org.w3c.dom.DOMException;
import org.w3c.dom.Node;

public interface NodeIterator {
 public Node getRoot();

 public int getWhatToShow();

 public NodeFilter getFilter();

391

D.7: Document Object Model Traversal

 public boolean getExpandEntityReferences();

 public Node nextNode()
 throws DOMException;

 public Node previousNode()
 throws DOMException;

 public void detach();

}

org/w3c/dom/traversal/NodeFilter.java:
package org.w3c.dom.traversal;

import org.w3c.dom.Node;

public interface NodeFilter {
 // Constants returned by acceptNode
 public static final short FILTER_ACCEPT = 1;
 public static final short FILTER_REJECT = 2;
 public static final short FILTER_SKIP = 3;

 // Constants for whatToShow
 public static final int SHOW_ALL = 0xFFFFFFFF;
 public static final int SHOW_ELEMENT = 0x00000001;
 public static final int SHOW_ATTRIBUTE = 0x00000002;
 public static final int SHOW_TEXT = 0x00000004;
 public static final int SHOW_CDATA_SECTION = 0x00000008;
 public static final int SHOW_ENTITY_REFERENCE = 0x00000010;
 public static final int SHOW_ENTITY = 0x00000020;
 public static final int SHOW_PROCESSING_INSTRUCTION = 0x00000040;
 public static final int SHOW_COMMENT = 0x00000080;
 public static final int SHOW_DOCUMENT = 0x00000100;
 public static final int SHOW_DOCUMENT_TYPE = 0x00000200;
 public static final int SHOW_DOCUMENT_FRAGMENT = 0x00000400;
 public static final int SHOW_NOTATION = 0x00000800;

 public short acceptNode(Node n);

}

org/w3c/dom/traversal/TreeWalker.java:
package org.w3c.dom.traversal;

import org.w3c.dom.DOMException;
import org.w3c.dom.Node;

public interface TreeWalker {
 public Node getRoot();

 public int getWhatToShow();

 public NodeFilter getFilter();

392

org/w3c/dom/traversal/NodeFilter.java:

 public boolean getExpandEntityReferences();

 public Node getCurrentNode();
 public void setCurrentNode(Node currentNode)
 throws DOMException;

 public Node parentNode();

 public Node firstChild();

 public Node lastChild();

 public Node previousSibling();

 public Node nextSibling();

 public Node previousNode();

 public Node nextNode();

}

org/w3c/dom/traversal/DocumentTraversal.java:
package org.w3c.dom.traversal;

import org.w3c.dom.DOMException;
import org.w3c.dom.Node;

public interface DocumentTraversal {
 public NodeIterator createNodeIterator(Node root,
 int whatToShow,
 NodeFilter filter,
 boolean entityReferenceExpansion);

 public TreeWalker createTreeWalker(Node root,
 int whatToShow,
 NodeFilter filter,
 boolean entityReferenceExpansion)
 throws DOMException;

}

D.8: Document Object Model Range

org/w3c/dom/range/RangeException.java:
package org.w3c.dom.range;

public class RangeException extends RuntimeException {
 public RangeException(short code, String message) {
 super(message);
 this.code = code;
 }

393

D.8: Document Object Model Range

 public short code;
 // RangeExceptionCode
 public static final short BAD_BOUNDARYPOINTS_ERR = 1;
 public static final short INVALID_NODE_TYPE_ERR = 2;

}

org/w3c/dom/range/Range.java:
package org.w3c.dom.range;

import org.w3c.dom.DOMException;
import org.w3c.dom.DocumentFragment;
import org.w3c.dom.Node;

public interface Range {
 public Node getStartContainer()
 throws DOMException;

 public int getStartOffset()
 throws DOMException;

 public Node getEndContainer()
 throws DOMException;

 public int getEndOffset()
 throws DOMException;

 public boolean getCollapsed()
 throws DOMException;

 public Node getCommonAncestorContainer()
 throws DOMException;

 public void setStart(Node refNode,
 int offset)
 throws RangeException, DOMException;

 public void setEnd(Node refNode,
 int offset)
 throws RangeException, DOMException;

 public void setStartBefore(Node refNode)
 throws RangeException, DOMException;

 public void setStartAfter(Node refNode)
 throws RangeException, DOMException;

 public void setEndBefore(Node refNode)
 throws RangeException, DOMException;

 public void setEndAfter(Node refNode)
 throws RangeException, DOMException;

 public void collapse(boolean toStart)
 throws DOMException;

394

org/w3c/dom/range/Range.java:

 public void selectNode(Node refNode)
 throws RangeException, DOMException;

 public void selectNodeContents(Node refNode)
 throws RangeException, DOMException;

 // CompareHow
 public static final short START_TO_START = 0;
 public static final short START_TO_END = 1;
 public static final short END_TO_END = 2;
 public static final short END_TO_START = 3;

 public short compareBoundaryPoints(short how,
 Range sourceRange)
 throws DOMException;

 public void deleteContents()
 throws DOMException;

 public DocumentFragment extractContents()
 throws DOMException;

 public DocumentFragment cloneContents()
 throws DOMException;

 public void insertNode(Node newNode)
 throws DOMException, RangeException;

 public void surroundContents(Node newParent)
 throws DOMException, RangeException;

 public Range cloneRange()
 throws DOMException;

 public String toString()
 throws DOMException;

 public void detach()
 throws DOMException;

}

org/w3c/dom/range/DocumentRange.java:
package org.w3c.dom.range;

public interface DocumentRange {
 public Range createRange();

}

395

org/w3c/dom/range/DocumentRange.java:

396

org/w3c/dom/range/DocumentRange.java:

Appendix E: ECMA Script Language Binding
This appendix contains the complete ECMA Script binding for the Level 2 Document Object Model
definitions. The definitions are divided into Core [p.397] , HTML [p.403] , StyleSheets [p.424] , CSS
[p.425] , Events [p.440] , Traversal [p.443] , and Range [p.444] .

E.1: Document Object Model Core
Object DOMString
Object DOMTimeStamp
Object DOMImplementation

The DOMImplementation object has the following methods:
hasFeature(feature, version)

This method returns a boolean. The feature parameter is of type DOMString . The version
parameter is of type DOMString .

createDocumentType(qualifiedName, publicId, systemId)
This method returns a DocumentType. The qualifiedName parameter is of type
DOMString . The publicId parameter is of type DOMString . The systemId parameter is
of type DOMString .

createDocument(namespaceURI, qualifiedName, doctype)
This method returns a Document. The namespaceURI parameter is of type DOMString .
The qualifiedName parameter is of type DOMString . The doctype parameter is of type
DocumentType.

Object DocumentFragment
DocumentFragment has the all the properties and methods of Node as well as the properties and
methods defined below.

Object Document
Document has the all the properties and methods of Node as well as the properties and methods
defined below.
The Document object has the following properties:

doctype
This property is of type DocumentType.

implementation
This property is of type DOMImplementation .

documentElement
This property is of type Element.

The Document object has the following methods:
createElement(tagName)

This method returns a Element. The tagName parameter is of type DOMString .
createDocumentFragment()

This method returns a DocumentFragment.
createTextNode(data)

This method returns a Text. The data parameter is of type DOMString .
createComment(data)

This method returns a Comment. The data parameter is of type DOMString .

397

Appendix E: ECMA Script Language Binding

createCDATASection(data)
This method returns a CDATASection. The data parameter is of type DOMString .

createProcessingInstruction(target, data)
This method returns a ProcessingInstruction. The target parameter is of type
DOMString . The data parameter is of type DOMString .

createAttribute(name)
This method returns a Attr . The name parameter is of type DOMString .

createEntityReference(name)
This method returns a EntityReference. The name parameter is of type DOMString .

getElementsByTagName(tagname)
This method returns a NodeList. The tagname parameter is of type DOMString .

importNode(importedNode, deep)
This method returns a Node. The importedNode parameter is of type Node. The deep
parameter is of type boolean.

createElementNS(namespaceURI, qualifiedName)
This method returns a Element. The namespaceURI parameter is of type DOMString .
The qualifiedName parameter is of type DOMString .

createAttributeNS(namespaceURI, qualifiedName)
This method returns a Attr . The namespaceURI parameter is of type DOMString . The
qualifiedName parameter is of type DOMString .

getElementsByTagNameNS(namespaceURI, localName)
This method returns a NodeList. The namespaceURI parameter is of type DOMString .
The localName parameter is of type DOMString .

getElementById(elementId)
This method returns a Element. The elementId parameter is of type DOMString .

Class Node
The Node class has the following constants:

Node.ELEMENT_NODE
This constant is of type short and its value is 1.

Node.ATTRIBUTE_NODE
This constant is of type short and its value is 2.

Node.TEXT_NODE
This constant is of type short and its value is 3.

Node.CDATA_SECTION_NODE
This constant is of type short and its value is 4.

Node.ENTITY_REFERENCE_NODE
This constant is of type short and its value is 5.

Node.ENTITY_NODE
This constant is of type short and its value is 6.

Node.PROCESSING_INSTRUCTION_NODE
This constant is of type short and its value is 7.

Node.COMMENT_NODE
This constant is of type short and its value is 8.

Node.DOCUMENT_NODE
This constant is of type short and its value is 9.

398

E.1: Document Object Model Core

Node.DOCUMENT_TYPE_NODE
This constant is of type short and its value is 10.

Node.DOCUMENT_FRAGMENT_NODE
This constant is of type short and its value is 11.

Node.NOTATION_NODE
This constant is of type short and its value is 12.

Object Node
The Node object has the following properties:

nodeName
This property is of type String.

nodeValue
This property is of type String.

nodeType
This property is of type short.

parentNode
This property is of type Node.

childNodes
This property is of type NodeList.

firstChild
This property is of type Node.

lastChild
This property is of type Node.

previousSibling
This property is of type Node.

nextSibling
This property is of type Node.

attributes
This property is of type NamedNodeMap.

ownerDocument
This property is of type Document.

namespaceURI
This property is of type String.

prefix
This property is of type String.

localName
This property is of type String.

The Node object has the following methods:
insertBefore(newChild, refChild)

This method returns a Node. The newChild parameter is of type Node. The refChild
parameter is of type Node.

replaceChild(newChild, oldChild)
This method returns a Node. The newChild parameter is of type Node. The oldChild
parameter is of type Node.

removeChild(oldChild)
This method returns a Node. The oldChild parameter is of type Node.

399

E.1: Document Object Model Core

appendChild(newChild)
This method returns a Node. The newChild parameter is of type Node.

hasChildNodes()
This method returns a boolean.

cloneNode(deep)
This method returns a Node. The deep parameter is of type boolean.

normalize()
This method returns a void.

supports(feature, version)
This method returns a boolean. The feature parameter is of type DOMString . The version
parameter is of type DOMString .

Object NodeList
The NodeList object has the following properties:

length
This property is of type int .

The NodeList object has the following methods:
item(index)

This method returns a Node. The index parameter is of type unsigned long. This object
can also be dereferenced using square bracket notation (e.g. obj[1]). Dereferencing with an
integer index is equivalent to invoking the item method with that index.

Object NamedNodeMap
The NamedNodeMap object has the following properties:

length
This property is of type int .

The NamedNodeMap object has the following methods:
getNamedItem(name)

This method returns a Node. The name parameter is of type DOMString .
setNamedItem(arg)

This method returns a Node. The arg parameter is of type Node.
removeNamedItem(name)

This method returns a Node. The name parameter is of type DOMString .
item(index)

This method returns a Node. The index parameter is of type unsigned long. This object
can also be dereferenced using square bracket notation (e.g. obj[1]). Dereferencing with an
integer index is equivalent to invoking the item method with that index.

getNamedItemNS(namespaceURI, localName)
This method returns a Node. The namespaceURI parameter is of type DOMString . The
localName parameter is of type DOMString .

setNamedItemNS(arg)
This method returns a Node. The arg parameter is of type Node.

removeNamedItemNS(namespaceURI, localName)
This method returns a Node. The namespaceURI parameter is of type DOMString . The
localName parameter is of type DOMString .

Object CharacterData
CharacterData has the all the properties and methods of Node as well as the properties and methods
defined below.

400

E.1: Document Object Model Core

The CharacterData object has the following properties:
data

This property is of type String.
length

This property is of type int .
The CharacterData object has the following methods:

substringData(offset, count)
This method returns a DOMString . The offset parameter is of type unsigned long. The
count parameter is of type unsigned long.

appendData(arg)
This method returns a void. The arg parameter is of type DOMString .

insertData(offset, arg)
This method returns a void. The offset parameter is of type unsigned long. The arg
parameter is of type DOMString .

deleteData(offset, count)
This method returns a void. The offset parameter is of type unsigned long. The count
parameter is of type unsigned long.

replaceData(offset, count, arg)
This method returns a void. The offset parameter is of type unsigned long. The count
parameter is of type unsigned long. The arg parameter is of type DOMString .

Object Attr
Attr has the all the properties and methods of Node as well as the properties and methods defined
below.
The Attr object has the following properties:

name
This property is of type String.

specified
This property is of type boolean.

value
This property is of type String.

ownerElement
This property is of type Element.

Object Element
Element has the all the properties and methods of Node as well as the properties and methods
defined below.
The Element object has the following properties:

tagName
This property is of type String.

The Element object has the following methods:
getAttribute(name)

This method returns a DOMString . The name parameter is of type DOMString .
setAttribute(name, value)

This method returns a void. The name parameter is of type DOMString . The value
parameter is of type DOMString .

removeAttribute(name)
This method returns a void. The name parameter is of type DOMString .

401

E.1: Document Object Model Core

getAttributeNode(name)
This method returns a Attr . The name parameter is of type DOMString .

setAttributeNode(newAttr)
This method returns a Attr . The newAttr parameter is of type Attr .

removeAttributeNode(oldAttr)
This method returns a Attr . The oldAttr parameter is of type Attr .

getElementsByTagName(name)
This method returns a NodeList. The name parameter is of type DOMString .

getAttributeNS(namespaceURI, localName)
This method returns a DOMString . The namespaceURI parameter is of type
DOMString . The localName parameter is of type DOMString .

setAttributeNS(namespaceURI, qualifiedName, value)
This method returns a void. The namespaceURI parameter is of type DOMString . The
qualifiedName parameter is of type DOMString . The value parameter is of type
DOMString .

removeAttributeNS(namespaceURI, localName)
This method returns a void. The namespaceURI parameter is of type DOMString . The
localName parameter is of type DOMString .

getAttributeNodeNS(namespaceURI, localName)
This method returns a Attr . The namespaceURI parameter is of type DOMString . The
localName parameter is of type DOMString .

setAttributeNodeNS(newAttr)
This method returns a Attr . The newAttr parameter is of type Attr .

getElementsByTagNameNS(namespaceURI, localName)
This method returns a NodeList. The namespaceURI parameter is of type DOMString .
The localName parameter is of type DOMString .

hasAttribute(name)
This method returns a boolean. The name parameter is of type DOMString .

hasAttributeNS(namespaceURI, localName)
This method returns a boolean. The namespaceURI parameter is of type DOMString .
The localName parameter is of type DOMString .

Object Text
Text has the all the properties and methods of CharacterData as well as the properties and methods
defined below.
The Text object has the following methods:

splitText(offset)
This method returns a Text. The offset parameter is of type unsigned long.

Object Comment
Comment has the all the properties and methods of CharacterData as well as the properties and
methods defined below.

Object CDATASection
CDATASection has the all the properties and methods of Text as well as the properties and methods
defined below.

Object DocumentType
DocumentType has the all the properties and methods of Node as well as the properties and methods
defined below.

402

E.1: Document Object Model Core

The DocumentType object has the following properties:
name

This property is of type String.
entities

This property is of type NamedNodeMap.
notations

This property is of type NamedNodeMap.
publicId

This property is of type String.
systemId

This property is of type String.
internalSubset

This property is of type String.
Object Notation

Notation has the all the properties and methods of Node as well as the properties and methods
defined below.
The Notation object has the following properties:

publicId
This property is of type String.

systemId
This property is of type String.

Object Entity
Entity has the all the properties and methods of Node as well as the properties and methods defined
below.
The Entity object has the following properties:

publicId
This property is of type String.

systemId
This property is of type String.

notationName
This property is of type String.

Object EntityReference
EntityReference has the all the properties and methods of Node as well as the properties and
methods defined below.

Object ProcessingInstruction
ProcessingInstruction has the all the properties and methods of Node as well as the properties and
methods defined below.
The ProcessingInstruction object has the following properties:

target
This property is of type String.

data
This property is of type String.

403

E.1: Document Object Model Core

E.2: Document Object Model HTML
Object HTMLDOMImplementation

HTMLDOMImplementation has the all the properties and methods of DOMImplementation as
well as the properties and methods defined below.
The HTMLDOMImplementation object has the following methods:

createHTMLDocument(title)
This method returns a HTMLDocument . The title parameter is of type DOMString .

Object HTMLCollection
The HTMLCollection object has the following properties:

length
This property is of type int .

The HTMLCollection object has the following methods:
item(index)

This method returns a Node. The index parameter is of type unsigned long. This object
can also be dereferenced using square bracket notation (e.g. obj[1]). Dereferencing with an
integer index is equivalent to invoking the item method with that index.

namedItem(name)
This method returns a Node. The name parameter is of type DOMString . This object can
also be dereferenced using square bracket notation (e.g. obj["foo"]). Dereferencing using a
string index is equivalent to invoking the namedItem method with that index.

Object HTMLDocument
HTMLDocument has the all the properties and methods of Document as well as the properties and
methods defined below.
The HTMLDocument object has the following properties:

title
This property is of type String.

referrer
This property is of type String.

domain
This property is of type String.

URL
This property is of type String.

body
This property is of type HTMLElement .

images
This property is of type HTMLCollection .

applets
This property is of type HTMLCollection .

links
This property is of type HTMLCollection .

forms
This property is of type HTMLCollection .

anchors
This property is of type HTMLCollection .

404

E.2: Document Object Model HTML

cookie
This property is of type String.

The HTMLDocument object has the following methods:
open()

This method returns a void.
close()

This method returns a void.
write(text)

This method returns a void. The text parameter is of type DOMString .
writeln(text)

This method returns a void. The text parameter is of type DOMString .
getElementsByName(elementName)

This method returns a NodeList. The elementName parameter is of type DOMString .
Object HTMLElement

HTMLElement has the all the properties and methods of Element as well as the properties and
methods defined below.
The HTMLElement object has the following properties:

id
This property is of type String.

title
This property is of type String.

lang
This property is of type String.

dir
This property is of type String.

className
This property is of type String.

Object HTMLHtmlElement
HTMLHtmlElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLHtmlElement object has the following properties:

version
This property is of type String.

Object HTMLHeadElement
HTMLHeadElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLHeadElement object has the following properties:

profile
This property is of type String.

Object HTMLLinkElement
HTMLLinkElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLLinkElement object has the following properties:

disabled
This property is of type boolean.

405

E.2: Document Object Model HTML

charset
This property is of type String.

href
This property is of type String.

hreflang
This property is of type String.

media
This property is of type String.

rel
This property is of type String.

rev
This property is of type String.

target
This property is of type String.

type
This property is of type String.

Object HTMLTitleElement
HTMLTitleElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLTitleElement object has the following properties:

text
This property is of type String.

Object HTMLMetaElement
HTMLMetaElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLMetaElement object has the following properties:

content
This property is of type String.

httpEquiv
This property is of type String.

name
This property is of type String.

scheme
This property is of type String.

Object HTMLBaseElement
HTMLBaseElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLBaseElement object has the following properties:

href
This property is of type String.

target
This property is of type String.

Object HTMLIsIndexElement
HTMLIsIndexElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.

406

E.2: Document Object Model HTML

The HTMLIsIndexElement object has the following properties:
form

This property is of type HTMLFormElement .
prompt

This property is of type String.
Object HTMLStyleElement

HTMLStyleElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLStyleElement object has the following properties:

disabled
This property is of type boolean.

media
This property is of type String.

type
This property is of type String.

Object HTMLBodyElement
HTMLBodyElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLBodyElement object has the following properties:

aLink
This property is of type String.

background
This property is of type String.

bgColor
This property is of type String.

link
This property is of type String.

text
This property is of type String.

vLink
This property is of type String.

Object HTMLFormElement
HTMLFormElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLFormElement object has the following properties:

elements
This property is of type HTMLCollection .

length
This property is of type long.

name
This property is of type String.

acceptCharset
This property is of type String.

action
This property is of type String.

407

E.2: Document Object Model HTML

enctype
This property is of type String.

method
This property is of type String.

target
This property is of type String.

The HTMLFormElement object has the following methods:
submit()

This method returns a void.
reset()

This method returns a void.
Object HTMLSelectElement

HTMLSelectElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLSelectElement object has the following properties:

type
This property is of type String.

selectedIndex
This property is of type long.

value
This property is of type String.

length
This property is of type long.

form
This property is of type HTMLFormElement .

options
This property is of type HTMLCollection .

disabled
This property is of type boolean.

multiple
This property is of type boolean.

name
This property is of type String.

size
This property is of type long.

tabIndex
This property is of type long.

The HTMLSelectElement object has the following methods:
add(element, before)

This method returns a void. The element parameter is of type HTMLElement . The before
parameter is of type HTMLElement .

remove(index)
This method returns a void. The index parameter is of type long.

blur()
This method returns a void.

408

E.2: Document Object Model HTML

focus()
This method returns a void.

Object HTMLOptGroupElement
HTMLOptGroupElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLOptGroupElement object has the following properties:

disabled
This property is of type boolean.

label
This property is of type String.

Object HTMLOptionElement
HTMLOptionElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLOptionElement object has the following properties:

form
This property is of type HTMLFormElement .

defaultSelected
This property is of type boolean.

text
This property is of type String.

index
This property is of type long.

disabled
This property is of type boolean.

label
This property is of type String.

selected
This property is of type boolean.

value
This property is of type String.

Object HTMLInputElement
HTMLInputElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLInputElement object has the following properties:

defaultValue
This property is of type String.

defaultChecked
This property is of type boolean.

form
This property is of type HTMLFormElement .

accept
This property is of type String.

accessKey
This property is of type String.

align
This property is of type String.

409

E.2: Document Object Model HTML

alt
This property is of type String.

checked
This property is of type boolean.

disabled
This property is of type boolean.

maxLength
This property is of type long.

name
This property is of type String.

readOnly
This property is of type boolean.

size
This property is of type String.

src
This property is of type String.

tabIndex
This property is of type long.

type
This property is of type String.

useMap
This property is of type String.

value
This property is of type String.

The HTMLInputElement object has the following methods:
blur()

This method returns a void.
focus()

This method returns a void.
select()

This method returns a void.
click()

This method returns a void.
Object HTMLTextAreaElement

HTMLTextAreaElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLTextAreaElement object has the following properties:

defaultValue
This property is of type String.

form
This property is of type HTMLFormElement .

accessKey
This property is of type String.

cols
This property is of type long.

410

E.2: Document Object Model HTML

disabled
This property is of type boolean.

name
This property is of type String.

readOnly
This property is of type boolean.

rows
This property is of type long.

tabIndex
This property is of type long.

type
This property is of type String.

value
This property is of type String.

The HTMLTextAreaElement object has the following methods:
blur()

This method returns a void.
focus()

This method returns a void.
select()

This method returns a void.
Object HTMLButtonElement

HTMLButtonElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLButtonElement object has the following properties:

form
This property is of type HTMLFormElement .

accessKey
This property is of type String.

disabled
This property is of type boolean.

name
This property is of type String.

tabIndex
This property is of type long.

type
This property is of type String.

value
This property is of type String.

Object HTMLLabelElement
HTMLLabelElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLLabelElement object has the following properties:

form
This property is of type HTMLFormElement .

411

E.2: Document Object Model HTML

accessKey
This property is of type String.

htmlFor
This property is of type String.

Object HTMLFieldSetElement
HTMLFieldSetElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLFieldSetElement object has the following properties:

form
This property is of type HTMLFormElement .

Object HTMLLegendElement
HTMLLegendElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLLegendElement object has the following properties:

form
This property is of type HTMLFormElement .

accessKey
This property is of type String.

align
This property is of type String.

Object HTMLUListElement
HTMLUListElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLUListElement object has the following properties:

compact
This property is of type boolean.

type
This property is of type String.

Object HTMLOListElement
HTMLOListElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLOListElement object has the following properties:

compact
This property is of type boolean.

start
This property is of type long.

type
This property is of type String.

Object HTMLDListElement
HTMLDListElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLDListElement object has the following properties:

compact
This property is of type boolean.

Object HTMLDirectoryElement

412

E.2: Document Object Model HTML

HTMLDirectoryElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLDirectoryElement object has the following properties:

compact
This property is of type boolean.

Object HTMLMenuElement
HTMLMenuElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLMenuElement object has the following properties:

compact
This property is of type boolean.

Object HTMLLIElement
HTMLLIElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLLIElement object has the following properties:

type
This property is of type String.

value
This property is of type long.

Object HTMLDivElement
HTMLDivElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLDivElement object has the following properties:

align
This property is of type String.

Object HTMLParagraphElement
HTMLParagraphElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLParagraphElement object has the following properties:

align
This property is of type String.

Object HTMLHeadingElement
HTMLHeadingElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLHeadingElement object has the following properties:

align
This property is of type String.

Object HTMLQuoteElement
HTMLQuoteElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLQuoteElement object has the following properties:

cite
This property is of type String.

Object HTMLPreElement
HTMLPreElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.

413

E.2: Document Object Model HTML

The HTMLPreElement object has the following properties:
width

This property is of type long.
Object HTMLBRElement

HTMLBRElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLBRElement object has the following properties:

clear
This property is of type String.

Object HTMLBaseFontElement
HTMLBaseFontElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLBaseFontElement object has the following properties:

color
This property is of type String.

face
This property is of type String.

size
This property is of type String.

Object HTMLFontElement
HTMLFontElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLFontElement object has the following properties:

color
This property is of type String.

face
This property is of type String.

size
This property is of type String.

Object HTMLHRElement
HTMLHRElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLHRElement object has the following properties:

align
This property is of type String.

noShade
This property is of type boolean.

size
This property is of type String.

width
This property is of type String.

Object HTMLModElement
HTMLModElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLModElement object has the following properties:

414

E.2: Document Object Model HTML

cite
This property is of type String.

dateTime
This property is of type String.

Object HTMLAnchorElement
HTMLAnchorElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLAnchorElement object has the following properties:

accessKey
This property is of type String.

charset
This property is of type String.

coords
This property is of type String.

href
This property is of type String.

hreflang
This property is of type String.

name
This property is of type String.

rel
This property is of type String.

rev
This property is of type String.

shape
This property is of type String.

tabIndex
This property is of type long.

target
This property is of type String.

type
This property is of type String.

The HTMLAnchorElement object has the following methods:
blur()

This method returns a void.
focus()

This method returns a void.
Object HTMLImageElement

HTMLImageElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLImageElement object has the following properties:

lowSrc
This property is of type String.

name
This property is of type String.

415

E.2: Document Object Model HTML

align
This property is of type String.

alt
This property is of type String.

border
This property is of type String.

height
This property is of type String.

hspace
This property is of type String.

isMap
This property is of type boolean.

longDesc
This property is of type String.

src
This property is of type String.

useMap
This property is of type String.

vspace
This property is of type String.

width
This property is of type String.

Object HTMLObjectElement
HTMLObjectElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLObjectElement object has the following properties:

form
This property is of type HTMLFormElement .

code
This property is of type String.

align
This property is of type String.

archive
This property is of type String.

border
This property is of type String.

codeBase
This property is of type String.

codeType
This property is of type String.

data
This property is of type String.

declare
This property is of type boolean.

height
This property is of type String.

416

E.2: Document Object Model HTML

hspace
This property is of type String.

name
This property is of type String.

standby
This property is of type String.

tabIndex
This property is of type long.

type
This property is of type String.

useMap
This property is of type String.

vspace
This property is of type String.

width
This property is of type String.

contentDocument
This property is of type Document.

Object HTMLParamElement
HTMLParamElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLParamElement object has the following properties:

name
This property is of type String.

type
This property is of type String.

value
This property is of type String.

valueType
This property is of type String.

Object HTMLAppletElement
HTMLAppletElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLAppletElement object has the following properties:

align
This property is of type String.

alt
This property is of type String.

archive
This property is of type String.

code
This property is of type String.

codeBase
This property is of type String.

height
This property is of type String.

417

E.2: Document Object Model HTML

hspace
This property is of type String.

name
This property is of type String.

object
This property is of type String.

vspace
This property is of type String.

width
This property is of type String.

Object HTMLMapElement
HTMLMapElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLMapElement object has the following properties:

areas
This property is of type HTMLCollection .

name
This property is of type String.

Object HTMLAreaElement
HTMLAreaElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLAreaElement object has the following properties:

accessKey
This property is of type String.

alt
This property is of type String.

coords
This property is of type String.

href
This property is of type String.

noHref
This property is of type boolean.

shape
This property is of type String.

tabIndex
This property is of type long.

target
This property is of type String.

Object HTMLScriptElement
HTMLScriptElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLScriptElement object has the following properties:

text
This property is of type String.

htmlFor
This property is of type String.

418

E.2: Document Object Model HTML

event
This property is of type String.

charset
This property is of type String.

defer
This property is of type boolean.

src
This property is of type String.

type
This property is of type String.

Object HTMLTableElement
HTMLTableElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLTableElement object has the following properties:

caption
This property is of type HTMLTableCaptionElement .

tHead
This property is of type HTMLTableSectionElement.

tFoot
This property is of type HTMLTableSectionElement.

rows
This property is of type HTMLCollection .

tBodies
This property is of type HTMLCollection .

align
This property is of type String.

bgColor
This property is of type String.

border
This property is of type String.

cellPadding
This property is of type String.

cellSpacing
This property is of type String.

frame
This property is of type String.

rules
This property is of type String.

summary
This property is of type String.

width
This property is of type String.

The HTMLTableElement object has the following methods:
createTHead()

This method returns a HTMLElement .

419

E.2: Document Object Model HTML

deleteTHead()
This method returns a void.

createTFoot()
This method returns a HTMLElement .

deleteTFoot()
This method returns a void.

createCaption()
This method returns a HTMLElement .

deleteCaption()
This method returns a void.

insertRow(index)
This method returns a HTMLElement . The index parameter is of type long.

deleteRow(index)
This method returns a void. The index parameter is of type long.

Object HTMLTableCaptionElement
HTMLTableCaptionElement has the all the properties and methods of HTMLElement as well as
the properties and methods defined below.
The HTMLTableCaptionElement object has the following properties:

align
This property is of type String.

Object HTMLTableColElement
HTMLTableColElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLTableColElement object has the following properties:

align
This property is of type String.

ch
This property is of type String.

chOff
This property is of type String.

span
This property is of type long.

vAlign
This property is of type String.

width
This property is of type String.

Object HTMLTableSectionElement
HTMLTableSectionElement has the all the properties and methods of HTMLElement as well as
the properties and methods defined below.
The HTMLTableSectionElement object has the following properties:

align
This property is of type String.

ch
This property is of type String.

chOff
This property is of type String.

420

E.2: Document Object Model HTML

vAlign
This property is of type String.

rows
This property is of type HTMLCollection .

The HTMLTableSectionElement object has the following methods:
insertRow(index)

This method returns a HTMLElement . The index parameter is of type long.
deleteRow(index)

This method returns a void. The index parameter is of type long.
Object HTMLTableRowElement

HTMLTableRowElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLTableRowElement object has the following properties:

rowIndex
This property is of type long.

sectionRowIndex
This property is of type long.

cells
This property is of type HTMLCollection .

align
This property is of type String.

bgColor
This property is of type String.

ch
This property is of type String.

chOff
This property is of type String.

vAlign
This property is of type String.

The HTMLTableRowElement object has the following methods:
insertCell(index)

This method returns a HTMLElement . The index parameter is of type long.
deleteCell(index)

This method returns a void. The index parameter is of type long.
Object HTMLTableCellElement

HTMLTableCellElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLTableCellElement object has the following properties:

cellIndex
This property is of type long.

abbr
This property is of type String.

align
This property is of type String.

axis
This property is of type String.

421

E.2: Document Object Model HTML

bgColor
This property is of type String.

ch
This property is of type String.

chOff
This property is of type String.

colSpan
This property is of type long.

headers
This property is of type String.

height
This property is of type String.

noWrap
This property is of type boolean.

rowSpan
This property is of type long.

scope
This property is of type String.

vAlign
This property is of type String.

width
This property is of type String.

Object HTMLFrameSetElement
HTMLFrameSetElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLFrameSetElement object has the following properties:

cols
This property is of type String.

rows
This property is of type String.

Object HTMLFrameElement
HTMLFrameElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLFrameElement object has the following properties:

frameBorder
This property is of type String.

longDesc
This property is of type String.

marginHeight
This property is of type String.

marginWidth
This property is of type String.

name
This property is of type String.

noResize
This property is of type boolean.

422

E.2: Document Object Model HTML

scrolling
This property is of type String.

src
This property is of type String.

contentDocument
This property is of type Document.

Object HTMLIFrameElement
HTMLIFrameElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLIFrameElement object has the following properties:

align
This property is of type String.

frameBorder
This property is of type String.

height
This property is of type String.

longDesc
This property is of type String.

marginHeight
This property is of type String.

marginWidth
This property is of type String.

name
This property is of type String.

scrolling
This property is of type String.

src
This property is of type String.

width
This property is of type String.

contentDocument
This property is of type Document.

E.3: Document Object Model Views
Object AbstractView

The AbstractView object has the following properties:
document

This property is of type DocumentView.
Object DocumentView

The DocumentView object has the following properties:
defaultView

This property is of type AbstractView.

423

E.3: Document Object Model Views

E.4: Document Object Model StyleSheets
Object StyleSheet

The StyleSheet object has the following properties:
type

This property is of type String.
disabled

This property is of type boolean.
ownerNode

This property is of type Node.
parentStyleSheet

This property is of type StyleSheet.
href

This property is of type String.
title

This property is of type String.
media

This property is of type MediaList .
Object StyleSheetList

The StyleSheetList object has the following properties:
length

This property is of type int .
The StyleSheetList object has the following methods:

item(index)
This method returns a StyleSheet. The index parameter is of type unsigned long. This
object can also be dereferenced using square bracket notation (e.g. obj[1]). Dereferencing
with an integer index is equivalent to invoking the item method with that index.

Object MediaList
The MediaList object has the following properties:

mediaText
This property is of type String.

length
This property is of type int .

The MediaList object has the following methods:
item(index)

This method returns a DOMString . The index parameter is of type unsigned long. This
object can also be dereferenced using square bracket notation (e.g. obj[1]). Dereferencing
with an integer index is equivalent to invoking the item method with that index.

delete(oldMedium)
This method returns a void. The oldMedium parameter is of type DOMString .

append(newMedium)
This method returns a void. The newMedium parameter is of type DOMString .

Object LinkStyle
The LinkStyle object has the following properties:

424

E.4: Document Object Model StyleSheets

sheet
This property is of type StyleSheet.

Object DocumentStyle
The DocumentStyle object has the following properties:

styleSheets
This property is of type StyleSheetList.

E.5: Document Object Model CSS
Object CSSStyleSheet

CSSStyleSheet has the all the properties and methods of StyleSheet as well as the properties and
methods defined below.
The CSSStyleSheet object has the following properties:

ownerRule
This property is of type CSSRule.

cssRules
This property is of type CSSRuleList.

The CSSStyleSheet object has the following methods:
insertRule(rule, index)

This method returns a unsigned long. The rule parameter is of type DOMString . The
index parameter is of type unsigned long.

deleteRule(index)
This method returns a void. The index parameter is of type unsigned long.

Object CSSRuleList
The CSSRuleList object has the following properties:

length
This property is of type int .

The CSSRuleList object has the following methods:
item(index)

This method returns a CSSRule. The index parameter is of type unsigned long. This
object can also be dereferenced using square bracket notation (e.g. obj[1]). Dereferencing
with an integer index is equivalent to invoking the item method with that index.

Class CSSRule
The CSSRule class has the following constants:

CSSRule.UNKNOWN_RULE
This constant is of type short and its value is 0.

CSSRule.STYLE_RULE
This constant is of type short and its value is 1.

CSSRule.CHARSET_RULE
This constant is of type short and its value is 2.

CSSRule.IMPORT_RULE
This constant is of type short and its value is 3.

CSSRule.MEDIA_RULE
This constant is of type short and its value is 4.

425

E.5: Document Object Model CSS

CSSRule.FONT_FACE_RULE
This constant is of type short and its value is 5.

CSSRule.PAGE_RULE
This constant is of type short and its value is 6.

Object CSSRule
The CSSRule object has the following properties:

type
This property is of type short.

cssText
This property is of type String.

parentStyleSheet
This property is of type CSSStyleSheet.

parentRule
This property is of type CSSRule.

Object CSSStyleRule
CSSStyleRule has the all the properties and methods of CSSRule as well as the properties and
methods defined below.
The CSSStyleRule object has the following properties:

selectorText
This property is of type String.

style
This property is of type CSSStyleDeclaration.

Object CSSMediaRule
CSSMediaRule has the all the properties and methods of CSSRule as well as the properties and
methods defined below.
The CSSMediaRule object has the following properties:

media
This property is of type MediaList .

cssRules
This property is of type CSSRuleList.

The CSSMediaRule object has the following methods:
insertRule(rule, index)

This method returns a unsigned long. The rule parameter is of type DOMString . The
index parameter is of type unsigned long.

deleteRule(index)
This method returns a void. The index parameter is of type unsigned long.

Object CSSFontFaceRule
CSSFontFaceRule has the all the properties and methods of CSSRule as well as the properties and
methods defined below.
The CSSFontFaceRule object has the following properties:

style
This property is of type CSSStyleDeclaration.

Object CSSPageRule
CSSPageRule has the all the properties and methods of CSSRule as well as the properties and
methods defined below.

426

E.5: Document Object Model CSS

The CSSPageRule object has the following properties:
selectorText

This property is of type String.
style

This property is of type CSSStyleDeclaration.
Object CSSImportRule

CSSImportRule has the all the properties and methods of CSSRule as well as the properties and
methods defined below.
The CSSImportRule object has the following properties:

href
This property is of type String.

media
This property is of type MediaList .

styleSheet
This property is of type CSSStyleSheet.

Object CSSCharsetRule
CSSCharsetRule has the all the properties and methods of CSSRule as well as the properties and
methods defined below.
The CSSCharsetRule object has the following properties:

encoding
This property is of type String.

Object CSSUnknownRule
CSSUnknownRule has the all the properties and methods of CSSRule as well as the properties and
methods defined below.

Object CSSStyleDeclaration
The CSSStyleDeclaration object has the following properties:

cssText
This property is of type String.

length
This property is of type int .

parentRule
This property is of type CSSRule.

The CSSStyleDeclaration object has the following methods:
getPropertyValue(propertyName)

This method returns a DOMString . The propertyName parameter is of type DOMString .
getPropertyCSSValue(propertyName)

This method returns a CSSValue. The propertyName parameter is of type DOMString .
removeProperty(propertyName)

This method returns a DOMString . The propertyName parameter is of type DOMString .
getPropertyPriority(propertyName)

This method returns a DOMString . The propertyName parameter is of type DOMString .
setProperty(propertyName, value, priority)

This method returns a void. The propertyName parameter is of type DOMString . The
value parameter is of type DOMString . The priority parameter is of type DOMString .

item(index)
This method returns a DOMString . The index parameter is of type unsigned long. This

427

E.5: Document Object Model CSS

object can also be dereferenced using square bracket notation (e.g. obj[1]). Dereferencing
with an integer index is equivalent to invoking the item method with that index.

Class CSSValue
The CSSValue class has the following constants:

CSSValue.CSS_INHERIT
This constant is of type short and its value is 0.

CSSValue.CSS_PRIMITIVE_VALUE
This constant is of type short and its value is 1.

CSSValue.CSS_VALUE_LIST
This constant is of type short and its value is 2.

CSSValue.CSS_CUSTOM
This constant is of type short and its value is 3.

Object CSSValue
The CSSValue object has the following properties:

cssText
This property is of type String.

valueType
This property is of type short.

Class CSSPrimitiveValue
The CSSPrimitiveValue class has the following constants:

CSSPrimitiveValue.CSS_UNKNOWN
This constant is of type short and its value is 0.

CSSPrimitiveValue.CSS_NUMBER
This constant is of type short and its value is 1.

CSSPrimitiveValue.CSS_PERCENTAGE
This constant is of type short and its value is 2.

CSSPrimitiveValue.CSS_EMS
This constant is of type short and its value is 3.

CSSPrimitiveValue.CSS_EXS
This constant is of type short and its value is 4.

CSSPrimitiveValue.CSS_PX
This constant is of type short and its value is 5.

CSSPrimitiveValue.CSS_CM
This constant is of type short and its value is 6.

CSSPrimitiveValue.CSS_MM
This constant is of type short and its value is 7.

CSSPrimitiveValue.CSS_IN
This constant is of type short and its value is 8.

CSSPrimitiveValue.CSS_PT
This constant is of type short and its value is 9.

CSSPrimitiveValue.CSS_PC
This constant is of type short and its value is 10.

CSSPrimitiveValue.CSS_DEG
This constant is of type short and its value is 11.

CSSPrimitiveValue.CSS_RAD
This constant is of type short and its value is 12.

428

E.5: Document Object Model CSS

CSSPrimitiveValue.CSS_GRAD
This constant is of type short and its value is 13.

CSSPrimitiveValue.CSS_MS
This constant is of type short and its value is 14.

CSSPrimitiveValue.CSS_S
This constant is of type short and its value is 15.

CSSPrimitiveValue.CSS_HZ
This constant is of type short and its value is 16.

CSSPrimitiveValue.CSS_KHZ
This constant is of type short and its value is 17.

CSSPrimitiveValue.CSS_DIMENSION
This constant is of type short and its value is 18.

CSSPrimitiveValue.CSS_STRING
This constant is of type short and its value is 19.

CSSPrimitiveValue.CSS_URI
This constant is of type short and its value is 20.

CSSPrimitiveValue.CSS_IDENT
This constant is of type short and its value is 21.

CSSPrimitiveValue.CSS_ATTR
This constant is of type short and its value is 22.

CSSPrimitiveValue.CSS_COUNTER
This constant is of type short and its value is 23.

CSSPrimitiveValue.CSS_RECT
This constant is of type short and its value is 24.

CSSPrimitiveValue.CSS_RGBCOLOR
This constant is of type short and its value is 25.

Object CSSPrimitiveValue
CSSPrimitiveValue has the all the properties and methods of CSSValue as well as the properties
and methods defined below.
The CSSPrimitiveValue object has the following properties:

primitiveType
This property is of type short.

The CSSPrimitiveValue object has the following methods:
setFloatValue(unitType, floatValue)

This method returns a void. The unitType parameter is of type unsigned short. The
floatValue parameter is of type float.

getFloatValue(unitType)
This method returns a float. The unitType parameter is of type unsigned short.

setStringValue(stringType, stringValue)
This method returns a void. The stringType parameter is of type unsigned short. The
stringValue parameter is of type DOMString .

getStringValue()
This method returns a DOMString .

getCounterValue()
This method returns a Counter.

429

E.5: Document Object Model CSS

getRectValue()
This method returns a Rect.

getRGBColorValue()
This method returns a RGBColor.

Object CSSValueList
CSSValueList has the all the properties and methods of CSSValue as well as the properties and
methods defined below.
The CSSValueList object has the following properties:

length
This property is of type int .

The CSSValueList object has the following methods:
item(index)

This method returns a CSSValue. The index parameter is of type unsigned long. This
object can also be dereferenced using square bracket notation (e.g. obj[1]). Dereferencing
with an integer index is equivalent to invoking the item method with that index.

Object RGBColor
The RGBColor object has the following properties:

red
This property is of type CSSPrimitiveValue.

green
This property is of type CSSPrimitiveValue.

blue
This property is of type CSSPrimitiveValue.

Object Rect
The Rect object has the following properties:

top
This property is of type CSSPrimitiveValue.

right
This property is of type CSSPrimitiveValue.

bottom
This property is of type CSSPrimitiveValue.

left
This property is of type CSSPrimitiveValue.

Object Counter
The Counter object has the following properties:

identifier
This property is of type String.

listStyle
This property is of type String.

separator
This property is of type String.

Object ViewCSS
ViewCSS has the all the properties and methods of AbstractView as well as the properties and
methods defined below.
The ViewCSS object has the following methods:

430

E.5: Document Object Model CSS

getComputedStyle(elt, pseudoElt)
This method returns a CSSStyleDeclaration. The elt parameter is of type Element. The
pseudoElt parameter is of type DOMString .

Object DocumentCSS
DocumentCSS has the all the properties and methods of DocumentStyle as well as the properties
and methods defined below.
The DocumentCSS object has the following methods:

getOverrideStyle(elt, pseudoElt)
This method returns a CSSStyleDeclaration. The elt parameter is of type Element. The
pseudoElt parameter is of type DOMString .

Object DOMImplementationCSS
DOMImplementationCSS has the all the properties and methods of DOMImplementation as well
as the properties and methods defined below.
The DOMImplementationCSS object has the following methods:

createCSSStyleSheet(title, media)
This method returns a CSSStyleSheet. The title parameter is of type DOMString . The
media parameter is of type DOMString .

Object ElementCSSInlineStyle
The ElementCSSInlineStyle object has the following properties:

style
This property is of type CSSStyleDeclaration.

Object CSS2Azimuth
CSS2Azimuth has the all the properties and methods of CSSValue as well as the properties and
methods defined below.
The CSS2Azimuth object has the following properties:

azimuthType
This property is of type short.

identifier
This property is of type String.

behind
This property is of type boolean.

The CSS2Azimuth object has the following methods:
setAngleValue(uType, fValue)

This method returns a void. The uType parameter is of type unsigned short. The fValue
parameter is of type float.

getAngleValue(uType)
This method returns a float. The uType parameter is of type unsigned short.

setIdentifier(ident, b)
This method returns a void. The ident parameter is of type DOMString . The b parameter
is of type boolean.

Object CSS2BackgroundPosition
CSS2BackgroundPosition has the all the properties and methods of CSSValue as well as the
properties and methods defined below.
The CSS2BackgroundPosition object has the following properties:

horizontalType
This property is of type short.

431

E.5: Document Object Model CSS

verticalType
This property is of type short.

horizontalIdentifier
This property is of type String.

verticalIdentifier
This property is of type String.

The CSS2BackgroundPosition object has the following methods:
getHorizontalPosition(hType)

This method returns a float. The hType parameter is of type float.
getVerticalPosition(vType)

This method returns a float. The vType parameter is of type float.
setHorizontalPosition(hType, value)

This method returns a void. The hType parameter is of type unsigned short. The value
parameter is of type float.

setVerticalPosition(vType, value)
This method returns a void. The vType parameter is of type unsigned short. The value
parameter is of type float.

setPositionIdentifier(hIdentifier, vIdentifier)
This method returns a void. The hIdentifier parameter is of type DOMString . The
vIdentifier parameter is of type DOMString .

Object CSS2BorderSpacing
CSS2BorderSpacing has the all the properties and methods of CSSValue as well as the properties
and methods defined below.
The CSS2BorderSpacing object has the following properties:

horizontalType
This property is of type short.

verticalType
This property is of type short.

The CSS2BorderSpacing object has the following methods:
getHorizontalSpacing(hType)

This method returns a float. The hType parameter is of type float.
getVerticalSpacing(vType)

This method returns a float. The vType parameter is of type float.
setHorizontalSpacing(hType, value)

This method returns a void. The hType parameter is of type unsigned short. The value
parameter is of type float.

setVerticalSpacing(vType, value)
This method returns a void. The vType parameter is of type unsigned short. The value
parameter is of type float.

Object CSS2CounterReset
CSS2CounterReset has the all the properties and methods of CSSValue as well as the properties
and methods defined below.
The CSS2CounterReset object has the following properties:

identifier
This property is of type String.

432

E.5: Document Object Model CSS

reset
This property is of type short.

Object CSS2CounterIncrement
CSS2CounterIncrement has the all the properties and methods of CSSValue as well as the
properties and methods defined below.
The CSS2CounterIncrement object has the following properties:

identifier
This property is of type String.

increment
This property is of type short.

Object CSS2Cursor
CSS2Cursor has the all the properties and methods of CSSValue as well as the properties and
methods defined below.
The CSS2Cursor object has the following properties:

uris
This property is of type CSSValueList.

predefinedCursor
This property is of type String.

Object CSS2PlayDuring
CSS2PlayDuring has the all the properties and methods of CSSValue as well as the properties and
methods defined below.
The CSS2PlayDuring object has the following properties:

playDuringType
This property is of type short.

playDuringIdentifier
This property is of type String.

uri
This property is of type String.

mix
This property is of type boolean.

repeat
This property is of type boolean.

Object CSS2TextShadow
The CSS2TextShadow object has the following properties:

color
This property is of type CSSValue.

horizontal
This property is of type CSSValue.

vertical
This property is of type CSSValue.

blur
This property is of type CSSValue.

Object CSS2FontFaceSrc
The CSS2FontFaceSrc object has the following properties:

uri
This property is of type String.

433

E.5: Document Object Model CSS

format
This property is of type CSSValueList.

fontFaceName
This property is of type String.

Object CSS2FontFaceWidths
The CSS2FontFaceWidths object has the following properties:

urange
This property is of type String.

numbers
This property is of type CSSValueList.

Object CSS2PageSize
CSS2PageSize has the all the properties and methods of CSSValue as well as the properties and
methods defined below.
The CSS2PageSize object has the following properties:

widthType
This property is of type short.

heightType
This property is of type short.

identifier
This property is of type String.

The CSS2PageSize object has the following methods:
getWidth(wType)

This method returns a float. The wType parameter is of type float.
getHeightSize(hType)

This method returns a float. The hType parameter is of type float.
setWidthSize(wType, value)

This method returns a void. The wType parameter is of type unsigned short. The value
parameter is of type float.

setHeightSize(hType, value)
This method returns a void. The hType parameter is of type unsigned short. The value
parameter is of type float.

setIdentifier(ident)
This method returns a void. The ident parameter is of type DOMString .

Object CSS2Properties
The CSS2Properties object has the following properties:

azimuth
This property is of type String.

background
This property is of type String.

backgroundAttachment
This property is of type String.

backgroundColor
This property is of type String.

backgroundImage
This property is of type String.

434

E.5: Document Object Model CSS

backgroundPosition
This property is of type String.

backgroundRepeat
This property is of type String.

border
This property is of type String.

borderCollapse
This property is of type String.

borderColor
This property is of type String.

borderSpacing
This property is of type String.

borderStyle
This property is of type String.

borderTop
This property is of type String.

borderRight
This property is of type String.

borderBottom
This property is of type String.

borderLeft
This property is of type String.

borderTopColor
This property is of type String.

borderRightColor
This property is of type String.

borderBottomColor
This property is of type String.

borderLeftColor
This property is of type String.

borderTopStyle
This property is of type String.

borderRightStyle
This property is of type String.

borderBottomStyle
This property is of type String.

borderLeftStyle
This property is of type String.

borderTopWidth
This property is of type String.

borderRightWidth
This property is of type String.

borderBottomWidth
This property is of type String.

borderLeftWidth
This property is of type String.

435

E.5: Document Object Model CSS

borderWidth
This property is of type String.

bottom
This property is of type String.

captionSide
This property is of type String.

clear
This property is of type String.

clip
This property is of type String.

color
This property is of type String.

content
This property is of type String.

counterIncrement
This property is of type String.

counterReset
This property is of type String.

cue
This property is of type String.

cueAfter
This property is of type String.

cueBefore
This property is of type String.

cursor
This property is of type String.

direction
This property is of type String.

display
This property is of type String.

elevation
This property is of type String.

emptyCells
This property is of type String.

cssFloat
This property is of type String.

font
This property is of type String.

fontFamily
This property is of type String.

fontSize
This property is of type String.

fontSizeAdjust
This property is of type String.

fontStretch
This property is of type String.

436

E.5: Document Object Model CSS

fontStyle
This property is of type String.

fontVariant
This property is of type String.

fontWeight
This property is of type String.

height
This property is of type String.

left
This property is of type String.

letterSpacing
This property is of type String.

lineHeight
This property is of type String.

listStyle
This property is of type String.

listStyleImage
This property is of type String.

listStylePosition
This property is of type String.

listStyleType
This property is of type String.

margin
This property is of type String.

marginTop
This property is of type String.

marginRight
This property is of type String.

marginBottom
This property is of type String.

marginLeft
This property is of type String.

markerOffset
This property is of type String.

marks
This property is of type String.

maxHeight
This property is of type String.

maxWidth
This property is of type String.

minHeight
This property is of type String.

minWidth
This property is of type String.

orphans
This property is of type String.

437

E.5: Document Object Model CSS

outline
This property is of type String.

outlineColor
This property is of type String.

outlineStyle
This property is of type String.

outlineWidth
This property is of type String.

overflow
This property is of type String.

padding
This property is of type String.

paddingTop
This property is of type String.

paddingRight
This property is of type String.

paddingBottom
This property is of type String.

paddingLeft
This property is of type String.

page
This property is of type String.

pageBreakAfter
This property is of type String.

pageBreakBefore
This property is of type String.

pageBreakInside
This property is of type String.

pause
This property is of type String.

pauseAfter
This property is of type String.

pauseBefore
This property is of type String.

pitch
This property is of type String.

pitchRange
This property is of type String.

playDuring
This property is of type String.

position
This property is of type String.

quotes
This property is of type String.

richness
This property is of type String.

438

E.5: Document Object Model CSS

right
This property is of type String.

size
This property is of type String.

speak
This property is of type String.

speakHeader
This property is of type String.

speakNumeral
This property is of type String.

speakPunctuation
This property is of type String.

speechRate
This property is of type String.

stress
This property is of type String.

tableLayout
This property is of type String.

textAlign
This property is of type String.

textDecoration
This property is of type String.

textIndent
This property is of type String.

textShadow
This property is of type String.

textTransform
This property is of type String.

top
This property is of type String.

unicodeBidi
This property is of type String.

verticalAlign
This property is of type String.

visibility
This property is of type String.

voiceFamily
This property is of type String.

volume
This property is of type String.

whiteSpace
This property is of type String.

widows
This property is of type String.

width
This property is of type String.

439

E.5: Document Object Model CSS

wordSpacing
This property is of type String.

zIndex
This property is of type String.

E.6: Document Object Model Events
Object EventTarget

The EventTarget object has the following methods:
addEventListener(type, listener, useCapture)

This method returns a void. The type parameter is of type DOMString . The listener
parameter is of type EventListener. The useCapture parameter is of type boolean.

removeEventListener(type, listener, useCapture)
This method returns a void. The type parameter is of type DOMString . The listener
parameter is of type EventListener. The useCapture parameter is of type boolean.

dispatchEvent(evt)
This method returns a boolean. The evt parameter is of type Event.

Object EventListener
This is an ECMAScript function reference. This method returns a void. The parameter is of type
Event.

Class Event
The Event class has the following constants:

Event.CAPTURING_PHASE
This constant is of type short and its value is 1.

Event.AT_TARGET
This constant is of type short and its value is 2.

Event.BUBBLING_PHASE
This constant is of type short and its value is 3.

Object Event
The Event object has the following properties:

type
This property is of type String.

target
This property is of type EventTarget.

currentNode
This property is of type Node.

eventPhase
This property is of type short.

bubbles
This property is of type boolean.

cancelable
This property is of type boolean.

timeStamp
This property is of type Date.

440

E.6: Document Object Model Events

The Event object has the following methods:
stopPropagation()

This method returns a void.
preventDefault()

This method returns a void.
initEvent(eventTypeArg, canBubbleArg, cancelableArg)

This method returns a void. The eventTypeArg parameter is of type DOMString . The
canBubbleArg parameter is of type boolean. The cancelableArg parameter is of type
boolean.

Object DocumentEvent
The DocumentEvent object has the following methods:

createEvent(eventType)
This method returns a Event. The eventType parameter is of type DOMString .

Object UIEvent
UIEvent has the all the properties and methods of Event as well as the properties and methods
defined below.
The UIEvent object has the following properties:

view
This property is of type AbstractView.

detail
This property is of type long.

The UIEvent object has the following methods:
initUIEvent(typeArg, canBubbleArg, cancelableArg, viewArg, detailArg)

This method returns a void. The typeArg parameter is of type DOMString . The
canBubbleArg parameter is of type boolean. The cancelableArg parameter is of type
boolean. The viewArg parameter is of type views::AbstractView. The detailArg
parameter is of type long.

Object MouseEvent
MouseEvent has the all the properties and methods of UIEvent as well as the properties and
methods defined below.
The MouseEvent object has the following properties:

screenX
This property is of type long.

screenY
This property is of type long.

clientX
This property is of type long.

clientY
This property is of type long.

ctrlKey
This property is of type boolean.

shiftKey
This property is of type boolean.

altKey
This property is of type boolean.

441

E.6: Document Object Model Events

metaKey
This property is of type boolean.

button
This property is of type short.

relatedNode
This property is of type Node.

The MouseEvent object has the following methods:
initMouseEvent(typeArg, canBubbleArg, cancelableArg, viewArg, detailArg, screenXArg,
screenYArg, clientXArg, clientYArg, ctrlKeyArg, altKeyArg, shiftKeyArg, metaKeyArg,
buttonArg, relatedNodeArg)

This method returns a void. The typeArg parameter is of type DOMString . The
canBubbleArg parameter is of type boolean. The cancelableArg parameter is of type
boolean. The viewArg parameter is of type views::AbstractView. The detailArg
parameter is of type long. The screenXArg parameter is of type long. The screenYArg
parameter is of type long. The clientXArg parameter is of type long. The clientYArg
parameter is of type long. The ctrlKeyArg parameter is of type boolean. The altKeyArg
parameter is of type boolean. The shiftKeyArg parameter is of type boolean. The
metaKeyArg parameter is of type boolean. The buttonArg parameter is of type unsigned
short. The relatedNodeArg parameter is of type Node.

Object MutationEvent
MutationEvent has the all the properties and methods of Event as well as the properties and
methods defined below.
The MutationEvent object has the following properties:

relatedNode
This property is of type Node.

prevValue
This property is of type String.

newValue
This property is of type String.

attrName
This property is of type String.

The MutationEvent object has the following methods:
initMutationEvent(typeArg, canBubbleArg, cancelableArg, relatedNodeArg,
prevValueArg, newValueArg, attrNameArg)

This method returns a void. The typeArg parameter is of type DOMString . The
canBubbleArg parameter is of type boolean. The cancelableArg parameter is of type
boolean. The relatedNodeArg parameter is of type Node. The prevValueArg parameter
is of type DOMString . The newValueArg parameter is of type DOMString . The
attrNameArg parameter is of type DOMString .

The following example will add an ECMA Script based EventListener to the Node ’exampleNode’:

442

E.6: Document Object Model Events

 // Given the Node ’exampleNode’

 // Define the EventListener function
 function clickHandler(evt)
 {
 // Function contents
 }

 // The following line will add a non-capturing ’click’ listener
 // to ’exampleNode’.
 exampleNode.addEventListener("click", clickHandler, false);

E.7: Document Object Model Traversal
Object NodeIterator

The NodeIterator object has the following properties:
root

This property is of type Node.
whatToShow

This property is of type int .
filter

This property is of type NodeFilter.
expandEntityReferences

This property is of type boolean.
The NodeIterator object has the following methods:

nextNode()
This method returns a Node.

previousNode()
This method returns a Node.

detach()
This method returns a void.

Object NodeFilter
This is an ECMAScript function reference. This method returns a short. The parameter is of type
Node.

Object TreeWalker
The TreeWalker object has the following properties:

root
This property is of type Node.

whatToShow
This property is of type int .

filter
This property is of type NodeFilter.

expandEntityReferences
This property is of type boolean.

currentNode
This property is of type Node.

443

E.7: Document Object Model Traversal

The TreeWalker object has the following methods:
parentNode()

This method returns a Node.
firstChild()

This method returns a Node.
lastChild()

This method returns a Node.
previousSibling()

This method returns a Node.
nextSibling()

This method returns a Node.
previousNode()

This method returns a Node.
nextNode()

This method returns a Node.
Object DocumentTraversal

The DocumentTraversal object has the following methods:
createNodeIterator(root, whatToShow, filter, entityReferenceExpansion)

This method returns a NodeIterator. The root parameter is of type Node. The
whatToShow parameter is of type unsigned long. The filter parameter is of type
NodeFilter. The entityReferenceExpansion parameter is of type boolean.

createTreeWalker(root, whatToShow, filter, entityReferenceExpansion)
This method returns a TreeWalker. The root parameter is of type Node. The
whatToShow parameter is of type unsigned long. The filter parameter is of type
NodeFilter. The entityReferenceExpansion parameter is of type boolean.

E.8: Document Object Model Range
Class Range

The Range class has the following constants:
Range.START_TO_START

This constant is of type short and its value is 0.
Range.START_TO_END

This constant is of type short and its value is 1.
Range.END_TO_END

This constant is of type short and its value is 2.
Range.END_TO_START

This constant is of type short and its value is 3.
Object Range

The Range object has the following properties:
startContainer

This property is of type Node.
startOffset

This property is of type long.

444

E.8: Document Object Model Range

endContainer
This property is of type Node.

endOffset
This property is of type long.

collapsed
This property is of type boolean.

commonAncestorContainer
This property is of type Node.

The Range object has the following methods:
setStart(refNode, offset)

This method returns a void. The refNode parameter is of type Node. The offset parameter
is of type long.

setEnd(refNode, offset)
This method returns a void. The refNode parameter is of type Node. The offset parameter
is of type long.

setStartBefore(refNode)
This method returns a void. The refNode parameter is of type Node.

setStartAfter(refNode)
This method returns a void. The refNode parameter is of type Node.

setEndBefore(refNode)
This method returns a void. The refNode parameter is of type Node.

setEndAfter(refNode)
This method returns a void. The refNode parameter is of type Node.

collapse(toStart)
This method returns a void. The toStart parameter is of type boolean.

selectNode(refNode)
This method returns a void. The refNode parameter is of type Node.

selectNodeContents(refNode)
This method returns a void. The refNode parameter is of type Node.

compareBoundaryPoints(how, sourceRange)
This method returns a short. The how parameter is of type unsigned short. The
sourceRange parameter is of type Range.

deleteContents()
This method returns a void.

extractContents()
This method returns a DocumentFragment.

cloneContents()
This method returns a DocumentFragment.

insertNode(newNode)
This method returns a void. The newNode parameter is of type Node.

surroundContents(newParent)
This method returns a void. The newParent parameter is of type Node.

cloneRange()
This method returns a Range.

toString()
This method returns a DOMString .

445

E.8: Document Object Model Range

detach()
This method returns a void.

Object DocumentRange
The DocumentRange object has the following methods:

createRange()
This method returns a Range.

446

E.8: Document Object Model Range

Acknowledgments
Many people contributed to this specification, including members of the DOM Working Group and the
DOM Interest Group. We especially thank the following:

Lauren Wood (SoftQuad Software Inc., chair), Arnaud Le Hors (W3C, W3C staff contact), Andrew
Watson (Object Management Group), Andy Heninger (IBM), Ben Chang (Oracle), Bill Smith (Sun), Bill
Shea (Merrill Lynch), Bob Sutor (IBM), Chris Lovett (Microsoft), Chris Wilson (Microsoft), David
Brownell (Sun), David Singer (IBM), Don Park (invited), Eric Vasilik (Microsoft), Gavin Nicol (INSO),
Ian Jacobs (W3C), James Clark (invited), James Davidson (Sun), Jared Sorensen (Novell), Joe Kesselman
(IBM), Joe Lapp (webMethods), Jonathan Robie (Texcel Research and Software AG), Kim
Adamson-Sharpe (SoftQuad Software Inc.), Laurence Cable (Sun), Mark Davis (IBM), Mark Scardina
(Oracle), Martin Dürst (W3C), Mike Champion (ArborText and Software AG), Miles Sabin (Cromwell
Media), Patti Lutsky (Arbortext), Paul Grosso (Arbortext), Peter Sharpe (SoftQuad Software Inc.), Phil
Karlton (Netscape), Philippe Le Hégaret (W3C), Ramesh Lekshmynarayanan (Merrill Lynch), Ray
Whitmer (iMall and Excite@Home), Rich Rollman (Microsoft), Rick Gessner (Netscape), Scott Isaacs
(Microsoft), Sharon Adler (INSO), Steve Byrne (JavaSoft), Tim Bray (invited), Tom Pixley (Netscape),
Vidur Apparao (Netscape), Vinod Anupam (Lucent).

Thanks to all those who have helped to improve this specification by sending suggestions and corrections.

Thanks to Joe English, author of cost for helping so much in allowing us to develop a framework that
made the production of this specification possible.

Thanks to Jan Kärrman, author of html2ps for helping so much in creating the PostScript version of the
specification.

447

Acknowledgments

http://www.tdb.uu.se/~jan/html2ps.html
http://www.flightlab.com/cost

448

Acknowledgments

Glossary
Editors

Arnaud Le Hors, W3C
Robert S. Sutor, IBM Research (for DOM Level 1)

Several of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions for more information.

16-bit unit
The base unit of a DOMString [p.21] . This indicates that indexing on a DOMString occurs in
units of 16 bits. This must not be misunderstood to mean that a DOMString can store arbitrary
16-bit units. A DOMString is a character string encoded in UTF-16; this means that the restrictions
of UTF-16 as well as the other relevant restrictions on character strings must be maintained. A single
character, for example in the form of a numeric character reference, may correspond to one or two
16-bit units.

ancestor
An ancestor node of any node A is any node above A in a tree model of a document, where "above"
means "toward the root."

API
An API is an application programming interface, a set of functions or methods used to access some
functionality.

child
A child is an immediate descendant node of a node.

client application
A [client] application is any software that uses the Document Object Model programming interfaces
provided by the hosting implementation to accomplish useful work. Some examples of client
applications are scripts within an HTML or XML document.

COM
COM is Microsoft’s Component Object Model [COM], a technology for building applications from
binary software components.

content model
The content model is a simple grammar governing the allowed types of the child elements and the
order in which they appear. See Element Content in XML [XML].

context
A contextspecifies an access pattern (or path): a set of interfaces which give you a way to interact
with a model. For example, imagine a model with different colored arcs connecting data nodes. A
context might be a sheet of colored acetate that is placed over the model allowing you a partial view
of the total information in the model.

convenience
A convenience method is an operation on an object that could be accomplished by a program
consisting of more basic operations on the object. Convenience methods are usually provided to
make the API easier and simpler to use or to allow specific programs to create more optimized
implementations for common operations. A similar definition holds for a convenience property.

449

Glossary

http://www.w3.org/TR/REC-xml#sec-element-content

cooked model
A model for a document that represents the document after it has been manipulated in some way. For
example, any combination of any of the following transformations would create a cooked model:

1. Expansion of internal text entities.
2. Expansion of external entities.
3. Model augmentation with style-specified generated text.
4. Execution of style-specified reordering.
5. Execution of scripts.

A browser might only be able to provide access to a cooked model, while an editor might provide
access to a cooked or the initial structure model (also known as the uncooked model) for a document.

CORBA
CORBA is the Common Object Request Broker Architecture from the OMG [CORBA]. This
architecture is a collection of objects and libraries that allow the creation of applications containing
objects that make and receive requests and responses in a distributed environment.

cursor
A cursoris an object representation of a node. It may possess information about context and the path
traversed to reach the node.

data model
A data model is a collection of descriptions of data structures and their contained fields, together
with the operations or functions that manipulate them.

deprecation
When new releases of specifications are released, some older features may be marked as being
deprecated. This means that new work should not use the features and that although they are
supported in the current release, they may not be supported or available in future releases.

descendant
A descendant node of any node A is any node below A in a tree model of a document, where "above"
means "toward the root."

DOM Level 0
The term "DOM Level 0" refers to a mix (not formally specified) of HTML document functionalities
offered by Netscape Navigator version 3.0 and Microsoft Internet Explorer version 3.0. In some
cases, attributes or methods have been included for reasons of backward compatibility with "DOM
Level 0".

ECMAScript
The programming language defined by the ECMA-262 standard [ECMAScript]. As stated in the
standard, the originating technology for ECMAScript was JavaScript [JavaScript]. Note that in the
ECMAScript binding, the word "property" is used in the same sense as the IDL term "attribute."

element
Each document contains one or more elements, the boundaries of which are either delimited by
start-tags and end-tags, or, for empty elements by an empty-element tag. Each element has a type,
identified by name, and may have a set of attributes. Each attribute has a name and a value. See
Logical Structures in XML [XML].

event propagation, also known as event bubbling
This is the idea that an event can affect one object and a set of related objects. Any of the potentially
affected objects can block the event or substitute a different one (upward event propagation). The
event is broadcast from the node at which it originates to every parent node.

450

Glossary

http://www.w3.org/TR/REC-xml#sec-logical-struct
http://www.omg.org/

equivalence
Two nodes are equivalent if they have the same node type and same node name. Also, if the nodes
contain data, that must be the same. Finally, if the nodes have attributes the collection of attribute
names must be the same and the attributes corresponding by name must be equivalent as nodes.
Two nodes are deeply equivalent if they are equivalent, their child node lists are equivalent
NodeList [p.48] objects, and their attributes are deeply equivalent.
Two NodeList [p.48] objects are equivalent if they have the same length, and the nodes
corresponding by index are deeply equivalent.
Two NamedNodeMap [p.49] objects are equivalent if they have the same length, they have same
collection of names, and the nodes corresponding by name in the maps are deeply equivalent.
Two DocumentType [p.69] nodes are equivalent if they are equivalent as nodes, have the same
names, and have equivalent entities and attributes NamedNodeMap [p.49] objects.

information item
An information item is an abstract representation of some component of an XML document. See the
[Infoset] for details.

hosting implementation
A [hosting] implementation is a software module that provides an implementation of the DOM
interfaces so that a client application can use them. Some examples of hosting implementations are
browsers, editors and document repositories.

HTML
The HyperText Markup Language (HTML) is a simple markup language used to create hypertext
documents that are portable from one platform to another. HTML documents are SGML documents
with generic semantics that are appropriate for representing information from a wide range of
applications. [HTML4.0]

IDL
An Interface Definition Language (IDL) is used to define the interfaces for accessing and operating
upon objects. Examples of IDLs are the Object Management Group’s IDL [CORBA], Microsoft’s
IDL [MIDL], and Sun’s Java IDL [JavaIDL].

implementor
Companies, organizations, and individuals that claim to support the Document Object Model as an
API for their products.

inheritance
In object-oriented programming, the ability to create new classes (or interfaces) that contain all the
methods and properties of another class (or interface), plus additional methods and properties. If class
(or interface) D inherits from class (or interface) B, then D is said to be derived from B. B is said to
be a base class (or interface) for D. Some programming languages allow for multiple inheritance, that
is, inheritance from more than one class or interface.

initial structure model
Also known as the raw structure model or the uncooked model, this represents the document before it
has been modified by entity expansions, generated text, style-specified reordering, or the execution of
scripts. In some implementations, this might correspond to the "initial parse tree" for the document, if
it ever exists. Note that a given implementation might not be able to provide access to the initial
structure model for a document, though an editor probably would.

interface
An interface is a declaration of a set of methods with no information given about their
implementation. In object systems that support interfaces and inheritance, interfaces can usually

451

Glossary

inherit from one another.
language binding

A programming language binding for an IDL specification is an implementation of the interfaces in
the specification for the given language. For example, a Java language binding for the Document
Object Model IDL specification would implement the concrete Java classes that provide the
functionality exposed by the interfaces.

local name
A local name is the local part of a qualified name. This is called the local part in Namespaces in
XML [Namespaces].

method
A method is an operation or function that is associated with an object and is allowed to manipulate
the object’s data.

model
A model is the actual data representation for the information at hand. Examples are the structural
model and the style model representing the parse structure and the style information associated with a
document. The model might be a tree, or a directed graph, or something else.

namespace prefix
A namespace prefix is a string that associates an element or attribute name with a namespace URI in
XML. See namespace prefix in Namespaces in XML [Namespaces].

namespace URI
A namespace URI is a URI that identifies an XML namespace. This is called the namespace name in
Namespaces in XML [Namespaces].

object model
An object model is a collection of descriptions of classes or interfaces, together with their member
data, member functions, and class-static operations.

parent
A parent is an immediate ancestor node of a node.

qualified name
A qualified name is the name of an element or attribute defined as the concatenation of a local name
(as defined in this specification), optionally preceded by a namespace prefix and colon character. See
Qualified Names in Namespaces in XML [Namespaces].

root node
The root node is the unique node that is not a child of any other node. All other nodes are children or
other descendents of the root node. See Well-Formed XML Documents in XML [XML].

readonly node
A readonly node is a node that is immutable. This means its list of children, its content, and its
attributes, when it is an element, cannot be changed in any way. However, a readonly node can
possibly be moved, when it is not itself contained in a readonly node.

sibling
Two nodes are siblings if they have the same parent node.

string comparison
When string matching is required, it is to occur as though the comparison was between 2 sequences
of code points from the Unicode 2.0 standard.

tag valid document
A document is tag valid if all begin and end tags are properly balanced and nested.

452

Glossary

http://www.w3.org/TR/REC-xml#sec-well-formed
http://www.w3.org/TR/REC-xml-names/#ns-qualnames
http://www.w3.org/TR/REC-xml-names/#dt-NSName
http://www.w3.org/TR/REC-xml-names/#dt-prefix
http://www.w3.org/TR/REC-xml-names/#dt-localname

type valid document
A document is type valid if it conforms to an explicit DTD.

uncooked model
See initial structure model.

well-formed document
A document is well-formed if it is tag valid and entities are limited to single elements (i.e., single
sub-trees).

XML
Extensible Markup Language (XML) is an extremely simple dialect of SGML. The goal is to enable
generic SGML to be served, received, and processed on the Web in the way that is now possible with
HTML. XML has been designed for ease of implementation and for interoperability with both SGML
and HTML. [XML]

XML name
See XML name in the XML specification [XML].

XML namespace
An XML namespace is a collection of names, identified by a URI reference [RFC2396], which are
used in XML documents as element types and attribute names. [Namespaces]

453

Glossary

http://www.w3.org/TR/REC-xml#NT-Name

454

Glossary

References
Charmod

W3C (World Wide Web Consortium) Character Model for the World Wide Web. See
http://www.w3.org/TR/charmod.

COM
Microsoft The Component Object Model. See http://www.microsoft.com/com.

CORBA
OMG (Object Management Group) The Common Object Request Broker: Architecture and
Specification. See http://www.omg.org/library/c2indx.html.

CSS2
W3C (World Wide Web Consortium) Cascading Style Sheets, level 2 Specification. See
http://www.w3.org/TR/1998/REC-CSS2-19980512.

DOM-Level-1
W3C (World Wide Web Consortium) DOM Level 1 Specification. See
http://www.w3.org/TR/REC-DOM-Level-1.

ECMAScript
ECMA (European Computer Manufacturers Association) ECMAScript Language Specification. See
http://www.ecma.ch/stand/ecma-262.htm.

HTML4.0
W3C (World Wide Web Consortium) HTML 4.0 Specification. See
http://www.w3.org/TR/1998/REC-html40-19980424.

Infoset
W3C (World Wide Web Consortium) XML Information Set. See http://www.w3.org/TR/xml-infoset.

ISO/IEC 10646
ISO (International Organization for Standardization). ISO/IEC 10646-1993 (E). Information
technology 8212; Universal212; Universal Multiple-Octet Coded Character Set (UCS) 8212; Part
1:212; Part 1: Architecture and Basic Multilingual Plane. [Geneva]: International Organization for
Standardization, 1993 (plus amendments AM 1 through AM 7).

Java
Sun The Java Language Specification. See http://java.sun.com/docs/books/jls.

JavaIDL
Sun Java IDL. See http://java.sun.com/products/jdk/1.2/docs/guide/idl.

JavaScript
Netscape JavaScript Resources. See http://developer.netscape.com/tech/javascript/resources.html.

ContentTypes
Registered Content Types. See ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/.

MIDL
Microsoft MIDL Language Reference. See
http://msdn.microsoft.com/library/psdk/midl/mi-laref_1r1h.htm.

Namespaces
W3C (World Wide Web Consortium) Namespaces in XML. See
http://www.w3.org/TR/REC-xml-names.

RFC2396
IETF (Internet Engineering Task Force) RFC 2396: Uniform Resource Identifiers (URI): Generic
Syntax, eds. T. Berners-Lee, R. Fielding, L. Masinter. August 1998.

455

References

http://www.w3.org/TR/REC-xml-names
http://msdn.microsoft.com/library/psdk/midl/mi-laref_1r1h.htm
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/
http://developer.netscape.com/tech/javascript/resources.html
http://java.sun.com/products/jdk/1.2/docs/guide/idl
http://java.sun.com/docs/books/jls
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.ecma.ch/stand/ecma-262.htm
http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/1998/REC-CSS2-19980512
http://www.omg.org/library/c2indx.html
http://www.microsoft.com/com
http://www.w3.org/TR/charmod

Unicode
The Unicode Consortium. The Unicode Standard, Version 3.0. To be published in 2000. See Unicode
3.0.

XHTML10
W3C (World Wide Web Consortium) XHTML 1.0: Extensible HyperText Markup Language, A
Reformulation of HTML 4.0 in XML 1.0. See http://www.w3.org/TR/xhtml1.

XML
W3C (World Wide Web Consortium) Extensible Markup Language (XML) 1.0. See
http://www.w3.org/TR/REC-xml.

XML-StyleSheet
W3C (World Wide Web Consortium) Associating Style Sheets with XML documents Version 1.0. See
http://www.w3.org/TR/xml-stylesheet.

456

References

http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xhtml1
http://www.unicode.org/unicode/standard/versions/Unicode3.0.html
http://www.unicode.org/unicode/standard/versions/Unicode3.0.html

Objects Index

Document Object Model Core

Attr, 57 CDATASection, 69 CharacterData, 53

Comment, 68 DOMException, 24 DOMImplementation, 26

DOMString, 21 DOMTimeStamp, 22 Document, 29

DocumentFragment, 29 DocumentType, 69 Element, 59

Entity, 71 EntityReference, 72 ExceptionCode, 25

NamedNodeMap, 49 Node, 39 NodeList, 48

Notation, 71 ProcessingInstruction, 73 Text, 67

Document Object Model HTML

457

Objects Index

HTMLAnchorElement, 105 HTMLAppletElement, 110 HTMLAreaElement, 112

HTMLBRElement, 102 HTMLBaseElement, 85 HTMLBaseFontElement, 103

HTMLBodyElement, 86 HTMLButtonElement, 97 HTMLCollection, 77

HTMLDListElement, 100
HTMLDOMImplementation,
76

HTMLDirectoryElement, 100

HTMLDivElement, 101 HTMLDocument, 78 HTMLElement, 82

HTMLFieldSetElement, 98 HTMLFontElement, 103 HTMLFormElement, 87

HTMLFrameElement, 123 HTMLFrameSetElement, 123 HTMLHRElement, 104

HTMLHeadElement, 83 HTMLHeadingElement, 102 HTMLHtmlElement, 83

HTMLIFrameElement, 124 HTMLImageElement, 106 HTMLInputElement, 92

HTMLIsIndexElement, 86 HTMLLIElement, 101 HTMLLabelElement, 98

HTMLLegendElement, 98 HTMLLinkElement, 83 HTMLMapElement, 111

HTMLMenuElement, 100 HTMLMetaElement, 85 HTMLModElement, 104

HTMLOListElement, 99 HTMLObjectElement, 108 HTMLOptGroupElement, 91

HTMLOptionElement, 91 HTMLParagraphElement, 101 HTMLParamElement, 110

HTMLPreElement, 102 HTMLQuoteElement, 102 HTMLScriptElement, 113

HTMLSelectElement, 88 HTMLStyleElement, 86
HTMLTableCaptionElement,
117

HTMLTableCellElement,
121

HTMLTableColElement, 117 HTMLTableElement, 113

HTMLTableRowElement,
120

HTMLTableSectionElement,
118

HTMLTextAreaElement, 95

HTMLTitleElement, 84 HTMLUListElement, 99

Document Object Model Views

AbstractView, 127 DocumentView, 128

Document Object Model StyleSheets

DocumentStyle, 133 LinkStyle, 133 MediaList, 131

StyleSheet, 129 StyleSheetList, 130

458

Document Object Model Views

Document Object Model CSS

CSS2Azimuth, 165
CSS2BackgroundPosition,
167

CSS2BorderSpacing, 170

CSS2CounterIncrement, 173 CSS2CounterReset, 173 CSS2Cursor, 174

CSS2FontFaceSrc, 178 CSS2FontFaceWidths, 178 CSS2PageSize, 179

CSS2PlayDuring, 175 CSS2Properties, 182 CSS2TextShadow, 176

CSSCharsetRule, 144 CSSFontFaceRule, 142 CSSImportRule, 143

CSSMediaRule, 140 CSSPageRule, 143 CSSPrimitiveValue, 149

CSSRule, 138 CSSRuleList, 138 CSSStyleDeclaration, 145

CSSStyleRule, 140 CSSStyleSheet, 136 CSSUnknownRule, 144

CSSValue, 148 CSSValueList, 156 Counter, 157

DOMImplementationCSS,
160

DocumentCSS, 159
ElementCSSInlineStyle,
161

RGBColor, 156 Rect, 157 ViewCSS, 158

Document Object Model Events

DocumentEvent, 231 Event, 227 EventException, 230

EventExceptionCode, 230 EventListener, 226 EventTarget, 224

MouseEvent, 234 MutationEvent, 239 UIEvent, 232

Document Object Model Traversal

DocumentTraversal, 263 NodeFilter, 256 NodeIterator, 254

TreeWalker, 260

Document Object Model Range

DocumentRange, 289 Range, 278 RangeException, 290

RangeExceptionCode, 290

459

Document Object Model CSS

460

Document Object Model Range

Index
abbr 122 AbstractView 127 accept 93

acceptCharset 88 acceptNode 260 accessKey 93, 95, 97, 98, 99, 105, 112

action 88 add 90 addEventListener 224

align 93, 99, 101, 101, 102, 104, 107, 108,
110, 114, 117, 118, 118, 120, 122, 125

aLink 87 alt 93, 107, 111, 112

altKey 235 anchors 79 append 132

appendChild 44 appendData 55 applets 79

archive 108, 111 areas 112 AT_TARGET 228

Attr 57 ATTRIBUTE_NODE 41 attributes 42

attrName 239 axis 122 azimuth 190

azimuthType 165

background 87, 190 backgroundAttachment 190 backgroundColor 190

backgroundImage 190 backgroundPosition 191 backgroundRepeat 191

BAD_BOUNDARYPOINTS_ERR 290 behind 165 bgColor 87, 114, 120, 122

blue 157 blur 176, 90, 94, 96, 106 body 79

border 107, 108, 114, 191 borderBottom 191 borderBottomColor 192

borderBottomStyle 192 borderBottomWidth 192 borderCollapse 192

borderColor 193 borderLeft 193 borderLeftColor 193

borderLeftStyle 193 borderLeftWidth 194 borderRight 194

borderRightColor 194 borderRightStyle 194 borderRightWidth 195

borderSpacing 195 borderStyle 195 borderTop 195

borderTopColor 196 borderTopStyle 196 borderTopWidth 196

borderWidth 196 bottom 157, 197 bubbles 228

BUBBLING_PHASE 228 button 235

cancelable 228 caption 114 captionSide 197

CAPTURING_PHASE 228 CDATA_SECTION_NODE 41 CDATASection 69

cellIndex 122 cellPadding 114 cells 120

cellSpacing 114 ch 118, 118, 120, 122 CharacterData 53

charset 84, 105, 113 CHARSET_RULE 139 checked 93

childNodes 42 chOff 118, 118, 120, 122 cite 102, 104

461

Index

className 82 clear 103, 197 click 95

clientX 235 clientY 235 clip 197

cloneContents 281 cloneNode 45 cloneRange 281

close 80 code 108, 111 codeBase 108, 111

codeType 108 collapse 282 collapsed 280

color 103, 103, 176, 198 cols 96, 123 colSpan 122

Comment 68 COMMENT_NODE 41 commonAncestorContainer 280

compact 99, 100, 100, 100, 101 compareBoundaryPoints 282 content 85, 198

cookie 79 coords 105, 112 Counter 157

counterIncrement 198 counterReset 198 createAttribute 31

createAttributeNS 31 createCaption 115 createCDATASection 32

createComment 33 createCSSStyleSheet 160 createDocument 26

createDocumentFragment 33 createDocumentType 27 createElement 33

createElementNS 34 createEntityReference 35 createEvent 231

createHTMLDocument 77 createNodeIterator 264 createProcessingInstruction 35

createRange 290 createTextNode 36 createTFoot 115

createTHead 116 createTreeWalker 265 CSS2Azimuth 165

CSS2BackgroundPosition 167 CSS2BorderSpacing 170 CSS2CounterIncrement 173

CSS2CounterReset 173 CSS2Cursor 174 CSS2FontFaceSrc 178

CSS2FontFaceWidths 178 CSS2PageSize 179 CSS2PlayDuring 175

CSS2Properties 182 CSS2TextShadow 176 CSS_ATTR 150

CSS_CM 150 CSS_COUNTER 150 CSS_CUSTOM 148

CSS_DEG 150 CSS_DIMENSION 150 CSS_EMS 150

CSS_EXS 150 CSS_GRAD 150 CSS_HZ 150

CSS_IDENT 150 CSS_IN 150 CSS_INHERIT 148

CSS_KHZ 150 CSS_MM 150 CSS_MS 150

CSS_NUMBER 150 CSS_PC 150 CSS_PERCENTAGE 150

CSS_PRIMITIVE_VALUE 148 CSS_PT 150 CSS_PX 150

CSS_RAD 150 CSS_RECT 150 CSS_RGBCOLOR 150

CSS_S 150 CSS_STRING 150 CSS_UNKNOWN 150

CSS_URI 150 CSS_VALUE_LIST 148 CSSCharsetRule 144

cssFloat 199 CSSFontFaceRule 142 CSSImportRule 143

CSSMediaRule 140 CSSPageRule 143 CSSPrimitiveValue 149

CSSRule 138 CSSRuleList 138 cssRules 136, 141

462

Index

CSSStyleDeclaration 145 CSSStyleRule 140 CSSStyleSheet 136

cssText 139, 145, 149 CSSUnknownRule 144 CSSValue 148

CSSValueList 156 ctrlKey 235 cue 199

cueAfter 199 cueBefore 199 currentNode 228, 261

cursor 200

data 54, 73, 109 dateTime 105 declare 109

defaultChecked 93 defaultSelected 91 defaultValue 93, 96

defaultView 128 defer 113 delete 132

deleteCaption 116 deleteCell 121 deleteContents 282

deleteData 55 deleteRow 116, 119 deleteRule 136, 141

deleteTFoot 116 deleteTHead 116 detach 255, 283

detail 232 dir 83 direction 200

disabled 84, 86, 89, 91, 92, 93, 96, 97, 129 dispatchEvent 225 display 200

doctype 30 Document 29 document 128

DOCUMENT_FRAGMENT_NODE 41 DOCUMENT_NODE 41 DOCUMENT_TYPE_NODE 41

DocumentCSS 159 documentElement 30 DocumentEvent 231

DocumentFragment 29 DocumentRange 289 DocumentStyle 133

DocumentTraversal 263 DocumentType 69 DocumentView 128

domain 79 DOMException 24 DOMImplementation 26

DOMImplementationCSS 160 DOMString 21 DOMSTRING_SIZE_ERR 25

DOMTimeStamp 22

Element 59 ELEMENT_NODE 41 ElementCSSInlineStyle 161

elements 88 elevation 200 contentDocument 109, 123, 125

emptyCells 201 encoding 144 enctype 88

END_TO_END 279 END_TO_START 279 endContainer 280

endOffset 280 entities 70 Entity 71

ENTITY_NODE 41
ENTITY_REFERENCE_NODE
41

EntityReference 72

Event 227 event 113 EventException 230

EventListener 226 eventPhase 229 EventTarget 224

expandEntityReferences 255, 261 extractContents 283

463

Index

face 103, 103 filter 255, 261 FILTER_ACCEPT 257

FILTER_REJECT 257 FILTER_SKIP 257 firstChild 42, 261

focus 90, 95, 97, 106 font 201 FONT_FACE_RULE 139

fontFaceName 178 fontFamily 201 fontSize 201

fontSizeAdjust 202 fontStretch 202 fontStyle 202

fontVariant 202 fontWeight 203
form 86, 89, 92, 94, 96, 97, 98, 98, 99,
109

format 178 forms 79 frame 115

frameBorder 124, 125

getAngleValue 166 getAttribute 60 getAttributeNode 61

getAttributeNodeNS 61 getAttributeNS 60 getComputedStyle 158

getCounterValue 152 getElementById 36 getElementsByName 80

getElementsByTagName 37, 61
getElementsByTagNameNS 37,
62

getFloatValue 153

getHeightSize 180 getHorizontalPosition 168 getHorizontalSpacing 171

getNamedItem 50 getNamedItemNS 50 getOverrideStyle 159

getPropertyCSSValue 146 getPropertyPriority 146 getPropertyValue 146

getRectValue 153 getRGBColorValue 153 getStringValue 154

getVerticalPosition 168 getVerticalSpacing 171 getWidth 180

green 157

handleEvent 227 hasAttribute 62 hasAttributeNS 63

hasChildNodes 45 hasFeature 28 headers 122

height 107, 109, 111, 122, 125, 203 heightType 180 HIERARCHY_REQUEST_ERR 25

horizontal 176 horizontalIdentifier 168 horizontalType 168, 171

href 84, 85, 105, 112, 130, 143 hreflang 84, 105 hspace 107, 109, 111

HTMLAnchorElement 105 HTMLAppletElement 110 HTMLAreaElement 112

HTMLBaseElement 85 HTMLBaseFontElement 103 HTMLBodyElement 86

HTMLBRElement 102 HTMLButtonElement 97 HTMLCollection 77

HTMLDirectoryElement 100 HTMLDivElement 101 HTMLDListElement 100

HTMLDocument 78 HTMLDOMImplementation 76 HTMLElement 82

HTMLFieldSetElement 98 HTMLFontElement 103 htmlFor 98, 113

HTMLFormElement 87 HTMLFrameElement 123 HTMLFrameSetElement 123

HTMLHeadElement 83 HTMLHeadingElement 102 HTMLHRElement 104

464

Index

HTMLHtmlElement 83 HTMLIFrameElement 124 HTMLImageElement 106

HTMLInputElement 92 HTMLIsIndexElement 86 HTMLLabelElement 98

HTMLLegendElement 98 HTMLLIElement 101 HTMLLinkElement 83

HTMLMapElement 111 HTMLMenuElement 100 HTMLMetaElement 85

HTMLModElement 104 HTMLObjectElement 108 HTMLOListElement 99

HTMLOptGroupElement 91 HTMLOptionElement 91 HTMLParagraphElement 101

HTMLParamElement 110 HTMLPreElement 102 HTMLQuoteElement 102

HTMLScriptElement 113 HTMLSelectElement 88 HTMLStyleElement 86

HTMLTableCaptionElement 117 HTMLTableCellElement 121 HTMLTableColElement 117

HTMLTableElement 113 HTMLTableRowElement 120 HTMLTableSectionElement 118

HTMLTextAreaElement 95 HTMLTitleElement 84 HTMLUListElement 99

httpEquiv 85

id 83
identifier 158, 166, 173, 174,
180

images 79

implementation 31 IMPORT_RULE 139 importNode 37

increment 174 index 92 INDEX_SIZE_ERR 25

initEvent 229 initMouseEvent 236 initMutationEvent 240

initUIEvent 233 insertBefore 46 insertCell 121

insertData 55 insertNode 284 insertRow 117, 119

insertRule 137, 141 internalSubset 70 INUSE_ATTRIBUTE_ERR 25

INVALID_ACCESS_ERR 25
INVALID_CHARACTER_ERR
25

INVALID_MODIFICATION_ERR 25

INVALID_NODE_TYPE_ERR 290 INVALID_STATE_ERR 25 isMap 107

item 49, 51, 77, 131, 132, 138, 147, 156

label 91, 92 lang 83 lastChild 42, 262

left 157, 203
length 49, 50, 54, 77, 88, 89,
131, 131, 138, 145, 156

letterSpacing 203

lineHeight 204 link 87 links 79

LinkStyle 133 listStyle 158, 204 listStyleImage 204

listStylePosition 204 listStyleType 205 localName 42

longDesc 107, 124, 125 lowSrc 107

margin 205 marginBottom 205 marginHeight 124, 125

465

Index

marginLeft 205 marginRight 206 marginTop 206

marginWidth 124, 125 markerOffset 206 marks 206

maxHeight 207 maxLength 94 maxWidth 207

media 84, 86, 130, 141, 143 MEDIA_RULE 139 MediaList 131

mediaText 131 metaKey 235 method 88

minHeight 207 minWidth 207 mix 175

MouseEvent 234 multiple 89 MutationEvent 239

name 58, 70, 85, 88, 89, 94, 96, 97, 105,
107, 109, 110, 111, 112, 124, 125

namedItem 78 NamedNodeMap 49

NAMESPACE_ERR 25 namespaceURI 43 newValue 239

nextNode 256, 262 nextSibling 43, 262 NO_DATA_ALLOWED_ERR 25

NO_MODIFICATION_ALLOWED_ERR
25

Node 39 NodeFilter 256

NodeIterator 254 NodeList 48 nodeName 43

nodeType 43 nodeValue 43 noHref 112

noResize 124 normalize 46 noShade 104

NOT_FOUND_ERR 25 NOT_SUPPORTED_ERR 25 Notation 71

NOTATION_NODE 41 notationName 72 notations 71

noWrap 122 numbers 179

object 111 open 80 options 89

orphans 208 outline 208 outlineColor 208

outlineStyle 208 outlineWidth 209 overflow 209

ownerDocument 43 ownerElement 58 ownerNode 130

ownerRule 136

padding 209 paddingBottom 209 paddingLeft 210

paddingRight 210 paddingTop 210 page 210

PAGE_RULE 139 pageBreakAfter 211 pageBreakBefore 211

pageBreakInside 211 parentNode 43, 262 parentRule 139, 146

parentStyleSheet 130, 140 pause 211 pauseAfter 212

pauseBefore 212 pitch 212 pitchRange 212

playDuring 213 playDuringIdentifier 175 playDuringType 175

position 213 predefinedCursor 174 prefix 44

466

Index

preventDefault 230 previousNode 256, 263 previousSibling 44, 263

prevValue 239 primitiveType 152
PROCESSING_INSTRUCTION_NODE
41

ProcessingInstruction 73 profile 83 prompt 86

publicId 71, 71, 72

quotes 213

Range 278 RangeException 290 readOnly 94, 96

Rect 157 red 157 referrer 80

rel 84, 105 relatedNode 235, 240 remove 91

removeAttribute 63 removeAttributeNode 64 removeAttributeNS 63

removeChild 47 removeEventListener 226 removeNamedItem 51

removeNamedItemNS 51 removeProperty 147 repeat 176

replaceChild 47 replaceData 56 reset 173, 88

rev 84, 106 RGBColor 156 richness 213

right 157, 214 root 255, 261 rowIndex 120

rows 96, 115, 119, 123 rowSpan 122 rules 115

scheme 85 scope 123 screenX 236

screenY 236 scrolling 124, 125 sectionRowIndex 120

select 95, 97 selected 92 selectedIndex 89

selectNode 284 selectNodeContents 285 selectorText 140, 143

separator 158 setAngleValue 166 setAttribute 64

setAttributeNode 66 setAttributeNodeNS 67 setAttributeNS 65

setEnd 285 setEndAfter 286 setEndBefore 286

setFloatValue 154 setHeightSize 181 setHorizontalPosition 169

setHorizontalSpacing 172 setIdentifier 167, 181 setNamedItem 52

setNamedItemNS 53 setPositionIdentifier 169 setProperty 148

setStart 287 setStartAfter 287 setStartBefore 288

setStringValue 155 setVerticalPosition 170 setVerticalSpacing 172

setWidthSize 182 shape 106, 112 sheet 133

shiftKey 236 SHOW_ALL 258 SHOW_ATTRIBUTE 258

SHOW_CDATA_SECTION 258 SHOW_COMMENT 258 SHOW_DOCUMENT 258

467

Index

SHOW_DOCUMENT_FRAGMENT 258
SHOW_DOCUMENT_TYPE
258

SHOW_ELEMENT 258

SHOW_ENTITY 258
SHOW_ENTITY_REFERENCE
258

SHOW_NOTATION 258

SHOW_PROCESSING_INSTRUCTION
258

SHOW_TEXT 258 size 90, 94, 103, 104, 104, 214

span 118 speak 214 speakHeader 214

speakNumeral 215 speakPunctuation 215 specified 58

speechRate 215 splitText 68 src 94, 107, 113, 124, 125

standby 109 start 100 START_TO_END 279

START_TO_START 279 startContainer 281 startOffset 281

stopPropagation 230 stress 215 style 140, 142, 143, 161

STYLE_RULE 139 styleSheet 144 StyleSheet 129

StyleSheetList 130 styleSheets 133 submit 88

substringData 56 summary 115 supports 48

surroundContents 288 SYNTAX_ERR 25 systemId 71, 71, 72

tabIndex 90, 94, 96, 97, 106, 109, 112 tableLayout 216 tagName 60

target 73, 84, 85, 88, 106, 113, 229 tBodies 115 Text 67

text 85, 87, 92, 113 TEXT_NODE 41 textAlign 216

textDecoration 216 textIndent 216 textShadow 217

textTransform 217 tFoot 115 tHead 115

timeStamp 229 title 80, 83, 130 top 157, 217

toString 289 TreeWalker 260
type 84, 86, 90, 94, 96, 98, 99, 100, 101,
106, 109, 110, 113, 130, 140, 229

UIEvent 232 unicodeBidi 217 UNKNOWN_RULE 139

UNSPECIFIED_EVENT_TYPE_ERR
230

urange 179 uri 176, 178

uris 174 URL 79 useMap 94, 107, 109

vAlign 118, 119, 120, 123
value 58, 90, 92, 94, 96, 98, 101,
110

valueType 110, 149

version 83 vertical 176 verticalAlign 218

verticalIdentifier 168 verticalType 168, 171 view 233

ViewCSS 158 visibility 218 vLink 87

468

Index

voiceFamily 218 volume 218 vspace 107, 109, 111

whatToShow 255, 261 whiteSpace 219 widows 219

width 102, 104, 107, 109, 111, 115, 118,
123, 125, 219

widthType 180 wordSpacing 219

write 80 writeln 81 WRONG_DOCUMENT_ERR 25

zIndex 220

469

Index

	Document Object Model †DOM‡ Level 2 Specification
	Version 1.0
	W3C Candidate Recommendation 07 March, 2000
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	What is the Document Object Model?
	Introduction
	What the Document Object Model is
	What the Document Object Model is not
	Where the Document Object Model came from
	Entities and the DOM Core
	Compliance
	DOM Interfaces and DOM Implementations

	1. Document Object Model Core
	1.1. Overview of the DOM Core Interfaces
	1.1.1. The DOM Structure Model
	1.1.2. Memory Management
	1.1.3. Naming Conventions
	1.1.4. Inheritance vs. Flattened Views of the API
	1.1.5. The DOMString type
	1.1.6. The DOMTimeStamp type
	1.1.7. String comparisons in the DOM
	1.1.8. XML Namespaces

	1.2. Fundamental Interfaces
	1.3. Extended Interfaces

	2. Document Object Model HTML
	2.1. Introduction
	2.2. HTML Application of Core DOM
	2.2.1. Naming Conventions
	2.2.1.1. Properties and Methods
	2.2.1.2. Non-HTML 4.0 interfaces and attributes

	2.3. Miscellaneous Object Definitions
	2.4. Objects related to HTML documents
	2.5. HTML Elements
	2.5.1. Property Attributes
	2.5.2. Naming Exceptions
	2.5.3. Exposing Element Type Names †tagName‡
	2.5.4. The HTMLElement interface
	2.5.5. Object definitions

	3. Document Object Model Views
	3.1. Introduction
	3.2. Interfaces

	4. Document Object Model StyleSheets
	4.1. Introduction
	4.2. Style Sheet Interfaces
	4.3. Document Extensions
	4.4. Association between a style sheet and a document.

	5. Document Object Model CSS
	5.1. Overview of the DOM Level 2 CSS Interfaces
	5.2. CSS Fundamental Interfaces
	5.2.1. Override and computed style sheet
	5.2.2. Style sheet creation
	5.2.3. Element with CSS inline style

	5.3. CSS Extended Interfaces

	6. Document Object Model Events
	6.1. Overview of the DOM Level 2 Event Model
	6.1.1. Terminology

	6.2. Description of event flow
	6.2.1. Basic event flow
	6.2.2. Event capture
	6.2.3. Event bubbling
	6.2.4. Event cancelation

	6.3. Event listener registration
	6.3.1. Event registration interfaces
	6.3.2. Interaction with HTML 4.0 event listeners

	6.4. Event interface
	6.5. DocumentEvent interface
	6.6. Event set definitions
	6.6.1. User Interface event types
	6.6.2. Mouse event types
	6.6.3. Key events
	6.6.4. Mutation event types
	6.6.5. HTML event types

	7. Document Object Model Traversal
	7.1. Overview
	7.1.1. Iterators
	7.1.1.1. Moving Forward and Backward
	7.1.1.2. Robustness
	7.1.1.3. Visibility of Nodes

	7.1.2. Filters
	7.1.2.1. Using Filters
	7.1.2.2. Filters and Exceptions
	7.1.2.3. Filters and Document Mutation
	7.1.2.4. Filters and whatToShow flags

	7.1.3. TreeWalker
	7.1.3.1. Robustness

	7.2. Formal Interface Definition

	8. Document Object Model Range
	8.1. Introduction
	8.2. Definitions and Notation
	8.2.1. Position
	8.2.2. Selection and Partial Selection
	8.2.3. Notation

	8.3. Creating a Range
	8.4. Changing a Range's Position
	8.5. Comparing Range Boundary-Points
	8.6. Deleting Content with a Range
	8.7. Extracting Content
	8.8. Cloning Content
	8.9. Inserting Content
	8.10. Surrounding Content
	8.11. Miscellaneous Members
	8.12. Range modification under document mutation
	8.12.1. Insertions
	8.12.2. Deletions

	8.13. Formal Description of the Range Interface

	Appendix A: Changes
	A.1: Changes between DOM Level 1 and DOM Level 2
	A.1.1: Changes to DOM Level 1 interfaces and exceptions
	A.1.2: New features
	A.1.2.1: New types
	A.1.2.2: New interfaces

	Appendix B: Accessing code point boundaries
	B.1: Introduction
	B.2: Methods

	Appendix C: IDL Definitions
	C.1: Document Object Model Core
	dom.idl:

	C.2: Document Object Model HTML
	html.idl:

	C.3: Document Object Model Views
	views.idl:

	C.4: Document Object Model StyleSheets
	stylesheets.idl:

	C.5: Document Object Model CSS
	css.idl:

	C.6: Document Object Model Events
	events.idl:

	C.7: Document Object Model Traversal
	traversal.idl:

	C.8: Document Object Model Range
	range.idl:

	Appendix D: Java Language Binding
	D.1: Document Object Model Core
	org/w3c/dom/DOMException.java:
	org/w3c/dom/DOMImplementation.java:
	org/w3c/dom/DocumentFragment.java:
	org/w3c/dom/Document.java:
	org/w3c/dom/Node.java:
	org/w3c/dom/NodeList.java:
	org/w3c/dom/NamedNodeMap.java:
	org/w3c/dom/CharacterData.java:
	org/w3c/dom/Attr.java:
	org/w3c/dom/Element.java:
	org/w3c/dom/Text.java:
	org/w3c/dom/Comment.java:
	org/w3c/dom/CDATASection.java:
	org/w3c/dom/DocumentType.java:
	org/w3c/dom/Notation.java:
	org/w3c/dom/Entity.java:
	org/w3c/dom/EntityReference.java:
	org/w3c/dom/ProcessingInstruction.java:

	D.2: Document Object Model HTML
	org/w3c/dom/html/HTMLDOMImplementation.java:
	org/w3c/dom/html/HTMLCollection.java:
	org/w3c/dom/html/HTMLDocument.java:
	org/w3c/dom/html/HTMLElement.java:
	org/w3c/dom/html/HTMLHtmlElement.java:
	org/w3c/dom/html/HTMLHeadElement.java:
	org/w3c/dom/html/HTMLLinkElement.java:
	org/w3c/dom/html/HTMLTitleElement.java:
	org/w3c/dom/html/HTMLMetaElement.java:
	org/w3c/dom/html/HTMLBaseElement.java:
	org/w3c/dom/html/HTMLIsIndexElement.java:
	org/w3c/dom/html/HTMLStyleElement.java:
	org/w3c/dom/html/HTMLBodyElement.java:
	org/w3c/dom/html/HTMLFormElement.java:
	org/w3c/dom/html/HTMLSelectElement.java:
	org/w3c/dom/html/HTMLOptGroupElement.java:
	org/w3c/dom/html/HTMLOptionElement.java:
	org/w3c/dom/html/HTMLInputElement.java:
	org/w3c/dom/html/HTMLTextAreaElement.java:
	org/w3c/dom/html/HTMLButtonElement.java:
	org/w3c/dom/html/HTMLLabelElement.java:
	org/w3c/dom/html/HTMLFieldSetElement.java:
	org/w3c/dom/html/HTMLLegendElement.java:
	org/w3c/dom/html/HTMLUListElement.java:
	org/w3c/dom/html/HTMLOListElement.java:
	org/w3c/dom/html/HTMLDListElement.java:
	org/w3c/dom/html/HTMLDirectoryElement.java:
	org/w3c/dom/html/HTMLMenuElement.java:
	org/w3c/dom/html/HTMLLIElement.java:
	org/w3c/dom/html/HTMLDivElement.java:
	org/w3c/dom/html/HTMLParagraphElement.java:
	org/w3c/dom/html/HTMLHeadingElement.java:
	org/w3c/dom/html/HTMLQuoteElement.java:
	org/w3c/dom/html/HTMLPreElement.java:
	org/w3c/dom/html/HTMLBRElement.java:
	org/w3c/dom/html/HTMLBaseFontElement.java:
	org/w3c/dom/html/HTMLFontElement.java:
	org/w3c/dom/html/HTMLHRElement.java:
	org/w3c/dom/html/HTMLModElement.java:
	org/w3c/dom/html/HTMLAnchorElement.java:
	org/w3c/dom/html/HTMLImageElement.java:
	org/w3c/dom/html/HTMLObjectElement.java:
	org/w3c/dom/html/HTMLParamElement.java:
	org/w3c/dom/html/HTMLAppletElement.java:
	org/w3c/dom/html/HTMLMapElement.java:
	org/w3c/dom/html/HTMLAreaElement.java:
	org/w3c/dom/html/HTMLScriptElement.java:
	org/w3c/dom/html/HTMLTableElement.java:
	org/w3c/dom/html/HTMLTableCaptionElement.java:
	org/w3c/dom/html/HTMLTableColElement.java:
	org/w3c/dom/html/HTMLTableSectionElement.java:
	org/w3c/dom/html/HTMLTableRowElement.java:
	org/w3c/dom/html/HTMLTableCellElement.java:
	org/w3c/dom/html/HTMLFrameSetElement.java:
	org/w3c/dom/html/HTMLFrameElement.java:
	org/w3c/dom/html/HTMLIFrameElement.java:

	D.3: Document Object Model Views
	org/w3c/dom/views/AbstractView.java:
	org/w3c/dom/views/DocumentView.java:

	D.4: Document Object Model StyleSheets
	org/w3c/dom/stylesheets/StyleSheet.java:
	org/w3c/dom/stylesheets/StyleSheetList.java:
	org/w3c/dom/stylesheets/MediaList.java:
	org/w3c/dom/stylesheets/LinkStyle.java:
	org/w3c/dom/stylesheets/DocumentStyle.java:

	D.5: Document Object Model CSS
	org/w3c/dom/css/CSSStyleSheet.java:
	org/w3c/dom/css/CSSRuleList.java:
	org/w3c/dom/css/CSSRule.java:
	org/w3c/dom/css/CSSStyleRule.java:
	org/w3c/dom/css/CSSMediaRule.java:
	org/w3c/dom/css/CSSFontFaceRule.java:
	org/w3c/dom/css/CSSPageRule.java:
	org/w3c/dom/css/CSSImportRule.java:
	org/w3c/dom/css/CSSCharsetRule.java:
	org/w3c/dom/css/CSSUnknownRule.java:
	org/w3c/dom/css/CSSStyleDeclaration.java:
	org/w3c/dom/css/CSSValue.java:
	org/w3c/dom/css/CSSPrimitiveValue.java:
	org/w3c/dom/css/CSSValueList.java:
	org/w3c/dom/css/RGBColor.java:
	org/w3c/dom/css/Rect.java:
	org/w3c/dom/css/Counter.java:
	org/w3c/dom/css/ViewCSS.java:
	org/w3c/dom/css/DocumentCSS.java:
	org/w3c/dom/css/DOMImplementationCSS.java:
	org/w3c/dom/css/ElementCSSInlineStyle.java:
	org/w3c/dom/css/CSS2Azimuth.java:
	org/w3c/dom/css/CSS2BackgroundPosition.java:
	org/w3c/dom/css/CSS2BorderSpacing.java:
	org/w3c/dom/css/CSS2CounterReset.java:
	org/w3c/dom/css/CSS2CounterIncrement.java:
	org/w3c/dom/css/CSS2Cursor.java:
	org/w3c/dom/css/CSS2PlayDuring.java:
	org/w3c/dom/css/CSS2TextShadow.java:
	org/w3c/dom/css/CSS2FontFaceSrc.java:
	org/w3c/dom/css/CSS2FontFaceWidths.java:
	org/w3c/dom/css/CSS2PageSize.java:
	org/w3c/dom/css/CSS2Properties.java:

	D.6: Document Object Model Events
	org/w3c/dom/events/EventException.java:
	org/w3c/dom/events/EventTarget.java:
	org/w3c/dom/events/EventListener.java:
	org/w3c/dom/events/Event.java:
	org/w3c/dom/events/DocumentEvent.java:
	org/w3c/dom/events/UIEvent.java:
	org/w3c/dom/events/MouseEvent.java:
	org/w3c/dom/events/MutationEvent.java:

	D.7: Document Object Model Traversal
	org/w3c/dom/traversal/NodeIterator.java:
	org/w3c/dom/traversal/NodeFilter.java:
	org/w3c/dom/traversal/TreeWalker.java:
	org/w3c/dom/traversal/DocumentTraversal.java:

	D.8: Document Object Model Range
	org/w3c/dom/range/RangeException.java:
	org/w3c/dom/range/Range.java:
	org/w3c/dom/range/DocumentRange.java:

	Appendix E: ECMA Script Language Binding
	E.1: Document Object Model Core
	E.2: Document Object Model HTML
	E.3: Document Object Model Views
	E.4: Document Object Model StyleSheets
	E.5: Document Object Model CSS
	E.6: Document Object Model Events
	E.7: Document Object Model Traversal
	E.8: Document Object Model Range

	Acknowledgments
	Glossary
	References
	Objects Index
	
	Document Object Model Core
	Document Object Model HTML
	Document Object Model Views
	Document Object Model StyleSheets
	Document Object Model CSS
	Document Object Model Events
	Document Object Model Traversal
	Document Object Model Range

	Index

