
PROVIDING (REALLY) OPEN TECHNOLOGY.

Information for the Hungry Programmer

Danny Backx
Mitch Miers

Chris Toshok
Harald Albrecht

LEGAL NOTICE

c© 1996, 2001 by
D. Backx (u27113@kb.be),
M. Miers (miers@packet.net),
C. Toshok (toshok@hungry.com),
H. Albrecht (editor, figures and typesetting,harald@plt.rwth-aachen.de).

“Inside LessTif” may be reproduced and distributed in whole or in part for non-commercial pur-
poses, subject to the following conditions:

• The copyright notice above and this permission notice must be preserved complete on all
complete or partial copies.

• Any translation or derivative work of “Inside LessTif” must be approved by the authors in
writing before distribution.

• If you distribute “Inside LessTif” in part, instructions for obtaining the complete version of
“Inside LessTif” must be included.

• Small portions may be reproduced as illustrations for reviews or quotes in other works with-
out this permission notice if proper citation is given.

Exception to this rules may be granted for academic purposes. These restrictions are here to protect
us as authors, not to restrict you as educators and learners.

DISCLAIMER

The information contained within this document is subject to change without notice.

No one of the authors shall be liable for errors contained herein or for incidental consequential
damages in connection with the furnishing, performance, or use of this material.

ACKNOWLEDGEMENTS

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and we were aware of a
trademark claim, the designations have been printed in caps or initial caps. We appologize for
some designations being mangled during the process of typesetting. Really.

PIGSTM/P3P RATING

Absurd, Perverse, For Programmers Only. Attention: The information contained herein may cause
damage to your opinions about the CSF and Graphical User Interfaces in general. You have been
forewarned.

Edition I, October 2001 (PDF “Reprint”)

Contents I

Contents

Foreword VII

1 Synthetic Resources and Resolution Independence 1
1.1 Introduction . 2
1.2 The Implementation of Synthetic Resources . 2
1.3 How to Use Synthetic Resources . 4

2 Pandora’s Box: the BaseClass Stuff 7
2.1 Introduction . 8
2.2 The Method Hooks . 8

2.2.1 The Wrapper Data Stacks . 10
2.2.2 The BaseClass Extension Record . 12

2.3 The Method Wrappers . 16
2.4 The Widget Extension Data . 17
2.5 Other Undocumented Stuff . 20

3 Diverting User Input with Grabs 23
3.1 Introduction . 24
3.2 The Grab Layer and the Grab List . 24

3.2.1 Full Application Modal Dialogs . 25
3.2.2 Modeless Dialogs . 26
3.2.3 System Modal Dialogs . 27
3.2.4 Primary Application Modal Dialogs . 27

3.3 Creating Dialog Shells the Right Way . 28
3.4 Extending the VendorShell . 29
3.5 The Shadow Shell Tree . 30

4 Messy Geometry Management 33
4.1 Introduction . 34
4.2 Making Geometry Requests . 34

4.2.1 The Xt Intrinsics Way . 34
4.2.2 The LessTif Way . 35

4.3 Geometry Management and the Widget Methods 36
4.3.1 The initialize() Method . 36
4.3.2 The set_values() Method . 36

II Contents

4.3.3 The resize() Method . 37
4.3.4 The realize() Method . 37
4.3.5 The query_geometry() Method . 37
4.3.6 The geometry_manager() Method . 37
4.3.7 The change_managed() Method . 38
4.3.8 The insert_child() and delete_child() Methods 38
4.3.9 The constraint_initialize() Method . 39
4.3.10 The constraint_set_values() Method . 39
4.3.11 The Geometry Management Helper Interfaces 39

5 Fun and Pain with the GeoUtils 41
5.1 Introduction . 42
5.2 The BulletinBoard Class . 42

5.2.1 The change_managed() and realize() Methods 43
5.2.2 The resize() Method . 47
5.2.3 The query_geometry() Method . 48
5.2.4 The geometry_manager() Method . 48
5.2.5 The set_values() Method . 50

5.3 The Data Structures . 52
5.3.1 The GeoMatrix . 52
5.3.2 The MajorLayoutRec . 55
5.3.3 The KidGeometryRec . 58

5.4 The GeoUtils Functions . 59
5.4.1 The Allocation, Initialization, and Deallocation Functions 59
5.4.2 Layout Management Functions . 60

5.4.2.1 Querying the Children . 60
5.4.2.2 Computing the Desired Size 60
5.4.2.3 Computing the Layout . 62
5.4.2.4 Applying the Changes . 63

5.4.3 The Method Functions . 63
5.4.4 Miscellaneous Functions . 65
5.4.5 BulletinBoard Helper Functions . 66
5.4.6 RowColumn Specific Functions . 67

5.5 How to Build a Subclass Using the GeoUtils . 67
5.5.1 The Header Files . 67
5.5.2 The Implementation . 69

5.5.2.1 Extra Prototypes . 73
5.5.2.2 The Class Structure . 73
5.5.2.3 The set_values() Method . 74
5.5.2.4 The NoGeoRequest Method 74
5.5.2.5 The GeoMatrixCreate Method 74

5.6 Conclusion and Credits . 81

6 Drag and Drop 83

Contents III

6.1 Introduction . 84
6.2 Protocol Basics . 84

6.2.1 Drag Operation Modes . 85
6.2.2 Protocol Messages . 85
6.2.3 Drag & Drop Flags . 86
6.2.4 The Targets Table . 88
6.2.5 Advertising a Receiver . 89
6.2.6 Starting a Drag or Drop . 90

6.3 The Drag Protocol . 92
6.3.1 Entering/Leaving Top Level Windows 92
6.3.2 Pointer Motion . 93
6.3.3 Changing the Operation . 94

6.4 The Drop Protocol . 95
6.5 The Preregister Mode . 96

7 When the Keyboard Goes Wild 99
7.1 Introduction . 100
7.2 The Virtual Bindings . 101
7.3 Managing the Modifier Mappings . 102
7.4 Managing the Virtual Bindings . 103
7.5 The xmbind Client . 104

8 Inside XmStrings 107
8.1 Introduction . 108
8.2 Get Ready for the Acronyms . 108
8.3 How It Works . 108
8.4 Structures . 112
8.5 The Other Side of XmStrings . 112

9 Hash & Cache 115
9.1 Introduction . 116
9.2 The Hash Table Module . 116

A Appendix 121

Index 123

IV Contents

List of Tables V

List of Tables

2.1 Tag identifiers for widget extension data . 18

6.1 Message types used for the Drag & Drop X client messages. 86
6.2 Operation codes. 87
6.3 Completion status codes. 87
6.4 Drop site status codes. 88
6.5 Structure of the targets table in the property_MOTIF_DRAG_TARGETS. 89
6.6 The structure of the_MOTIF_DRAG_RECEIVER_INFOproperty describes a drag

and drop receiver. 89
6.7 Drag protocol styles. 90
6.8 The structure of the_MOTIF_DRAG_INITIATOR_INFO property describes the

initiator. 90
6.9 TheXmTOP_LEVEL_ENTERmessage send by the initiator. 92
6.10 TheXmTOP_LEVEL_LEAVEmessage send by the initiator. 92
6.11 TheXmDRAG_MOTIONmessage send by the initiator. 93
6.12 TheXmDROP_SITE_ENTERmessage replied by the receiver. 93
6.13 TheXmDROP_SITE_LEAVEmessage replied by the receiver. 93
6.14 TheXmDRAG_MOTIONmessage echoed by the receiver. 94
6.15 TheXmOPERATION_CHANGEDmessage send by the initiator. 94
6.16 TheXmOPERATION_CHANGEDmessage echoed by the receiver. 94
6.17 TheXmDROP_STARTmessage send by the initiator. 95
6.18 TheXmDROP_STARTmessage echoed by the receiver. 95
6.19 The structure of a drop site block header . 97

8.1 Component identifiers forXmString s. 109

9.1 Results the iterator function of a hash table can return. 119

VI List of Tables

List of Figures VII

List of Figures

1.1 Synthetic resources provide for data conversion as well as information hiding. . . 2
1.2 The use ofXmSYNTHETIC_LOADand XmSYNTHETIC_NONEwhen importing

synthetic resource values. 5

2.1 The hook mechanism encloses superclass-to-subclass chained widget methods like
initialize() . 9

2.2 The wrapper data stack keeps saved method pointers for a widget class. 11
2.3 The method wrappers enclose the non-chained widget methods likerealize() . 16
2.4 A close look at the widget extension data mechanism. 18
2.5 The widget extension data mechanism helps to organize and manage secondary

objects within some widgets methods. 19
2.6 The widget extension data represents the link between a VendorShell and its ex-

tension object. 20

3.1 Entries on the grab list after a full application modal dialog popped up. 26
3.2 Entries on the grab list after a modeless dialog popped up. 26
3.3 Entries on the grab list after a full primary application modal dialog popped up. . 27
3.4 Class hierarchy for extension objects. 30
3.5 The XmDesktopObjects form a tree of XmDesktopObjects with a XmScreen wid-

get at the top. 31
3.6 The shadow shell tree is organized by XmScreen widgets which are in turn gath-

ered under the hood of a XmDisplay widget. 32

5.1 Layout structures to mess around with when using the GeoUtils. 52

6.1 The “DnD Flags” signal various status conditions during a drag and drop operation. 87
6.2 Properties involved in the Drag & Drop game. 91
6.3 Overall structure of the_MOTIF_DRAG_RECEIVER_INFOproperty for the pre-

register mode. 96

7.1 Keyboard event processing. 100
7.2 The “virtual bindings” take care of some basic consistency between different key-

boards. 101
7.3 Displays, Screens and the Virtual Bindings. 105

8.1 Internal representation of a “compiled”_XmString 113

VIII List of Figures

A.1 The big picture of all widget classes. 122

Foreword

X Foreword

When I first heard rumors of LESSTIF, I was already struggling for years with the famous M*TIF

graphical user interface on different hardware platforms. Every new day unveiled another and – so
to say – exciting feature not written down in the official documentation.

Needless to say that that official documentation was, and still is, lacking thereally interesting
aspects: writing not-so-trivial M*TIF widgets, how M*TIF’s own geometry management utilities
work, what the BaseClass stuff is for, and many other goodies. Ordinarily, this would be the time
to “read the source, Luke”. Unfortunately, the great creator of M*TIF – the CLOSED SOFTWARE

FOUNDATION (or CSF for short) – reveals the source only to those willing to pay (“pay-per-view
principle”).

Fortunately, LESSTIF upheld the flag of “providing open technology” from its early beginning: the
source is freely available under the terms of the GNU Public Library License. And it is common
knowlegde that the source is also the source of information (“may the source be with you...”).

Although standing on its own feet, LESSTIF provides deep insight not only into itself but also into
the abyss of that other graphical user interface called “M*TIF”. But browsing through the source
and understanding all the intrinsic and intricate things inside LESSTIF isn’t an easy task. You can
easily get lost. Or to cite Mitch Miers and his law #37 of programming:

Real Programmers don’t write documentation, they leave that to the tech writers.
It was hard to code, it should be hard to understand.

This is where “Inside LessTif” comes into play. Written by the creators of LESSTIF, this book pro-
vides a deep and thorough insight into this free M*TIF “clone”. We show you all the mechanisms
and smart improvements behind the scenes.

This book is definitely not a beginner’s guide but is aimed at the programmer who has already
a working knowledge of programming with – or should I say: fighting against – M*TIF. A basic
knowledge about the Xt Intrinsics’ widget class mechanism is necessary too.

I wish to thank especially all the authors for writing down their first-hand knowledge about LESS-
TIF. They had to cut off many valueable spare hours from their coding time to make this doc-
umentation real. Also my special thanks to Rob Blue, who has taken the (maybe daunting but
nevertheless very important) part of proofreading.

Harald Albrecht

P.S.: If you find “Inside LessTif” to be useful (and we – the authors – are sure you will) then we
ask you to donate a reasonable amount to a charitable institution.

1
Synthetic Resources

and Resolution Independence
Mitch Miers

2 1. Synthetic Resources and Resolution Independence

1.1 Introduction

Synthetic resources are a mechanism included in Motif that allows a developer to modify resource
values as collected by or assigned to the Xt resource mechanism. That is, if a user should want to
find the value of an Xt resource, but M*TIF would rather that the user not see the true value, the
synthetic resource mechanism allows the M*TIF developer to “fake out” the Intrinsics, and replace
the true instance variable values with modified values. Alternatively, the toolkit may prefer to
transform a user specified value into something more palatable by the toolkit.

The more common usage of synthetic resources is to support resolution independence (see figure
1.1). However, the toolkit developers also realized that the mechanism provided a way to protect
“delicate” resources. For example, those that it would be dangerous for the user to change, or those
that would upset the toolkit if they were unexpectedly modified.

������

������

resource value

requested value

export procedure

import procedure

instance variable

instance variable

������

������

	�	�	
�

������
LessTif Application

15 [mm]

10 [mm]

Xt[Va]GetValues

256 [pixels]

Widget Instance

384 [pixels]

(without import procedure)

(without export procedure)

Xt[Va]SetValues

LessTif

Figure 1.1: Synthetic resources provide for data conversion as well as information hiding.

The import and export direction is seen from M*TIF’s point of view. A user specified resource
value isimported into some widget’s instance variable. Au contraire, M*TIF exports a resource
value whenever the user and/or application asks for a resource’s value by callingXt[Va]Get-
Values() .

1.2 The Implementation of Synthetic Resources

There are really five important classes in M*TIF: ExtObject, Gadget, Primitive, Manager and Ven-
dorShell. Nearly every Motif widget class inherits behavior from one of these. Some (XmDialog-
Shell for example) inherit from more than one. While this may seem a statement of the obvious,
it must be pointed out that the easiest way for a class to inherit behavior from a superclass is to
subclass from the appropriate “Core” widget. Those aforementioned classes are the “Core” M*TIF

classes (for objects, window-less widgets, core, constraint, and shell widgets respectively). Thus,
if we provide the M*TIF “Core” widgets the ability to handle synthetic resources, all subclasses

1.2. The Implementation of Synthetic Resources 3

will inherit that behavior. In practice, the VendorShell class behavior is dictated by the X spec-
ification. Any special behavior related to the VendorShell must be specified in the VendorShell
extension object, which is subclassed from ExtObj – thus the true core widget set contains only
four classes.

There are only four class methods that deal with resource manipulation. They are theinitia-
lize() method, theset_values() method, the Constraintset_values() method, and
the get_values_hook() method. Really there are two more, theset_values_almost()
method, and theset_values_hook() method; the latter is obsolete, the former is in practice
never used.

In terms of resource manipulation, the Coreset_values() method and the Constraintset_-
values() method can be combined, by simply checking to see if the parent is a Constraint (read
Manager) subclass. The only difference is where the resources are defined (self or parent). Sec-
ond, the alterations that theinitialize() method and theset_values() method perform
based on the argument lists are identical; so we can use the same function for both. Therefore, we
really have only two cases to handle – the case where the user specifies the value for a resource
(initialize() andset_values()), and the case where the user wants to find the value of a
resource (get_values_hook()).

Thus, there are two major sets of functions that implement the synthetic resource behavior: four
import functions with the postfix*ImportArgs() , and five export functions ending with*Get-
ValuesHook() . Both sets appear inResInd.c . The prototypes are as follows:

void _XmExtImportArgs(Widget w, ArgList args, Cardinal *num_args);
void _XmPrimitiveImportArgs(Widget w, ArgList args, Cardinal *num_args);
void _XmGadgetImportArgs(Widget w, ArgList args, Cardinal *num_args);
void _XmGadgetImportSecondaryArgs(Widget w, ArgList args, Cardinal *num_args);
void _XmManagerImportArgs(Widget w, ArgList args, Cardinal *num_args);

void _XmPrimitiveGetValuesHook(Widget w, ArgList args, Cardinal *num_args);
void _XmGadgetGetValuesHook(Widget w, ArgList args, Cardinal *num_args);
void _XmManagerGetValuesHook(Widget w, ArgList args, Cardinal *num_args);
void _XmExtGetValuesHook(Widget w, ArgList args, Cardinal *num_args);

The import functions are called from theinitialize() andset_values() methods in the
relevant widget classes directly. The export functions are directly registered in the coreget_-
values_hook() method.

Note that there is an extra function_XmGadgetImportSecondaryArgs() unique to Gadgets.
It is a result of the “cache” subparts that nearly all Gadgets have. It provides the mechanism to
import and export resources from the subpart.

The implementation of the functions is fairly ugly, and I wouldn’t mind suggestions on how to
improve their efficiency. Essentially, they use a doubly nested loop, going through the resource
request list, and finding matches in the synthetic resource list. If a match is found, the import or
export procedure in the synthetic resource structure is invoked.

I’ll not go into further detail about how the M*TIF “core” widget classes hook into the synthetic

4 1. Synthetic Resources and Resolution Independence

resource mechanism. If you read the code to Gadget, Primitive, or Manager, it is fairly obvious (for
example, just a call to_XmPrimitiveImportArgs() in Primitive’sset_values_method).

One fairly important thing to note, is that the “core”class_part_initialize() methods
combine a subclass’s synthetic resources with all of the superclass’s synthetic resources. This is
done via_XmBuildResources() . This way, access to inherited synthetic resources get sped up
because M*TIF doesn’t need to search for them in the superclasses. If you subclass from a widget
that has synthetic resources, but add no new ones, you’ll end up with synthetic resources after the
class_part_init() method has been called.

1.3 How to Use Synthetic Resources

TheXmSyntheticResource structure looks suspiciously like the Xt resource structure, and in
fact operates in much the same way. Here’s the structure, and some associated information:

typedef enum {
XmSYNTHETIC_NONE,
XmSYNTHETIC_LOAD

} XmImportOperator;

typedef void (*XmExportProc)(Widget w, int offset, XtArgVal *value);
typedef XmImportOperator (*XmImportProc)(Widget w, int offset,

XtArgVal *value);

typedef struct _XmSyntheticResource {
String resource_name;
Cardinal resource_size;
Cardinal resource_offset;
XmExportProc export_proc;
XmImportProc import_proc;

} XmSyntheticResource;

The import and export procedures (import_proc andexport_proc respectively) each take
three parameters: the widget for which the value has to be im- or exported, the offset of the resource
value within the widget’s instance structure, and finally a pointer. In case of aXmImportProc it
points to the place where the new resource value can be found. In the other case (XmExportProc)
the third parametervalue points to the place where the converted result should be stored.

Here’s an example right fromPrimitive.c :

/* Resources of the primitive class */
static XtResource resources[] = {

/* ... */
{

XmNhighlightThickness, sizeof(Dimension),
XtOffset(XmPrimitiveWidget, primitive.highlight_thickness),
_XmFromHorizontalPixels, _XmToHorizontalPixels

},
/* ... */

};

1.3. How to Use Synthetic Resources 5

This implements the resourceXmNhighlightThickness as a synthetic resource. The import
procedure_XmToHorizontalPixels as well as the export procedure_XmFromHorizontal-
Pixels convert to/from the internal pixel based highlight thickness.

Note that theXmImportProc has a return type. This type is a clue to the synthetic resource
implementation for whether or not the imported value should be loaded into the widget structure
directly, or just into the argument list. Most would suspect that this should always go into the
widget structure; however, remember that many manager widgets have associated children defined
as part of their functionality (e.g., SelectionBox), and don’t have direct visibility into some of the
resources that can be specified.

Let’s go into a little more detail about that. When an import procedure wants a value to go di-
rectly into a resource variable, it returnsXmSYNTHETIC_LOAD(see figure 1.2). This is typically
returned by such functions as_XmToHorizontalPixels() , which implements resolution in-
dependence into widgets. This has the effect of modifying directly thewidth (or x) instance
variable of a widget.

���
���
���
���

������

import procedure
name value

resource name: XmNwidth

10 [mm]new resource value:

256 [pixels]

core.width: 256 [pixels] XmSYNTHETIC_LOAD

XmSYNTHETIC_NONE

converted value

������

initialize() and set_values()
argument list to

widget instance variable

Figure 1.2: The use ofXmSYNTHETIC_LOADand XmSYNTHETIC_NONEwhen importing syn-
thetic resource values.

However, consider theXmNlistItems in a SelectionBox. This import function typically wants
to copy theXmStringTable provided by the user (as a “sensitive” resource that the user may
or may not free). At any rate, the SelectionBox doesn’t have visibility into this resource directly.
The implementor has two choices: they can copy theXmStringTable and store it in the subpart
in the import procedure (and returnXmSYNTHETIC_LOAD), or they can simply make a copy of
the XmStringTable , store it in theXtArgVal pointer, and returnXmSYNTHETIC_NONE. In
practice, they’ll usually want to choose the latter, as they probably already have code in their
set_values() or initialize() method to set theListItems instance variable, and the
synthetic resource mechanism will take care of the nuisance of making a copy first (at least, it

6 1. Synthetic Resources and Resolution Independence

will if that’s how they’ve coded the import procedure). However, if they don’t have code already,
they can save some simply by coding the import procedure to do it for them; then they never need
worry about the subpart (beyond checking to see ifset_values() need returnTrue).

For export procedures, much of the same logic applies, except that there is no return value, so
only the resource values can be modified. The export procedures typically want to make a copy of
“sensitive” resources, however (such asXmNlabelString in the Label widget – if the user frees
this (as they should), it won’t matter to the instance they got the value from. The same idea applies
to things likeXmStringTable ’s in the List, etc. This can be a performance win, as well, as calls
to GetValues can be avoided.

Also note that export procedures can play games. For example, consider the Gadget class, and
what it should return for the value ofXmNtopShadowColor . Take a look at the export procedure
of the Gadget class for theTopShadowColor color:

static XmSyntheticResource syn_resources[] = {
/* ... */
{

XmNtopShadowColor, sizeof(Pixel), XtOffset(XmGadget, object.parent),
_XmGetParentTopShadowColor, NULL

},
/* ... */

};

static void
_XmGetParentTopShadowColor(Widget w, int offset, XtArgVal *value) {

*value = XmParentTopShadowColor(w);
}

Here, we cheat. We know that the parent is a Manager, and that theTopShadowColor a Gadget
uses is theTopShadowColor defined by the parent, so we can just return that. In this way, we
can specify a value, even though we don’t directly have an instance variable to define that value.

2
Pandora’s Box:

The BaseClass Stuff
Harald Albrecht

8 2. Pandora’s Box: the BaseClass Stuff

2.1 Introduction

The “BaseClass stuff” – which is nicknamed after its implementation fileBaseClass.c – con-
sists mainly of three basic, interleaved parts that affect not only all widget classes of the LESSTIF

toolkit but also “extend” the object-orientated design of the Xt Intrinsics. The three parts are the
so-called “prehooks” and “posthooks”, the “method wrappers”, and finally the stacks for “wid-
get extension data”. Beside that, the BaseClass module contains some basic helper functions for
messing around with “secondary resources” that are needed especially by gadgets. If you believe
in redemption through Object Orientation, you should better skip this chapter completely and look
out for other object(ive)s. You have been forewarned.

2.2 The Method Hooks

The BaseClass module provides hooks that are activated before and after a chain of widget meth-
ods have been called in superclass-to-subclass order. Prehooks and posthooks can be registered for
arbitrary widget classes. They are available for:

• the initialize() method that initializes a single widget instance,
• the class_part_initialize() method that initializes a derived part within a class

record,
• theset_values() method for setting resources, and finally
• theget_values() method that queries resources.

For example, the XmLabel class uses the hooks to do some pre- and post-processing when ini-
tializating a new widget instance – regardless of whether the new widget is a XmLabel or any
subclass of (like XmPushButton). But also most gadgets make heavy use of the hook mechanism
to manage their secondary objects that work as cache parts.

Unfortunately, while the concept of the hook mechanism looks straightforward at first glance,
the implementation is definitely not. The difficulty is that the hook concept must be merged into
the existing object orientated concept of the Xt Intrinsics without any chance of modifying and
recompiling the Xt Intrinsics. Thus, the only way out is to twist method pointers.

But when twisting pointers, you can’t simply hook up the first and last method pointer for any
widget class, for example XmLabel. If some derived class, like XmPushButton, would hook up
its method pointers too, the posthooks would interfere with each other. The reason is that the
parameters supplied to the aforementioned four kinds of methods aren’t enough to do the check
whether the end of the method-chain has been reached and the posthook method must be called.
Such a check could only be done using code generated at run-time – a practice which is definitely
not portable across different systems. Later on, when looking at the wrappers for therealize() ,
resize() andgeometry_handler() methods, you’ll come across another solution to a quite
similiar problem, but the solution there is even worse than what I’ll present next.

To solve the hook problem, LESSTIF installs prehookwrappersas replacements for the meth-
ods initialize() , class_part_initialize() , get_values() andset_values()

2.2. The Method Hooks 9

������ ������

����������������

	�	
�
 ������

posthook method
initialize()

�����

posthook wrapper
initialize()

6

prehook method
initialize()

method
of XmLabel

initialize()

prehook wrapper
initialize()

(leaf method)

��������
initialize
superclass

Object

2

3

initialize
superclass

initialize
superclass

initialize
superclass

��������

4
5

1

flow of control

method
of Object

initialize()

method
of RectObject

initialize()

method
of Core

initialize()

methodinitialize()
of XmPrimitive

initialize
superclass

extension

base class
extension record

�����
�����
���
���

��������

��������

��������

XtCreateWidget(), ...

XmPrimitive

Core

RectObject

opt.

opt.

XmLabel

wrapper data

posthook
prehook

initialize-
Leaf

wrapper

Figure 2.1: The hook mechanism encloses superclass-to-subclass chained widget methods like
initialize() .

of the Object class. This insures that the hook wrappers are called first before any other subclass-
method. This twisting of the method pointers is carried out by_XmInitializeExtensions()

10 2. Pandora’s Box: the BaseClass Stuff

when the first VendorShell is created. The pointers to the old methods of the Object class are saved,
so the prehook wrappers can chain them up. Note that there are no posthook (wrappers) installed
at this time.

Now let us see what is happening lateron. I’ll discuss this based on figure 2.1 for theinitia-
lize() method-chain of the XmLabel class. For this example, I assume that there is a prehook
method 2© as well as a posthook method6© registered for the XmLabel class.

Whenever theinitialize() method is invoked, the prehook wrapper1© is called first. In turn,
it calls the prehook method2© – if there is one present for the widget class in question. Next, the
prehook wrapper checks for the presence of a posthook method6© – and if there is one, the prehook
wrapper replaces the pointer to the finalinitialize() method 5©with a pointer to the posthook
wrapper 4©. The old pointer is saved using the “wrapper data stack” (you can find out more about
this in the next section). Finally, the prehook wrapper calls the originalinitialize() method
3© of the Object class.

After this, theinitialize() methods are called (as usual) in superclass-to-subclass order with
the exception of the leaf method. If there is a posthook method registered, then – and only then –
will the posthook wrapper4© be called instead of the leaf method. The posthook wrapper restores
the old method pointer, calls the leaf method5©, and finally activates the posthook method6©.

In one particular case the method-chains forinitialize() andset_values() look different:
whenever a widget is not a shell and it has a Constraint parent (or any subclass of) then the
leaf method isn’t the method of the widget’s class but instead the parent’s constraint leaf method
(constraint_initialize() respectiveconstraint_set_values()).

If you look close at the whole hook concept then it should be clear that this concept is error prone
in certain situations when recursion is involved. The tradegy begins as soon as you enter thesame
prehook wrapper for a second time and the widget class of the second turn is a subclass of the
widget class from the first visit to the prehook wrapper. In this case thefirst prehook wrapper
method, which belongs to the superclass, is erroneously taken instead of the intendedsecondpre-
hook wrapper. Fortunately, there is no great chance to tap into this trap as long as you don’t issue –
for example – from theget_values() method of a XmLabel widget a call toXtGetValues()
using another XmPushButton widget.

2.2.1 The Wrapper Data Stacks

The wrapper data stack plays an important role for the hook mechanism. For example, the prehook
wrapper forinitialize() etc. must keep the old pointer to the leaf method of the method-chain
when it hooks in the posthook method instead. The old pointer is stored in aXmWrapperDataRec
structure (figure 2.2). These wrapper data records are linked so that they form a stack for every
single widget class. The head of the stack is accessible through a base class extension record. For
the moment, I’ll skip the base class extension record and come back to it in the next section.

The layout of aXmWrapperDataRec structure is as follows:

2.2. The Method Hooks 11

next
record_type =
 XmQmotif

saved method
pointers

saved method
pointers

base class extension record
XmBaseClassExtRec

wrapper data records (wrapper data stack)
XmWrapperDataRec

possibly other
extension records

wrapperData

.
.
.C

or
e

...
...

core.extension

widget class record

Figure 2.2: The wrapper data stack keeps saved method pointers for a widget class.

typedef struct _XmWrapperDataRec
{

struct _XmWrapperDataRec *next;
WidgetClass widgetClass;
XtInitProc initializeLeaf;
XtSetValuesFunc setValuesLeaf;
XtArgsProc getValuesLeaf;
XtRealizeProc realize;
XtWidgetClassProc classPartInitLeaf;
XtWidgetProc resize;
XtGeometryHandler geometry_manager;

} XmWrapperDataRec, *XmWrapperData;

Now for a description of such a wrapper data record:

struct _XmWrapperDataRec *next;
Links to the next wrapper data record, so the data records form a stack.

XtInitProc initializeLeaf;
XtWidgetClassProc classPartInitLeaf;
XtArgsProc getValuesLeaf;
XtArgsProc setValuesLeaf;

These members keep the old pointers to the appropriate leaf method of the method-chain.

XtRealizeProc realize;
XtWidgetProc resize;
XtGeometryHandler geometry_manager;

These members keep the old pointers to methods with the same name. They belong to the

12 2. Pandora’s Box: the BaseClass Stuff

“method wrappers” that are discussed in more detail in the next section.

WidgetClass widgetClass;
Its use is not quite clear and it may be some leftover from an intendedfull-featuredhook
mechanism. At least it is currently superflous because you already know the widget class in
order to get the most recent entry from the appropriate wrapper data stack.

Please note that the functions which work on wrapper data donot appear in any official header
file (and thus not even inBaseClassP.h) and aren’t accessible from the outside. This is true
at least for M*TIF but unfortunately LESSTIF doesn’t declare the wrapper functionsstatic , so
they are accessible. Despite this their use is strongly discouraged. I only talk about them here so
you can understand their task within the BaseClass stuff. In M*TIF 2.0 the wrapper functions have
lost their_Xmprefix to reflect their private state.

XmWrapperData _XmPushWrapperData(WidgetClass wc);
Allocates a new wrapper data block on the heap (“free store” for all you “Ceplusplusists”)
and pushes it on the wrapper stack (aka LIFO) of the widget class specified bywc. If there
is already a wrapper data block on the stack, the contents of the previous data block are
copied into the new data block._XmPushWrapperData() then returns a pointer to the
most recent wrapper data block.

XmWrapperData _XmPopWrapperData(WidgetClass wc);
Returns the most recent wrapper data block for the widget classwc. The data block is also
removed from the wrapper stack, but the data is not being freed. It is the caller’s responsi-
bility to free the wrapper data block as soon as it is not needed any longer.

XmWrapperData _XmGetWrapperData(WidgetClass wc);
Much the same as_XmPopWrapperData() but this time the wrapper data block isnot
removed from the wrapper stack of the widget classwc. If the wrapper stack should be empty
at the time you call_XmGetWrapperData() , the function will create a blank wrapper data
block on-the-fly and push it on the wrapper stack.

void _XmFreeWrapperData(XmWrapperData data);
This is a LESSTIF-specific curiosity. It exists only for orthogonality reasons and is nothing
more than a wrapper aroundXtFree() . Its only task is to free the memory occupied by the
wrapper data structure pointed to bydata .

2.2.2 The BaseClass Extension Record

Every widget class that wants to take part in the BaseClass game of hooks and wrappers must
attach a data structure of typeXmBaseClassExtRec to its class record. From now on I’ll use
the abbreviation “BCE record” (although its more an acronym) whenever I refer to a data structure
of the typeXmBaseClassExtRec . A BCE record can be used to add prehook and posthook
methods to any widget class. Beside this, a BCE record also contains information about secondary
objects, wrapper methods and other things right out of Pandora’s box.

2.2. The Method Hooks 13

The layout of a BCE record is as follows:

typedef struct _XmBaseClassExtRec
{

XtPointer next_extension;
XrmQuark record_type;
long version;
Cardinal record_size;
XtInitProc initializePrehook;
XtSetValuesFunc setValuesPrehook;
XtInitProc initializePosthook;
XtSetValuesFunc setValuesPosthook;
WidgetClass secondaryObjectClass;
XtInitProc secondaryObjectCreate;
XmGetSecResDataFunc getSecResData;
unsigned char flags[32];
XtArgsProc getValuesPrehook;
XtArgsProc getValuesPosthook;
XtWidgetClassProc classPartInitPrehook;
XtWidgetClassProc classPartInitPosthook;
XtResourceList ext_resources;
XtResourceList compiled_ext_resources;
Cardinal num_ext_resources;
Boolean use_sub_resources;
XmWidgetNavigableProc widgetNavigable;
XmFocusChangeProc focusChange;
XmWrapperData wrapperData;

} XmBaseClassExtRec, *XmBaseClassExt;

If you want to attach your own BCE record to a (may be self-written) M*TIF widget class, take
these steps:

1© Within your class record, letcore_class.extension point to your BCE record. This
pointer can be set at compile-time.

2© Set theversion member of your BCE record to the valueXmBaseClassExtVersion
(at compile-time). This symbol is defined as soon as you includeBaseClassP.h . Cur-
rently XmBaseClassExtVersion has the value “2”.

3© Initialize thesize member withsizeof(XmBaseClassExtRec) .
4© Initialize therecord_type member withNULLQUARK. This is a constant, defined in the

header fileX11/Xresource.h , and is here used as a dummy for compile-time. At run-
time, within theclass_initialize() method of your widget class you must assign the
value of the global variableXmQmotif to therecord_type member.

5© At run-time, in your widget’sclass_part_initialize() method, set the fast subclass
bit, which represents your widget class, using_XmFastSubclassInit() . More on this
below.

If you don’t need the BaseClass’ whistles and bells for your self-written new widget class and you
subclass from any of M*TIF’s widget classes, then you can skip the steps mentioned above. If you
don’t attach a BCE record to your widget class record you’ll automagically inherit a BCE record
from your widget’s superclass.

Now let’s look at each member of a BCE record in more detail:

14 2. Pandora’s Box: the BaseClass Stuff

XtPointer next_extension;
Used when you need to chain more than one core class extension. Otherwise initialize with
NULL.

XrmQuark record_type;
Indicates the kind of extension record. Within theclass_initialize() method of your
widget class, assign the value of the global variableXmQmotif to record_type .

long version;
Must be initialized with the constantXmBaseClassExtVersion .

Cardinal record_size;
Must be set tosizeof(XmBaseClassExtRec) .

XtInitProc initializePrehook;
XtInitProc initializePosthook;

Pointers to the prehook and posthook methods. The prehook is called right before the first
initialize() method triggers – that is, before Object’sinitialize() . The posthook
is called after the lastinitialize() method has been called – usually this is theinit-
ialize() method of your (self-written) widget class.

Instead of specifying your own prehook or posthook method, you can use the identifiers
XmInheritInitializePrehook and XmInheritInitializePosthook . In this
case your widget class inherits the initialize hooks from its superclass. If you specify a
NULL value as the pointer to a hook method instead, then you effectively disable for your
widget class any initialize hook that may be present in your widget’s superclass.

XtSetValuesFunc setValuesPrehook;
XtSetValuesFunc setValuesPosthook;
XtGetValuesFunc getValuesPrehook;
XtGetValuesFunc getValuesPosthook;

Much the same as the initialize hooks, but this time these hooks guard theset_values()
and get_values() methods of your widget class. If you want to inherit one of these
hooks simply specify the appropiate symbolXmInherit[Set|Get]ValuesPrehook
or XmInherit[Set|Get]ValuesPosthook .

XtWidgetClassProc classPartInitPrehook;
XtWidgetClassProc classPartInitPosthook;

This is the fourth and last set of hooks, this time for hooking up theclass_part_init-
ialize() method. You surely can’t imagine that there are two predefined symbols avail-
able to be used for inheritance:XmInheritClassPartInitPrehook andXmInher-
itClassPartInitPosthook . What a surprise...

WidgetClass secondaryObjectClass;
Specifies the widget class that is used to hold the secondary resources. “Secondary objects”
are used for two main reasons. First, they extend such widget classes that already existed
before M*TIF and now need new resources (especially VendorShell). Second, the secondary
objects work as caches for such gadget resources that are likely to be the same in many gad-
get instances. When you specifyXmInheritClass you’ll inherit the object class specified
by the superclass.

2.2. The Method Hooks 15

XtInitProc secondaryObjectCreate;
Points to the method that creates a secondary object of the class specified insecondary-
ObjectClass . When you specifyXmInheritSecObjectCreate you’ll inherit the ob-
ject creation method from the superclass.

XmGetSecResDataFunc getSecResData;
Points to a function that returns descriptions about secondary resources of a widget class.
The officially documented functionXmGetSecondaryResourceData() (see the man
pages from the CSF) uses this function pointer when an application wants to know what
secondary resources a widget class has.

unsigned char flags[32];
Must be initialized with zeros, that is{0} . Theflags array represents a bit field of the so-
called “fast subclass bits”. Within theflags bit field each bit represents one M*TIF widget
class. If a bit is set, then this widget class is a subclass of the widget class that correspnds to
the flag bit. The class identifiers look likeXmPRIMITIVE_BIT or XmTEXT_FIELD_BIT,
and can be found in the header fileXm/XmP.h. Note that these identifiers are bit numbers
rather than bit masks. Use_XmIsFastSubclass() to check whether a given widget class
has a particular fast subclass bit set.

XtResourceList ext_resources;
– under construction –

XtResourceList compiled_ext_resources;
– under construction –

Cardinal num_ext_resources;
– under construction –

Boolean use_sub_resources;
– under construction –

XmWidgetNavigableProc widgetNavigable;
Points to a method that checks whether a widget is navigable. Depending on the navigability
of the widget the method must return eitherXmNOT_NAVIGABLE, XmTAB_NAVIGABLEor
XmCONTROL_NAVIGABLE. This method pointer is used by_XmGetNavigability()
from the keyboard focus traversal code. When you specifyXmInheritWidgetNavi-
gable for widgetNavigable you’ll inherit the method pointer from the superclass.

XmFocusChangeProc focusChange;
Points to a method that will receive notifications from the keyboard focus traversal code
whenever the focus changes. When you setfocusChange to XmInheritFocusChange
you’ll inherit the method pointer from the superclass.

XmWrapperData wrapperData;
Must be initialized withNULLand will be used lateron by the BaseClass stuff. During run-
time, thewrapperData member points to the most recent entry of the wrapper stack for
this widget class.

16 2. Pandora’s Box: the BaseClass Stuff

2.3 The Method Wrappers

In contrast to the hook methods, the method wrappers are a special set of wrappers for the widget
methodsrealize() , resize() andgeometry_handler() . These three wrappers are only
responsible for a few tasks within the LESSTIF toolkit. Therefore the BCE record has no method
wrapper hooks that could be used by widget writers. The duties of the method wrappers are:

• The wrapper of therealize() method is available only for the VendorShell widget class
and any subclass of it. The wrapper first calls the originalrealize() method and then
it activates all callbacks registered in theXmNrealizeCallback resource of the Vendor-
Shell extension object.
• The resize() wrapper is available for the ExtObject class and any subclass of it. It first

calls the originalresize() method. Afterwards, it calls_XmNavigResize() so the key-
board focus traversal mechanism stays in sync with the mess on the user’s display.
• Thegeometry_handler() wrapper makes sure that the drag&drop mechanism doesn’t

interfere with geometry management.

To see how the method wrappers are implemented, take a look at figure 2.3 that shows this exem-
plary for therealize() method wrapper.

��������

��������
�����
�����
���
���

������

wrapper
RealizeWrapper()

	�	�	
�

base class
extension record

��������

1

2

RealizeWrappern()
(gateway)

fl
ow

 o
f c

on
tr

ol

3

4Callbacks
XmNrealizeCallback

methodrealize()

��
��
���
���

XtRealizeWidget()

superclass

extension
initialize

wrapper

realize

wrapper data

VendorShell
(or any subclass)

Figure 2.3: The method wrappers enclose the non-chained widget methods likerealize() .

Unfortunately, just redirecting therealize() method pointers of all the class records to a wrap-
per method is not enough. How should the wrapper know which (original) method to call later
on? It can’t guess this information just from the widget identifier it got as one parameter to the

2.4. The Widget Extension Data 17

method call: the intended method could be either from the widget’s class or from one of the super-
classes. A smart solution would be to generate dynamically a short piece of machine code (called
a “thunk” in M$-babble) that is called before the wrapper. This piece of code then would supply
the missing information to the wrapper method. Unfortunately, this isn’t portable coding and is
therefore useless to a project like M*TIF or LESSTIF.

As a way out, M*TIF as well as LESSTIF use a set of predefined wrapper “gateways” (marked
with a 1© in figure 2.3) that are statically compiled into the toolkits. In the case of therealize()
method there are eight wrapper gateways calledRealizeWrapper0() through Realize-
Wrapper7() . They all just call the realrealize() wrapper 2© and supply to it an additional
parameter that is the distance between the widget class the gateway belongs to and the Vendor-
Shell class. For example, therealize() gateway of the VendorShell widget class has a distance
of zero, whereas the XmDialogShell widget class has a distance of two.

Armed with the distance, the wrapper can then call the rightrealize() method 3© by substract-
ing the distance, that the gateway indicated, from the distance of the class of the current widget,
then walking up the according number of superclasses, and fetching the old method pointer from
the wrapper data record of that superclass.

The description above applies to theresize() andgeometry_handler() wrappers as well.
The only difference is that the distance is now measured from the ExtObject class instead. In the
case of thegeometry_handler() the distance should probable have been measured from the
Constraint class and not from the ExtObject class. But as M*TIF can’t count, we can’t either for
compatibility reasons.

There are eleven gateway levels available for theresize() method and ten levels for thegeom-
etry_handler() method. So there is still room for larger widget class trees subclassed from
XmPrimitive (six levels) and XmManager (only four levels due to the bug just mentioned) – but
you have to live with these built-in limits, whether you want or not.

2.4 The Widget Extension Data

The widget extension data mechanism is a set of stacks that operate on a per-widget basis. You
can push “extension data” (that is in the end a pointer to any block of memory) on a stack which
belongs to a particular widget, peek at the data at any time, and finally pop it off the stack and free
it.

LESSTIF uses the extension data mechanism for managing secondary objects and protocol objects.
In order that LESSTIF doesn’t mix up extension data intended for different purposes the extension
data is “typed” or “tagged”. Each widget has a different stack for each type/tag of extension data.

The heart of the widget extension data mechanism is a set ofXContext s (you can findXCon-
text s throughout the whole LESSTIF toolkit). With the help of the contexts you can associate
a particular tagged stack of extension data with a widget (figure 2.4). The stacks for their part
contain pointers to the extension data we’re interested in.

18 2. Pandora’s Box: the BaseClass Stuff

XContexts

tag/extension type
(XmSHELL_EXTENSION,...)

(XmWidgetExtRec,...)

widget

widget extension data stack

extension data

Figure 2.4: A close look at the widget extension data mechanism.

There are currently five extension data tags defined – see table 2.1. Gadgets use extension data that
consists of aXmWidgetExtDataRec structure, which is tagged as aXmCACHE_EXTENSION.
VendorShells use the sameXmWidgetExtDataRec structure but tag them as aXmSHELL_EX-
TENSION.

Identifier Value
XmCACHE_EXTENSION 1
XmDESKTOP_EXTENSION 2
XmSHELL_EXTENSION 3
XmPROTOCOL_EXTENSION 4
XmDEFAULT_EXTENSION 5

Table 2.1:Tag identifiers for widget extension data

A third use of the widget extension data mechanism is to manage a list of protocol objects in a
XmAllProtocolsMgrRec structure tagged asXmPROTOCOL_EXTENSION. The protocol ob-
jectes are used to store information, so VendorShells can communicate with the window manager.
The identifierXmDEFAULT_EXTENSIONis only used by the (generic) ExtObject class and nor-
mally not needed. The use of theXmDESKTOP_EXTENSIONis currently not known – it might be
related to COSE/CDE.

As you can see from the previous explanations, the data structureXmWidgetExtDataRec plays
an important role for the BaseClass stuff. So let us examine it in more detail:

typedef struct _XmWidgetExtDataRec
{

Widget widget;

2.4. The Widget Extension Data 19

Widget reqWidget;
Widget oldWidget;

} XmWidgetExtDataRec, *XmWidgetExtData;

With Gadgets, the memberwidget of a XmWidgetExtDataRec points to the secondary ob-
ject that acts as a cache for a set of the gadget’s resources. The membersreqWidget and
oldWidget look suspiciously like the parameters from aintialize() , set_values() or
get_values() method of a widget. In fact, they are used much the same, but this time they
refer to a secondary object or a copy of the secondary object. Figure 2.5 illustrates this exemplary
for theset_values() method.

XmNleftMargin,
XmNalignment,
XmNlabelType,
...

XmNx, XmNy,
XmNwidth,
XmNheight,
XmNtraversalOn,
XmNhelpCallback,
...

XmNleftMargin,
XmNalignment,
XmNlabelType,
...

XmNx, XmNy,
XmNwidth,
XmNheight,
XmNtraversalOn,
XmNhelpCallback,
...

set_values(current, request, set)

widget extension
data stack

widget
reqWidget
oldWidget

XmNleftMargin,
XmNalignment,
XmNlabelType,
...

XmNx, XmNy,
XmNwidth,
XmNheight,
XmNtraversalOn,
XmNhelpCallback,
...

gadget instance
(and temporary copies)

secondary object instance
(and temporary copies)

XmCACHE_EXTENSION

Figure 2.5: The widget extension data mechanism helps to organize and manage secondary ob-
jects within some widgets methods.

What you’ve just read about gadgets and their widget extension data applies to VendorShells al-
most the same. The only exception is that LESSTIF is lazy and in this case it creates the sec-
ondary object – which is a VendorShell extension object – usingXtCreateWidget() . Thus
it needs not to take care ofreqWidget and oldWidget . Only the widget member in the
XmWidgetExtDataRec is used to point to the VendorShell extension object (figure 2.6). A link
(ext.logicalParent) within each instance of an ExtObject leads the way back to the Vendor-
Shell.

There are four – or rather three – functions within the BaseClass module that work with the widget
wrapper extension data.
void _XmPushWidgetExtData(Widget widget, XmWidgetExtData data,

unsigned char extType);
Pushes an extension data record pointed to bydata on the appropriate stack for extension
data of typeextType of the widget specified bywidget .

20 2. Pandora’s Box: the BaseClass Stuff

widget extension
data stack

widget
(reqWidget)
(oldWidget)

VendorShell
extension objectVendorShell

XmSHELL_EXTENSION

XmWidgetExtRec

ext.logicalParent

Figure 2.6: The widget extension data represents the link between a VendorShell and its extension
object.

void _XmPopWidgetExtData(Widget widget, XmWidgetExtData *dataRtn,
unsigned char extType);

Pops off the most recent entry from the stack for extension data of typeextType for the
widgetwidget . The pointer to the data is returned indataRtn . You are responsible to free
the data when you don’t need it any longer.

XmWidgetExtData _XmGetWidgetExtData(Widget widget,
unsigned char extType);

Nondestructively fetches an extension data record. If there is currently no extension data of
typeextType on the stack ofwidget then the function returnsNULL. Otherwise it returns
a pointer to the most recent extension data record but does not pop it off the stack.

void _XmFreeWidgetExtData(Widget widget);
This one was surely implemented by some joker at the CSF. When called, it’ll simply print
out a warning that this function isn’t supported. To be compatible, LESSTIF spits out an odd
warning, too. Maybe_XmFreeWidgetExtData() once was intended to free all extension
data that is associated with a particular widget. Maybe it was just a red herring.

2.5 Other Undocumented Stuff

There are a few undocumented functions and macros remaining that belong to the BaseClass stuff.
XmGenericClassExt *

_XmGetClassExtensionPtr(XmGenericClassExt *listHeadPtr,
XrmQuark owner);

Can be used either to query any widget extension record you like or a BCE record. The
parameterlistHeadPtr must point to thepointer to the head of the list. Setowner to
the kind of extension you’re looking for. If you look out for a BCE record use the macro
_XmGetBaseClassExtPtr() instead.

_XmGetBaseClassExtPtr(wc, owner)
This macro is defined inXm/BaseClassP.h and tries to find a extension record of type

2.5. Other Undocumented Stuff 21

owner and then returns apointer to the pointer to the extension record. Typically, you’ll
use this macro to locate a BCE record of a particular widget class:

XmBaseClassExt *ext;
int version;

ext = (XmBaseClassExt *)_XmGetBaseClassExtPtr(XtClass(w), XmQmotif);
version = (*ext)->version; /* access any structure member */

Boolean _XmIsStandardMotifWidgetClass(WidgetClass wc);
Checks whether the widget classwc is a standard widget class of M*TIF and then returns
True . If the widget class to be tested isn’t a standard widget class, the function returns
False . The test is mainly based on the fast subclass bits within the base class extension
records each widget class of M*TIF has. The widget class given inwc is considered to be a
standard class if either:

– its superclass does not have a base class extension record (like XmPrimitve and Xm-
Manager),

– or the fast subclass bits of the widget classwc differ in at least one bit from the fast
subclass bits ofwc’s superclass. This way a self-written widget which is, for example,
derived from XmManager and uses no new fast subclass bit, won’t be considered to be
from M*TIF’s core widget set.

Only the fast subclass bits 0–191 belong to standard M*TIF widget classes, whereas the bits
192–255 are application-specific. Therefore the checks will include only the fast subclass
bits in the range from bit 0 up to bit 191.

Boolean _XmIsSlowSubclass(WidgetClass wc, unsigned int bit);
If the widget class specified inwc has the fast subclass bit with the bit numberbit set, this
function returnsTrue . Otherwise it returnsFalse .

_XmIsFastSubclass(wc, bit)
This is not a real C function but rather a macro defined inBaseClassP.h . It checks
whether the fast subclass bit with the bit numberbit is set in the base class extension record
of the widget classwc. If so, _XmIsFastSubclass() returnsTrue . If the fast subclass
bit is either not set or the widget class has no base class extension record, the macro returns
the valueFalse .

_XmFastSubclassInit(wc, bit_field)
This is not a real C function but rather a macro defined inBaseClassP.h . It sets the fast
subclass bit with the bit number ofbit_field .

void _XmInitializeExtensions(void)
This function initializes the BaseClass stuff. It is ordinarily called when the first VendorShell
widget is created (typically withinXtAppInitialize()) and sets up theXmQmotif
quark. Finally, it hooks the prehook wrappers into the ExtObject class. Normaly, you would
not need to call_XmInitializeExtensions() directly.

22 2. Pandora’s Box: the BaseClass Stuff

3
Diverting User Input with Grabs

Harald Albrecht

24 3. Diverting User Input with Grabs

3.1 Introduction

A “grab” is a mechanism that changes the way in which user input events – from the mouse or
the keyboard – are reported. In addition to the Xlib grabs, which change the handling of user
input within the X server (and which I’m not going to discuss here), the Xt Intrinsics add a sec-
ond grab layer: the “Xt grabs”. They are similar to the Xlib grabs in that they change the way
user input events are reported. But the Xt grabs work entirely within an application and there-
fore do not affect other applications using the same X server: the central event dispatch function
XtDispatchEvent() is mainly responsible for the Xt grab mechanism.

Without going too much into the dirty details, it is important to know that the Xt Intrinsics maintain
a grab list. If this list is not empty, only the widgets on the list, as well as their child widgets, will
receive input events. Widgets can be added to the end of the grab list either as exclusive or non-
exclusive. Only the widgets on the list from the most recently added exclusive widget to the end
will receive input events. This way, adding a widget to the grab list exclusively will keep any user
input events away from the widgets (and their children) that were already on the list. In the end,
the grab list treats the widgets as a cascade. When you remove a widget from the list, all widgets
that were added after it are removed, too.

M*TIF uses a different approach to the grab mechanism. Whereas the Intrinsics’ concept of a grab
cascade is sensible for a set of cascading menus, it isn’t for modal dialogs. If there are two modal
dialogs visible, popping down the older one should not remove the younger one from the grab
list. Unfortunately, to achieve the desired grab behaviour M*TIF uses a completely undocumented
grab layer, so the usual omnipotent disclaimer applies: continue reading at your own risk. All
knowledge about M*TIF’s grab layer results from investigations done on the “living subject” with
the help of a nice test program that can pretty-print various data trees to the console. The test
program lives in$(LESSTIF_ROOT)/testXm/extobj/test2.c .

3.2 The Grab Layer and the Grab List

To be compatible with M*TIF’s grab concept, LESSTIF maintains its own grab list somewhat
paralleling that inside the Xt Intrinsics. Whenever LESSTIF removes a grab from a widget by
calling XtRemoveGrab() it puts back on all the widgets that are on its own list after the widget
just removed.

LESSTIF manages the grabs on a per-display basis, thus you can find each grab list in the instance
variablemodals within the instance record of aXmScreen widget. The number of entries allo-
cated for the list is stored in themaxModals instance member, whereas thenumModals member
– as usual – indicates how many entries currently are in use.

Two pure internal functions work on the private grab lists:

• LTAddGrab() adds a new widget to the grab list as either exclusive or non-exclusive.
• LTRemoveGrab() removes a widget from the grab list and puts back on all the widgets

that were after it on the list.

3.2. The Grab Layer and the Grab List 25

Because the grab lists are mainly used to achieve dialog modality, and dialogs are eventually
special shells, you can find the implementation ofLTAddGrab() and LTRemoveGrab() in
$(LESSTIF_ROOT)/libXm/Vendor.c .

Two additional functions – although not mentioned in the official documentation – are visible
outside theVendor.c module and provide access to M*TIF’s grab layer (the interface functions
are needed by the drag & drop mechanism and the menu system):

void _XmAddGrab(Widget wid, Boolean exclusive, Boolean spring_loaded);
void _XmRemoveGrab(Widget wid);

They both can be used just the same way as their counterparts from the Xt Intrinsics. It is very
importantnever to useXtAddGrab() or XtRemoveGrab() as this will put LESSTIF’s grab list
out of sync with the Xt grab list.

Each entry of LESSTIF’s grab list stores detailed information about a single grab:

typedef struct _XmModalDataRec {
Widget wid;
XmVendorShellExtObject ve;
XmVendorShellExtObject grabber;
Boolean exclusive;
Boolean springLoaded;

} XmModalDataRec, *XmModalData;

The memberswid , exclusive , andspringLoaded of the XmModalDataRec structure re-
cord the values of the function parameters from the call toLTAddGrab() or _XmAddGrab() .
This way, whenever removing a grab, LESSTIF can restore the grabs that were on the list after that
grab.

When working with primary application modal dialogs, LESSTIF needs to remember such dialogs
in grabber so it can remove, later on, any additional grabs it had to add in order to achieve the
primary application modality. Thegrabber member, as well asve , is not an ordinary widget ID
but rather links to a so-called extension object of a vendor shell. I’ll discuss this below in more
detail.

3.2.1 Full Application Modal Dialogs

With a full application modal dialog on the display, the user must respond to it before she or he
can do anything else in the application. To achieve this effect, LESSTIF must block out any user
input events which are not meant for the full application modal dialog. LESSTIF therefore issues
an exclusive grab on the shell widget of the dialog – see figure 3.1. In this figure, as well as in the
next few ones, I’ll leave out those child widgets of shell widgets that aren’t shells themselves –
otherwise the figures would be overcrowded.

In addition, in the following figures you’ll see some entries on the grab list that are framed by thick
edges. These entries form the “active Xt modal cascade”: user input events are dispatched only to

26 3. Diverting User Input with Grabs

those widgets (as well as to their children) that are part of the active Xt modal cascade. The active
Xt modal cascade always starts with the most recent exclusive grab.

wid =
exclusive = False

#1 1

2

grab is set on a shell
has parental shell

321 creation order of shells

receives no user input events
active Xt modal cascade

dialog shell
(full application modal)

wid =#2

Grab List Shell Hierarchy

top level shell

exclusive = True

Figure 3.1: Entries on the grab list after a full application modal dialog popped up.

You may already be wondering why there is another (non-exclusive) grab in slot #1 of the list,
just before our exclusive grab for the application modal dialog. This non-exclusive grab belongs
to the top level shell of the application. LESSTIF installs such grabs on every VendorShell (or any
subclass of) which does not serve as a popup shell (that is, as a dialog). Otherwise the top level
shell of an application and any of its children won’t receive input anymore as soon as a modeless
dialog shows up, because modeless dialogs use grabs, too.

3.2.2 Modeless Dialogs

Although somewhat weird at a first glance, LESSTIF even installs a (non-exclusive) grab on the
shells of modeless dialogs – see grab entry #3 in figure 3.2.

wid =
exclusive = False

#1

2

1

3

grab is set on a shell
has parental shell

321 creation order of shells

receives no user input events
active Xt modal cascade

dialog shell
(full application modal)

dialog shell
(modeless)

wid =#2

Grab List Shell Hierarchy

top level shell

exclusive = True
wid =#3
exclusive = False

Figure 3.2: Entries on the grab list after a modeless dialog popped up.

3.2. The Grab Layer and the Grab List 27

The reason for this is that from LESSTIF’s point of view the dialogs and their grabs don’t form a
cascade. Thus, if you pop up a modeless dialog whenever a full application modal dialog is already
active, the new dialog should receive user input too – even if the modeless dialog is created as a
child of the other dialog’s parent and not as a child of the full application modal dialog.

3.2.3 System Modal Dialogs

System modal dialogs are much the same as full application modal dialogs. But with system modal
dialogs, the user must respond to the dialog before doing anything else inanyapplication. Because
an exclusive Xt grab is only effective within the application, any LESSTIF application needs ad-
ditional help from the window manager to make a dialog system modal. Currently, onlymwm(and
thuslmwm) provides the help needed. If there is no suitable window manager present, the system
modal dialog behaves like any full application modal dialog.

In the case of a system modal dialog the grab list looks like the one presented in figure 3.2.

3.2.4 Primary Application Modal Dialogs

A primary application modal dialog (what a name!) is the fourth – and last – kind of LESSTIF’s
dialog types. Whenever such a dialog is visible, the user can interact with any dialog that isnot a
parent of the primary application modal dialog, just as with any other top level shell. Unfortunately,
the behaviour just described isn’t suited to the Xt grab mechanism at all. LESSTIF therefore has to
do some work behind the scenes to get the desired grab behaviour: it must reissue all grabs that do
not belong to any of the parental shells of our primary application modal dialog. A more elaborate
example, figure 3.3, shows the grab list after a primary application modal dialog popped up.

wid =
exclusive = False

#1 1

3

2

grab is set on a shell
has parental shell

321 creation order of shells

receives no user input events
active Xt modal cascade

dialog shell
(full application modal)

dialog shell
(modeless)

wid =#2

Grab List Shell Hierarchy

top level shell

exclusive = False
wid =#3
exclusive = True
wid =
exclusive = False

#4

Figure 3.3: Entries on the grab list after a full primary application modal dialog popped up.

For some reason – yet not fully understood – M*TIFreissues the grabs for the shells, which aren’t

28 3. Diverting User Input with Grabs

parents of the primary application modal dialog, only ifmwmis present. Users of other window
managers – like the famousfvwm – look (literally spoken) into the tube.

When popping down a primary application modal dialog, LESSTIF must get rid off all those grabs
that once were necessary to get the desired grab behavior. In figure 3.3 the two grabs in the slots #2
and #4 are belonging to themodelessdialog 3©. But only the grab from slot #4 must be removed
together with the grab #3 that belongs to the primary application modal dialog.

This is where thegrabber member mentioned above comes in. In the case of a primary applica-
tion modal dialog thegrabber links to an object (of classXmVendorShellExtObject) that
belongs to the shell widget of the primary application modal dialog. All we then have to do inside
LTRemoveGrab() is to remove all grabs from the list whosegrabber belongs to the primary
application modal dialog just popped down. In other cases of dialog grabs the membergrabber
links to the extension object of the same shell as referenced inwid .

3.3 Creating Dialog Shells the Right Way

There are two major ways of creating dialog shells:

• Either usingXtCreatePopupShell() or one of theXmCreate*Dialog() functions.
The latter ones just stand on the shoulders ofXtCreatePopupShell() but hide this to
some extend from the programmer.XtCreatePopupShell() also adds the shell widget
just created to the parent’s list of popup shells. All widgets (but neither gadgets nor objects)
maintain such lists.
• UsingXtCreateWidget() – and thus the same way as “ordinary” widgets are commonly

created. If the parent of a shell is of class Composite (or any subclass of) then the (shell)
widget is added to the parent’s list of child widgets – which must be distinguished from the
list of popup shells.

Although not recommended,XtCreateWidget() is widely used for creating dialog shells or
shells in general (shame on me, too. Where’s the sack and the ash?). Maybe the most prominent
reason for this is that it makes widget creation more uniform. At the first look there seems to be
no reason why to useXtCreatePopupShell() anyway. But M*TIF needs to know for its grab
layer whether a shell widget serves as an ordinary top level shell (and thus has no modality) or as
a dialog shell. In the latter case theXmNdialogStyle resource of a BulletinBoard-derived child
of a dialog shell controls the dialog modality and eventually the grabs used.

The only way currently known to distinguish ordinary shells from shells working as popup dialogs
is to check whether the shell is registered with the parent’s list of popup shells. But this will fail
miserably if the dialog shell was created usingXtCreateWidget() instead ofXtCreate-
PopupShell() . In that case the dialog shell first sets an unnecessary non-modal grab as soon
as the shell is realized. Finally, when popping up the dialog, theLTShellPopupCallback
callback sets the real (modal or non-modal) grab. Fortunately the first and unnecessary non-modal
grab doesn’t hurt very much – it just pollutes M*TIF’s grab list. But the user won’t notice that
anyway.

3.4. Extending the VendorShell 29

3.4 Extending the VendorShell

The objects of theXmVendorShellExtObject class serve for two purposes. First, they provide
storage for resources that are new with M*TIF’s particular VendorShell. Second, they form a tree
(or hierarchy) which shadows the instance hierarchy of all the shell widgets an application has.
From now on I’ll refer to this hierarchy as the “shadow shell tree”. But first some more information
about the rather less-spotted vendor shell extension objects.

By definition a VendorShell is a subclass of a WMShell and allows software vendors to provide
new resources, class methods, etc. to support their custom window managers. So much for theory.
In practice the spirit (idea) was willing but the flesh (the implementation)is still weak. If you
would have to write your own VendorShell widget class that has additional instance variables
(“resources”) you would be in trouble – or rather those programmers writing their X applications
using your new VendorShell. As several widget classes are derived from the VendorShell class
(for example the TransientShell, the TopLevelShell and the ApplicationShell, see figure A.1 on
page 122) these classes then would have to be recompiled. Otherwise the VendorShell part of an
already compiled and older ApplicationShell would differ from that part of a new VendorShell. At
this point the object-orientated approach simply can’t handle the case where you need to replace a
classwithin the class tree.

Historically, the CSFneededto add new resources to the VendorShell to support resolution inde-
pendance, specific MWM functions and other “features”. But extending the existing VendorShell
was not desirable at all, as mentioned above, so the programmers at the CSF took another ap-
proach.

With M*TIF, every VendorShell widget (as well as every widget created from a subclass of Ven-
dorShell) is accompanied by a so-called VendorShell extension object. This VendorShell extension
object (or “VSE object” for short) is a descendant of XmDesktopObject, XmExtObject, and thus
finally of the Intrinsics’ Object class (see figure 3.4).

The Object class was made public in X11R4 to enable programmers to use the Intrinsics’ classing
and resource handling mechanisms for things besides widgets. Within M*TIF, the VSE objects
serve to hold all the instance variables (resources) that had to be added to the VendorShell class
after the Xt Intrinsics had already been written down.

The starting point for all kind of extension object classes within LESSTIF is the XmExtObject
class. This class provides for synthetic resources as well as external resources. In addition, every
instance of a XmExtObject contains a pointer to its “logical parent” (resourceXmNlogical-
Parent) that is the widget that owns the extension object (or that the extension object extends).
You’ll never find a XmExtObject in its logical parent’s child list. One reason is that M*TIF seems
to use some kind of self-craftedXtCreateWidget() when creating extension objects. A second
reason is that LESSTIF currently uses a call toXtCreateWidget() when creating VSE objects.
To cite Mitch, the affected logical parents keep “those pesky [extension] objects” out of the child
list using specialinsert_child() anddelete_child() methods.

30 3. Diverting User Input with Grabs

Object

RectObject

unnamed

Core

XmExtObject

XmDesktopObject

XmVendorShellExtObject XmWorldObject XmScreen

XmDialogShellExtObject

(XmDesktopObject)

LessTif class

Xt Intrinsics’ class

Figure 3.4: Class hierarchy for extension objects.

3.5 The Shadow Shell Tree

The VSE object (XmVendorShellExtObject) is subclassed from the XmDesktopObject class which
in turn is subclassed from XmExtObject. Whereas the XmExtObject only knows of an associated
“logical parent”, the XmDesktopObject class introduces the concept of children to the extension
objects (see figure 3.5).

The children of a XmDesktopObject (which must be either XmDesktopObjects again or a subclass
of) are managed in a list much the same way Composite does. But as extension objects have no real
parent (only a logical parent which is merely an associated widget) the XmDesktopObject class
adds a new resource calledXmNdesktopParent . It links to the parental object this particular
XmDesktopObject is a child of. All the XmDesktopObjects form a “shadow tree” of the shell
instance hierarchy. This tree is much like the well-known widget instance tree any application has
– but this time any widgets that are not shells are left out.

At the top of the tree of XmDesktopObjects there is always a XmScreen widget. But as the Xm-
Screen class is adirect subclass of Core and not of Composite it can’t manage a list of children –

3.5. The Shadow Shell Tree 31

XmDesktopObject
XmDesktopObject

XmScreen

Associated Widget XmDesktopObject

XmDesktopObject

XmDesktopObject

ext.logicalParent

desktop.children

desktop.parent

Figure 3.5: The XmDesktopObjects form a tree of XmDesktopObjects with a XmScreen widget at
the top.

at least from the Xt Intrinsics’ point of view. This is there the Desktop class part comes in a second
time as “Nobody expects the Spanish Inquisition...”. Oops – wrong movie.

In figure 3.4 you can see the XmDesktopObject (surrounded by dashed edges) reappearing at the
branch between the Core class and the XmScreen class. At this point the principle of inheritance
is somewhat broken as the XmScreen class is adirect subclass of Core. But XmScreen extends
the instance record of the Core class not only by its own XmScreen-specific part but also by the
XmDesktop-specific part.

This makes creating and inserting XmDesktopObjects ponderous because every such object must
push its (desktop) parent to be inserted into the parent’s list of children. But remember that the par-
ent can be not only another XmDesktopObject but also a XmScreen widget. Thus, both XmDesk-
topObject as well as XmScreen provide methods through their desktop part within the class record
for inserting (insert_child()) and deleting (delete_child()) a single child.

Whenever a XmDesktopObject is created, and itsXmNdesktopParent resource is notNULL, it
calls theinsert_child method that is appropiate for the respective parent. As an example how
this is done here is theinitialize() method of the XmDesktopObject class (ripped of from
$(LESSTIF_ROOT)/libXm/Desktop.c):

static void initialize(Widget request, Widget new_w,
ArgList args, Cardinal *num_args)

{
Widget desktopParent;
XtWidgetProc insertChild;

Desktop_Children(new_w) = NULL;
Desktop_NumChildren(new_w) = 0;
Desktop_NumSlots(new_w) = 0;
desktopParent = Desktop_Parent(new_w);
if (desktopParent) {

if (_XmIsFastSubclass(XtClass(desktopParent), XmSCREEN_BIT)) {
insertChild = ((XmScreenClassRec *) XtClass(desktopParent))->

desktop_class.insert_child;
} else {

insertChild = ((XmDesktopClassRec *) XtClass(desktopParent))->
desktop_class.insert_child;

32 3. Diverting User Input with Grabs

}
if (insertChild == NULL) {

_XmError(new_w,
"insert_child method of my desktop parent is NULL");

}
insertChild(new_w);

}
} /* initialize */

The XmScreen widget at the top of the tree of XmDesktopObjects isn’t yet the end of the road.
Instead there’s still another level represented by a XmDisplay widget (see figure 3.6). M*TIF cre-
ates such XmDisplay widgets for every display connection an application opens. The XmDisplay
widget then gathers the various shadow shell trees via XmScreen widgets under its hood.

XmVendorShellExtObject
XmVendorShellExtObjectXmVendorShellExtObjectXmVendorShellExtObject

XmVendorShellExtObject

XmVendorShellExtObject

XmScreen

XmVendorShellExtObject

XmDisplay

XmScreen

XmVendorShellExtObject

XmVendorShellExtObject

per display

per screen

per shadow shell tree

Figure 3.6: The shadow shell tree is organized by XmScreen widgets which are in turn gathered
under the hood of a XmDisplay widget.

From time to time you need to look up the VSE object for a given VendorShell widget. For this
you’ll need the help of_XmGetWidgetExtData() from the BaseClass stuff. During initializing,
every VendorShell widget creates a widget extension data record of typeXmWidgetExtDataRec
and pushes it on an extension data stack that LESSTIF maintains for some widget (and gadget)
classes. The memberwidget of such a widget extension data structure finally points to the VSE
object for the VendorShell. The following code excerpt shows how to find a VSE object using
_XmGetWidgetExtData() .

Widget vendorShell;
XmVendorShellExtObject ve;
XmWidgetExtData extData;

/* vendorShell references a VendorShell widget */
extData = _XmGetWidgetExtData(vendorShell, XmSHELL_EXTENSION);
ve = extData->widget;
/* ve now references the VSE object */

4
Messy Geometry Management

Danny Backx
Mitch Miers

34 4. Messy Geometry Management

4.1 Introduction

This chapter describes the way in which LessTif widgets handle their geometry negotiations. As
geometry management is a subject that has much to do with the Xt Intrinsics, part of this document
describes (what we understand of) the Xt geometry model.

The Xt geometry model is based on geometry negotiations: every change that a widget wants to
apply to its own geometry must first be approved by the widget’s parent. The resources of the
widget that are part of this geometry negotiation mechanism are:

• the position coordinatesx andy ,
• thewidth andheight ,
• and finallyborder_width .

A widget can request a geometry change by usingXtMakeGeometryRequest() or XtMake-
ResizeRequest() . WhereasXtMakeGeometryRequest() can be used to change all five
geometry resources mentioned above,XtMakeResizeRequest() only allows a widget to re-
quest a different size (width and/or height) and is in the end just a convenience function for such
cases where the position of your widget doesn’t matter.

In addition, LESSTIF has a convenience function called_XmMakeGeometryRequest() which
callsXtMakeGeometryRequest() . But more on it below.

4.2 Making Geometry Requests

4.2.1 The Xt Intrinsics Way

The function prototype ofXtMakeGeometryRequest() is as follows:

XtGeometryResult
XtMakeGeometryRequest(Widget w,

XtWidgetGeometry *desired,
XtWidgetGeometry *allowed);

This function should be called from the widget which is passed as the first parameter. The second
parameter describes the geometry that the widget would like to have. The last parameter returns
the geometry that the widget got, in some circumstances. Finally, the result of the function is a
value indicating whether the request has been granted.

TheXtWidgetGeometry structure contains the five fields indicated above (position, extend, and
border width), together with a bitset in which you can indicate which fields have been initialized.
In the return parameter, the bitset will also indicate how much information is valid. A common
mistake is to assume that the parent widget will always set the width and height values, and to just
read those fields without looking at the flags.

4.2. Making Geometry Requests 35

The bitset field is calledrequest_mode . It can be set using an OR of zero or more of the
macrosCWX, CWY, CWWidth, CWHeight andCWBorderWidth , each of which has exactly one
bit set. A final bitXtCWQueryOnly is currently not used within LESSTIF. When set, the call to
XtMakeGeometryRequest() will return a result without changing anything to the widget.

The result ofXtMakeGeometryRequest() can have four values:

• XtGeometryYes : Means that the request has been granted.
• XtGeometryDone : The request has been granted, also it has been applied to the widget.

According to "X Window System Toolkit" by Asente & Swick, a widget set should choose a
policy: either useXtGeometryYes in all widgets, or useXtGeometryDone . In LESSTIF,
we’ve chosen theXtGeometryYes approach.

• XtGeometryNo : You can guess this by now: the request has not been granted. Many man-
ager widgets (subclasses of XmManager) in LESSTIF will return this when they get a request
to change thex or y field (that is, the position) of a child widget.

• XtGeometryAlmost : This is a very useful but difficult return value. It means that the
request has not beencompletelygranted, and theallowed parameter returns a suggested
geometry. If the widget takes the suggestion and callsXtMakeGeometryRequest() with
that same set of values, the parent widgetmustallow this request. That’s the hard part.

4.2.2 The LessTif Way

The function prototype of this geometry negotiation convenience function is:

XtGeometryResult
_XmMakeGeometryRequest(Widget w, XtWidgetGeometry *desired);

This function is a wrapper aroundXtMakeGeometryRequest() . First, it asks the parent of the
widget specified as the first parameterw for the new geometry (given indesired). If the parent’s
answer isXtGeometryAlmost , then_XmMakeGeometryRequest() takes a second round,
asking the parent ofw again, but this time using the geometry proposed by the parent. Then it
returns.

Another programming mistake (introduced by Asente & Swick): given the Xt rule aboutXtGeo-
metryAlmost , you could happily program a loop in which you keep callingXtMakeGeo-
metryRequest() until the value is different fromXtGeometryAlmost . The trouble is that
this kind of a loop is only guaranteed to be finite if the parent widget(s) are bug-free. Need I say
more?

_XmMakeGeometryRequest() detects this problem and is verbose about it: you’ll see a warn-
ing, saying that a “Parent refused resize request” together with the name and class of the offending
parent and the widget geometries in question. With LESSTIF, you might occasionally see this
warning, because XmForm currently doesn’t always grant a geometry that it just suggested...

If anybody wants a good exercise in understanding this document, she or he is invited to find this
bug. Really. I’ll only start tracking it myself when I have no serious bugs to attend to. A couple of
beers (real or virtual? Ed.) can be had in Leuven, Belgium, by the first person to fix this.

36 4. Messy Geometry Management

4.3 Geometry Management and the Widget Methods

The basic cycle involved is:

1© Calculate yourpreferred size.
2© Ask for permission of your new preferred size usingXtMakeGeometryRequest() .
3© Run yourlayoutprocedure.

For both primitives and composites, all the following rules for geometry management apply, except
where otherwise stated. The rules mentioned in the subsections for thegeometry_manager() ,
change_managed() , insert_child() anddelete_child() methods apply only to com-
posites. For Constraint widgets (and descendants), you should watch the rules mentioned for the
constraint_initialize() andconstraint_set_values() methods.

Just another note: if you have a composite widget, and this widget has either no children, or
it doesn’t has managed children (by the way,_XmGeoCount_kids() will return zero in the
second case, but the GeoUtils are described in more detail in the next chapter), then you probably
shouldn’t bother in either method to compute the preferred size or the layout – mostly because
you don’t have anything to operate on. Instead you should probably return the current geometry in
query_geometry() .

4.3.1 The initialize() Method

Don’t do anything if you’re a Composite (-derived) widget. You don’t know enough yet (and you
probably don’t have any kids yet, unless the user created you with theXtNchildren resource:
if the user does something like this, they’re on their own). If you are a primitive widget (no pun
intended...), you should know enough to do a basic layout.

4.3.2 The set_values() Method

If a value changed that should cause a layout change, go ahead and recompute the preferred size.
Then, just set your width/height to the computed values: the Xt Intrinisics will automatically see
a change made and callXtMakeGeometryRequest() on your behalf, so (ordinarily) don’t do
the layout step here.

If the request is granted, the Xt Intrinsics will automatically call yourresize() method; that
should be where the layout is done.

Rebuttal: There may be times where this isn’t true. Some resources may require a Composite
widget to re-layout. When doing so, there are a few warnings that should be noted.

• If the user set a resource that triggered a size adjustment, the resize request may not be hon-
ored by the parent. If it is not, and you re-layout, then be aware that you may have layed out
to a geometry that isn’t honored. This can cause (grossly understated) unexpected results.
This case can (and does) happen in Label (and LabelGadget); that’s why there is a call to

4.3. Geometry Management and the Widget Methods 37

theresize() method inexpose() – to make sure the widget is displayed correctly. The
same is true of CascadeButton (and CascadeButtonGadget).

• A superclass may have polluted the widget dimensions, or a resource that changed in a su-
perclass may have altered the widget dimensions to cause a request that may not be honored.
Laying out to this geometry may not be valid either.

Unfortunately, the intrinsics do not notify a widget if the resize request wasn’t honored, so there’s
no way to do a proper job of it unless theexpose() method calls the procedure that is responsible
for the layout. Needless to say, this is not good for performance. One optimization that can be
made is due to the nature ofXtMakeGeometryRequest() (which will be discussed later): if
the widget is not managed, or the parent isn’t realized, then we can be sure that the resize request
will be honored. In this case, we can blithely call our layout procedure and be sure that the request
will be honored.

4.3.3 The resize() Method

You can’t do any geometry negotiation here. You must take the size you currently have, and lay
yourself out to this geometry. This method, in combination withset_values() , show the re-
quirements of the two basic algorithms: one to compute the preferred size, and one to layout to a
given size.

4.3.4 The realize() Method

For primitive subclasses, you probably want to realize your window, and then layout to it’s geom-
etry. For managers, it doesn’t hurt to go through the “preferred size1©” – “ XtMakeGeometry-
Request() 2©” – “layout 3©” cycle again, as things may have changed.

4.3.5 The query_geometry() Method

Call the routine that calculates the preferred size, and return the result if therequest_mode is 0.
Otherwise, return the usual rules of the request versus what you’ve computed.

4.3.6 The geometry_manager() Method

This is the trickiest one. The preferred-size-routine should take two parameters,instigator
and instig_request , and use the values specified ininstig_request when treating the
instigator .

There are two additional rules that you should keep in mind:geometry_manager() doesn’t
get called if the parent isn’t realized; it also doesn’t get called if the child isn’t managed (in both

38 4. Messy Geometry Management

cases, the request is automatically granted). The method should then call_XmMakeGeometry-
Request() . Doing this guarantees that eitherXtGeometryYes or XtGeometryNo is returned
– you’ll never seeXtGeometryAlmost unless a composite has a bug.

Finally the layout function should be called. The layout function should take two additional pa-
rameters, theinstigator and theinstig_request . What to do next depends on the value
that’s going to be returned by thegeometry_manager() method:

• If the result of the layout procedure on the instigator isXtGeometryAlmost , then no
change should be made to the instigator (or for that matter, to any other children in the
composite; this is an important point, and often alters the behavior of the layout method –
doing a configure on a child when the geometry didn’t change just wastes cycles). Instead,
the reply geometry should reflect the layout computed for the instigator.
IMPORTANT : if the instigator calls back with the geometry that you computed, thegeo-
metry_manager() methodmustreturnXtGeometryYes .

• If the result of the layout procedure on the instigator isXtGeometryYes , thechild’s rect-
angle should be modified to reflect the geometry (this is important). You must do this so that
XtMakeGeometryRequest() will reconfigure the requesting child’s window. This is dif-
ferent fromXtGeometryDone in thatXtGeometryDone implies that the window change
was made by the parent, and we don’t do that in LESSTIF. The GeoUtils and RowColumn
do this now.

In the layout function, if the child being manipulated isnot the instigator, then the child should be
configured (normally using_XmConfigureObject()), if the return isXtGeometryYes .

4.3.7 The change_managed() Method

You’ve got to go through the complete cycle of “preferred size1©” – “ XtMakeGeometryRe-
quest() 2©” – “layout 3©”. The Xt Intrinsics don’t help with any of this, so it’s got to be explicit.
Remember that you’ve no instigator here, so all managed children should be configured if a size
change took place.

4.3.8 The insert_child() and delete_child() Methods

These methods are called when a child is added to a manager widget, or when a child is destroyed.
Their use is particularly important in those manager widgets which keep information about their
children in private data structures.

Note that these are unchained methods, which means they are not automatically called for all the
superclasses of a manager widget. XmRowColumn’sinsert_child() needs to call XmMan-
ager’sinsert_child() , which in turn calls the one in its superclass.

4.3. Geometry Management and the Widget Methods 39

4.3.9 The constraint_initialize() Method

Often, this method (if present) will not cause any geometry changes, but does offer an excel-
lent time to capture information that will affect geometry management in the future. This in-
cludes things like theXmNpositionIndex resource (RowColumn), orXmNpaneMinimum and
XmNpaneMaximum(PanedW).

4.3.10 The constraint_set_values() Method

Tricky. In this method, there can be so many interactions that the mind boggles. Quite often, re-
sources that are set here may haveseriousimplications for geometry management (likeXmNposi-
tionIndex), but it is difficult to know when a change should trigger a re-layout. In general,all
of the warnings forset_values() apply.

4.3.11 The Geometry Management Helper Interfaces

There are two sets of two basic functions, that roughly have the following signatures. First, the
ones for primitives:

PreferredSize(Widget w /* input */);
Layout(Widget w /* input with side effects */);

and for composites:

PreferredSize(Widget w, /* input */
Widget instig, /* input */
XtWidgetGeometry *instig_request, /* input */
XtWidgetGeometry *preferred_geom /* output */);

Layout(Widget w, /* input */
Widget instig, /* input */
XtWidgetGeometry *instig_request, /* input/output */
XtWidgetGeometry *preferred_geom /* input */);

For primitives, an example of the function to calculate the preferred size isXmCalcLabel-
Dimensions() . The equivalent layout procedure would be theresize() method. Regardless,
your layout function or preferred-size function can be modified for different behavior as appropri-
ate to your class.

40 4. Messy Geometry Management

5
Fun and Pain with the GeoUtils

Mitch Miers

42 5. Fun and Pain with the GeoUtils

5.1 Introduction

Recreating the behavior implemented in the GeoUtils wasa) not fun, andb) really, really not fun.
They are totally undocumented (as with almost everthing interesting the CSF ever did). What re-
ally kicked off the implementation of the GeoUtils was my discovery of John Cwikla’s SmartMes-
sageBox – without this gem, this work would have been impossible. A round of applause for this
guy, please, and his intentions of “Furthering ‘open software’ into reality. . . ”.

The GeoUtils provide a mechanism by which BulletinBoard subclasses can automatically inherit
geometry management for laying out their children. The good thing about the GeoUtils is that
you get to specifyXtInherit* for most of the class methods for a BulletinBoard subclass. The
drawback is that you lose some flexibility (nevertheless a good tradeoff, because many of these
functions are extremely difficult to write).

The mechanism provides for

• layout changes as a result of a child being managed or unmanaged (the BulletinBoard
change_managed() method),
• layout at realize time (the BulletinBoardrealize() method),
• layout for a resize (the BulletinBoardresize() method),
• a way to generically handle geometry queries from a parent (the BulletinBoardquery_-

geometry() method),
• a way to generically handle geometry change requests from a child (the BulletinBoard

geometry_manager() method),
• and finally a way to re-layout due to changes caused by a call toXt[Va]SetValues (the

subclassset_values() method).

The GeoUtils functions typically begin with_XmGeo(but not all do), whereas the corresponding
BulletinBoard methods, for what the GeoUtils do normally, begin with_XmGM.

5.2 The BulletinBoard Class

There is one and only one clue in a BulletinBoard subclass that indicates that this class wants
to use the GeoUtils – thegeo_matrix_create method in the BulletinBoard class part (see
BulletinBP.h). If this member is notNULL, the GeoUtils are activated for this subclass. The
prototype for this method looks like:

typedef XmGeoMatrix (*XmGeoCreateProc)(Widget composite,
Widget instigator,
XtWidgetGeometry *desired);

Thecomposite widget is (obviously) the BulletinBoard subclass. Theinstigator is used in
thegeometry_manager andquery_geometry methods, as is thedesired geometry (more
on the use of those later).

5.2. The BulletinBoard Class 43

5.2.1 The change_managed() and realize() Methods

Let’s start with the two most similar cases:change_managed() andrealize() . First take a
look at BulletinBoard’schange_managed() method (inBulletinBoard.c in the directory
$(LESSTIF_ROOT)/libXm). Here, in the book, I will present only lines of concern as I talk
about them (otherwise this book would get even larger).

Note that the first thing we do after we enter this method is look to see if the class record for the
widget has ageo_matrix_create() member. If there is one, we callhandle_change_-
managed() and return (more about this on page 44). If there isn’t one, we proceed with generic
BulletinBoard rules.

static void
change_managed(Widget w)
{

Widget p;
XmBulletinBoardClassRec *bb = (XmBulletinBoardClassRec *)XtClass(w);

if (bb->bulletin_board_class.geo_matrix_create) {
handle_change_managed(w, bb->bulletin_board_class.geo_matrix_create);
return;

}

Next, we call a_XmGMEnforceMargin() . This function ensures that the default BulletinBoard
behavior of forcing children to be within the BulletinBoard margins is applied.

_XmGMEnforceMargin(w, BB_MarginWidth(w), BB_MarginHeight(w), False);

Then we clear the old shadow, as what we may do could alter the way the shadow looks.

_XmClearShadowType(w, BB_OldWidth(w), BB_OldHeight(w),
BB_OldShadowThickness(w), 0);

BB_OldShadowThickness(w) = 0;

If we are realized, or our width or height is zero (usually indicating that this is the first child to be
added), we call_XmGMDoLayout() . This function implements the generic BulletinBoard layout
method.

if (XtIsRealized(w) || XtWidth(w) == 0 || XtHeight(w) == 0) {
_XmGMDoLayout(w, BB_MarginWidth(w), BB_MarginHeight(w),

BB_ResizePolicy(w), False);
}

If we shrank, redraw the shadow (theexpose method does this too, but...)

if ((XtWidth(w) < BB_OldWidth(w) || XtHeight(w) < BB_OldHeight(w)) &&

44 5. Fun and Pain with the GeoUtils

XtIsRealized(w)) {
_XmDrawShadows(XtDisplay(w), XtWindow(w),

MGR_TopShadowGC(w), MGR_BottomShadowGC(w),
0, 0, XtWidth(w), XtHeight(w),
MGR_ShadowThickness(w), BB_ShadowType(w));

}

Then, we record our width/height/shadow thickness.

BB_OldWidth(w) = XtWidth(w);
BB_OldHeight(w) = XtHeight(w);
BB_OldShadowThickness(w) = MGR_ShadowThickness(w);

And finally, the required call to_XmNavigChangedManaged() that all Manager subclasses
must do.

_XmNavigChangeManaged(w);
}

If you read the code forrealize() in BulletinBoard.c , you’ll see almost identical code.
The call to_XmNavigChangeManaged() isn’t necessary in therealize() method, as is the
testXtIsRealized() either. Instead therealize() method must chain up to its superclass’
realize() method.

Now, let’s take a look at thehandle_change_managed() method that is called from Bullet-
inBoard’schange_managed() method. We start this function by checking if we are realized, or
if our resize policy allows us to resize (i.e., notXmNONE). If either case is true, we set our desired
width/height to zero; this is a cue to the GeoUtils to compute the desired size of this manager.
If either case is false, we set the desired width/height to our current width/height; this cues the
GeoUtils to lay out the manager to the current geometry (if possible).

static void
handle_change_managed(Widget w, XmGeoCreateProc mat_make)
{

Dimension wd, ht, retw, reth;
XmGeoMatrix geo;
XtGeometryResult result;

if (!XtIsRealized(w))
wd = ht = 0;

else if (BB_ResizePolicy(w) != XmNONE)
wd = ht = 0;

else {
wd = XtWidth(w);
ht = XtHeight(w);

}

We then call the matrix create function. This function is crucial, as the data structures created tell
the GeoUtils how to layout this particular widget.

5.2. The BulletinBoard Class 45

geo = mat_make(w, NULL, NULL);

Next, we call_XmGeoMatrixGet() . This function essentially iterates through all the children
we want to manage, querying each child (except the instigator) for the geometry the child desires.
But note: this isnot the same as all the managed children of this manager. If you forget to represent
a child in the data structures when you create the matrix, that child won’t be considered when you
lay out the manager. Instead, at least in the case of SelectionBox and friends, the results are as
specified in those class’s documentation – usually “undefined” (in practice, they’ll probably get
piled up in the top lefthand corner of the manager).

_XmGeoMatrixGet(geo, XmGET_PREFERRED_SIZE);

Now the real work-horse routine in the GeoUtils is invoked –_XmGeoArrangeBoxes() . This
function “parses” the data structure (the GeoMatrix) and lays out the children according to the
rules defined by the matrix. Caveat: this function doesnot alter the children’s geometry, but in-
stead records the new geometry information in theXmKidGeometry structure contained by the
GeoMatrix.

_XmGeoArrangeBoxes(geo, 0, 0, &wd, &ht);

At this point,_XmGeoArrangeBoxes() has computed the size of the manager as it would ide-
ally like to be. The next code fragment checks theBB_ResizePolicy for a value ofXmRESIZE_-
GROW. If the ideal size is less than the current size, we reject the change (because that would
involve shrinking, and we should only grow). We then must re-layout the manager, by calling
_XmGeoArrangeBoxes() with our current width and height.

if (BB_ResizePolicy(w) == XmRESIZE_GROW) {
/* check the return against the original. If the procedure would

* like the BB to shrink, call again */
if (wd < XtWidth(w) || ht < XtHeight(w)) {

wd = XtWidth(w);
ht = XtHeight(w);
_XmGeoArrangeBoxes(geo, 0, 0, &wd, &ht);

}
}

Now we look to see if any of the above calculations has indicated that the manager wants to resize
(by comparing the computed width and height with the managerXtWidth andXtHeight). If no
change is forthcoming, we just free the matrix and return. Otherwise we continue on.

if (wd == XtWidth(w) && ht == XtHeight(w)) {
_XmGeoMatrixFree(geo);
_XmNavigChangeManaged(w);
return;

}

46 5. Fun and Pain with the GeoUtils

Okay, the manager wants to change size. We callXtMakeResizeRequest() , and ask our parent
if we can change size. Eventually, the parent will respond with the size we can be (hopefully the
size the manager wants, but we can compromise here).

retw = wd;
reth = ht;
do {

result = XtMakeResizeRequest((Widget)w, retw, reth, &retw, &reth);
} while (result == XtGeometryAlmost);

The next fragment of code checks if a compromise was necessary, by evaluating whether the size
our parent said we can be is the same as what we want to be. If the two don’t match, we end up
calling _XmGeoArrangeBoxes() yet again, to arrange our children to suit our parent.

if (retw != wd || reth != ht)
_XmGeoArrangeBoxes(geo, 0, 0, &retw, &reth);

Now that all the geometry calculation has been done, our parent is happy, and the manager is happy,
we can go ahead and do_XmConfigureObject() calls on all our children. That particular job
goes to the function_XmGeoMatrixSet() , which basically processes eachXmKidGeometry
box and configures the widget that the box represents.

_XmGeoMatrixSet(geo);

If we’ve gotten this far, then we are pretty sure the manager’s size has changed. If the manager has
a shadow, now is the time to draw it (after erasing the old one).

if (XtIsRealized(w)) {
_XmClearShadowType(w, BB_OldWidth(w), BB_OldHeight(w),

BB_OldShadowThickness(w), 0);

_XmDrawShadows(XtDisplay(w), XtWindow(w),
MGR_TopShadowGC(w), MGR_BottomShadowGC(w),
0, 0, XtWidth(w), XtHeight(w),
MGR_ShadowThickness(w), BB_ShadowType(w));

}

We’re done with the GeoUtils for now, so we can deallocate the matrix. Then we record our new
width/height/shadow thickness. And finally, the required call to_XmNavigChangedManaged
that all Manager subclasses must do.

_XmGeoMatrixFree(geo);
BB_OldWidth(w) = XtWidth(w);
BB_OldHeight(w) = XtHeight(w);
BB_OldShadowThickness(w) = MGR_ShadowThickness(w);
_XmNavigChangeManaged(w);

}

Therealize() case is identical to this one.

5.2. The BulletinBoard Class 47

5.2.2 The resize() Method

Theresize() method isalmostidentical to the two described above. The most significant differ-
ence is that we aren’t supposed to talk back in this method, but accept whatever size we currently
are, and lay ourselves out accordingly. Thus, that method is missing the calls that request the man-
ager ideal size, and just does layout. Compare theresize() method to thechange_managed()
method above:

static void
resize(Widget w)
{

XmBulletinBoardClassRec *bb = (XmBulletinBoardClassRec *)XtClass(w);
Widget p;

if (bb->bulletin_board_class.geo_matrix_create) {
handle_resize(w, bb->bulletin_board_class.geo_matrix_create);
return;

}
_XmGMEnforceMargin(w, BB_MarginWidth(w), BB_MarginHeight(w), False);
_XmClearShadowType(w, BB_OldWidth(w), BB_OldHeight(w),

BB_OldShadowThickness(w), 0);
BB_OldShadowThickness(w) = 0;
if (XtIsRealized(w) || XtWidth(w) == 0 || XtHeight(w) == 0) {

_XmGMDoLayout(w, BB_MarginWidth(w), BB_MarginHeight(w),
BB_ResizePolicy(w), True);

}
if ((XtWidth(w) < BB_OldWidth(w) || XtHeight(w) < BB_OldHeight(w)) &&

XtIsRealized(w)) {
_XmDrawShadows(XtDisplay(w), XtWindow(w),

MGR_TopShadowGC(w), MGR_BottomShadowGC(w),
0, 0, XtWidth(w), XtHeight(w),
MGR_ShadowThickness(w), BB_ShadowType(w));

}
BB_OldWidth(w) = XtWidth(w);
BB_OldHeight(w) = XtHeight(w);
BB_OldShadowThickness(w) = MGR_ShadowThickness(w);

}

You can also see the similarities inhandle_resize() to handle_change_managed() :

static void
handle_resize(Widget w, XmGeoCreateProc mat_make)
{

Dimension wd, ht;
XmGeoMatrix geo;

wd = XtWidth(w);
ht = XtHeight(w);
geo = mat_make(w, NULL, NULL);
_XmGeoMatrixGet(geo, XmGET_PREFERRED_SIZE);
_XmGeoArrangeBoxes(geo, 0, 0, &wd, &ht);
_XmGeoMatrixSet(geo);
if (XtIsRealized(w)) {

_XmClearShadowType(w, BB_OldWidth(w), BB_OldHeight(w),

48 5. Fun and Pain with the GeoUtils

BB_OldShadowThickness(w), 0);

_XmDrawShadows(XtDisplay(w), XtWindow(w),
MGR_TopShadowGC(w), MGR_BottomShadowGC(w),
0, 0, XtWidth(w), XtHeight(w),
MGR_ShadowThickness(w), BB_ShadowType(w));

}
_XmGeoMatrixFree(geo);
BB_OldWidth(w) = XtWidth(w);
BB_OldHeight(w) = XtHeight(w);
BB_OldShadowThickness(w) = MGR_ShadowThickness(w);

}

5.2.3 The query_geometry() Method

For BulletinBoard, thequery_geometry() method is probably the simplest – it does nothing
on it’s own behalf, but uses either the GeoMatrix (if ageo_matrix_create() method exists),
or the generic method. This simplicity is deceiving; the complexity isn’t visible in BulletinBoard
– it’s been shifted elsewhere.

static XtGeometryResult
query_geometry(Widget w, XtWidgetGeometry *proposed,

XtWidgetGeometry *answer)
{

XmBulletinBoardWidgetClass bbc = (XmBulletinBoardWidgetClass)XtClass(w);
XtGeometryResult res;

if (bbc->bulletin_board_class.geo_matrix_create) {
return _XmHandleQueryGeometry(w, proposed, answer,

BB_ResizePolicy(w),
bbc->bulletin_board_class.

geo_matrix_create);
}
res = _XmGMHandleQueryGeometry(w, proposed, answer,

BB_MarginWidth(w), BB_MarginHeight(w),
BB_ResizePolicy(w));

return res;
}

5.2.4 The geometry_manager() Method

Similar to thequery_geometry() method, thegeometry_manager() method passes the
buck on complexity. It looks somewhat like thechange_managed() , resize() , andrea-
lize() methods, but does both less and more. It does less in terms of code in BulletinBoard, but
the code in the GeoUtils is much more complex, and uses little of the code that the other three
methods use. Also, thegeometry_manager() method uses the “cache” variable in the Bul-
letinBoard Widget instance, for repeated calls togeometry_mananger() whengeometry_-
manager() returnsXtGeometryAlmost .

static XtGeometryResult

5.2. The BulletinBoard Class 49

geometry_manager(Widget w, XtWidgetGeometry *desired,
XtWidgetGeometry *allowed)

{
Widget bb = XtParent(w);
XmBulletinBoardWidgetClass bbc = (XmBulletinBoardWidgetClass)XtClass(bb);

if (bbc->bulletin_board_class.geo_matrix_create) {
return handle_geometry_manager(w, desired, allowed,

bbc->bulletin_board_class.
geo_matrix_create);

}
return _XmGMHandleGeometryManager(bb, w, desired, allowed,

BB_MarginWidth(bb),
BB_MarginHeight(bb),
BB_ResizePolicy(bb),
BB_AllowOverlap(bb));

}

If you read thehandle_geometry_manager() code below, you’ll see a similarity to the
change_managed() , realize() , andresize() code above.

static XtGeometryResult
handle_geometry_manager(Widget w,

XtWidgetGeometry *desired, XtWidgetGeometry *allowed,
XmGeoCreateProc mat_make)

{
Widget bb = XtParent(w);
XmBulletinBoardWidgetClass bbc = (XmBulletinBoardWidgetClass)XtClass(bb);
XtGeometryResult res;

if (!(desired->request_mode & (CWWidth|CWHeight)))
return XtGeometryYes;

if (BB_OldShadowThickness(bb) != 0 ||
BB_ResizePolicy(bb) != XmRESIZE_NONE) {
_XmClearShadowType(bb, BB_OldWidth(bb), BB_OldHeight(bb),

BB_OldShadowThickness(bb), 0);
BB_OldShadowThickness(bb) = 0;

}
res = _XmHandleGeometryManager(bb, w, desired, allowed,

BB_ResizePolicy(bb), &BB_GeoCache(bb),
bbc->bulletin_board_class.

geo_matrix_create);
if (!BB_InSetValues(bb) ||

XtWidth(bb) > BB_OldWidth(bb) || XtHeight(bb) > BB_OldHeight(bb)) {
if (XtIsRealized(bb)) {

_XmDrawShadows(XtDisplay(bb), XtWindow(bb),
MGR_TopShadowGC(bb), MGR_BottomShadowGC(bb),
0, 0, XtWidth(bb), XtHeight(bb),
MGR_ShadowThickness(bb), BB_ShadowType(bb));

}
}
BB_OldWidth(bb) = XtWidth(bb);
BB_OldHeight(bb) = XtHeight(bb);
return res;

}

Finally, we should discuss theset_values() method.

50 5. Fun and Pain with the GeoUtils

5.2.5 The set_values() Method

The set_values method is probably the most straight-forward BulletinBoard method there
is. We aren’t concerned about children wanting to change (the Intrinsics toolkit will use our
geometry_manager() method if that is the case), we’re only concerned with the user changing
us. There is one issue, though –set_values() changes which change our geometry.

The reason for all this is that BulletinBoard, and subclasses of BulletinBoard, have a reasonably
high number of children that are specified in instance variables. Rather than “ripple” the parent’s
geometry handler as children are changed, BulletinBoard and subclasses save them up until the
set_values() method in theclass of the widget being changedis called. The designers of
M*TIF couldn’t stop thegeometry_manager() method from being called, but they added a
mechanism that can control when the negotiation actually occurs.

The BulletinBoard widget has an instance variable called “in_set_values ”. This is a Boolean
that is set when aset_values() method is invoked (keep in mind that theset_values()
method is chained in super- to sub-class order), and clearedalmostat the exit of the method. Right
before the exit, the variable is cleared, and a test is used to see if a size update should be performed.
If you look in BulletinBoard and subclasses in theset_values method, you’ll see the following
code fragment:

if (need_refresh == True && XtClass(new) == xmBulletinBoardWidgetClass)
{

_XmBulletinBoardSizeUpdate(new);
return False;

}

For subclasses, replace the class check with a match for the subclass.

This trigger, in conjunction with an exception procedure (theno_geo_request() field in the
GeoMatrix), keeps thegeometry_manager() from handling possibly conflicting changes in
the widget. During the_XmHandleGeometryManager() call, theno_geo_request() call
is made to see if geometry negotiation should happen. Take a look at theno_geo_request()
in SelectionBox:

Boolean _XmSelectionBoxNoGeoRequest(XmGeoMatrix _geoSpec)
{

if (BB_InSetValues(_geoSpec->composite) &&
XtClass(_geoSpec->composite) == xmSelectionBoxWidgetClass)
return TRUE;

return FALSE;
}

Should a geometry request come from a child duringset_values() , the flagBB_InSet-
Values() will be True , and the negotiation will be delayed.

static Boolean

5.2. The BulletinBoard Class 51

set_values(Widget old, Widget request, Widget new,
ArgList args, Cardinal *num_args)

{
BB_InSetValues(new) = True;
/*

* code block to handle set_values changes
*/

BB_InSetValues(new) = False;

if (XtWidth(new) != XtWidth(old) || XtHeight(new) != XtHeight(old)) {
need_refresh = True;

}
if (need_refresh == True && XtClass(new) == xmBulletinBoardWidgetClass)
{

_XmBulletinBoardSizeUpdate(new);
return False;

}
return need_refresh;

}

Note especially the call to_XmBulletinBoardSizeUpdate() . This should be done in ev-
ery BulletinBoard subclass that uses the GeoUtils. This gives the manager class the oppor-
tunity to handle geometry changes in an instance’s children that have occurred as a result of
set_values() .

The code for_XmBulletinBoardSizeUpdate is as follows:

void
_XmBulletinBoardSizeUpdate(Widget w)
{

XmBulletinBoardWidgetClass bbc = (XmBulletinBoardWidgetClass)XtClass(w);

if (!XtIsRealized(w))
return;

if (bbc->bulletin_board_class.geo_matrix_create == NULL) {
BB_OldWidth(w) = XtWidth(w);
BB_OldHeight(w) = XtHeight(w);
return;

}
if (!BB_OldShadowThickness(w) && BB_ResizePolicy(w) != XmRESIZE_NONE) {

_XmClearShadowType(w, BB_OldWidth(w), BB_OldHeight(w),
BB_OldShadowThickness(w), 0);

BB_OldShadowThickness(w) = 0;
}
_XmHandleSizeUpdate(w, BB_ResizePolicy(w),

bbc->bulletin_board_class.geo_matrix_create);
if ((XtWidth(w) < BB_OldWidth(w) || XtHeight(w) < BB_OldHeight(w)) &&

XtIsRealized(w)) {
_XmDrawShadows(XtDisplay(w), XtWindow(w),

MGR_TopShadowGC(w), MGR_BottomShadowGC(w),
0, 0, XtWidth(w), XtHeight(w),
MGR_ShadowThickness(w), BB_ShadowType(w));

}
BB_OldWidth(w) = XtWidth(w);
BB_OldHeight(w) = XtHeight(w);
BB_OldShadowThickness(w) = MGR_ShadowThickness(w);

}

52 5. Fun and Pain with the GeoUtils

The function_XmHandleSizeUpdate() is very similar to thechange_managed() method,
in that it does layout computation, and requests a size change from the parent.

5.3 The Data Structures

Now that you have a passingly familiar with the basics, let’s digress for a time and take a look at
the data structures involved in the GeoUtils, as they should be understood before we talk about
the implementation of an example subclass. There are three different data structures tangled up in
the GeoUtils layout mechanism (figure 5.1): theXmGeoMatrix controls how the layout is to be
performed, theXmGeoMajorLayout contains information about individual rows or columns of
childen, and finally theXmKidGeometry records the geometry of a single child.

#4

child #1

#5

#2 child #3

child #6 BulletinBoard subclass widget
using the GeoUtils

XmGeoMatrixRec

XmKidGeometry boxes;
XmGeoMajorLayout layouts;

#1 #2 #3 #4 #5 #6

Last entry in the XmGeoMajorLayout
vector has end set to TRUE

row
#1

row
#2

Each row is terminated by an
entry with widget set to NULL

row #2

row #1 childen of BulletinBoard subclass widget

children’s geometries

layout of individual rows

...

...

Figure 5.1: Layout structures to mess around with when using the GeoUtils.

5.3.1 The GeoMatrix

The layout of the GeoMatrix structure is as follows:

typedef struct _XmGeoMatrixRec {
Widget composite;

5.3. The Data Structures 53

Widget instigator;
XtWidgetGeometry instig_request;
XtWidgetGeometry parent_request;
XtWidgetGeometry *in_layout;
XmKidGeometry boxes; /* there is a NULL pointer at the end of each row */
XmGeoMajorLayout layouts;
Dimension margin_w;
Dimension margin_h;
Boolean stretch_boxes;
Boolean uniform_border;
Dimension border;
Dimension max_major;
Dimension boxed_minor;
Dimension fill_minor;
Dimension width;
Dimension height;
XmGeoExceptProc set_except;
XmGeoExceptProc almost_except;
XmGeoExceptProc no_geo_request;
XtPointer extension;
XmGeoExtDestructorProc ext_destructor;
XmGeoArrangeProc arrange_boxes;
unsigned char major_order;

} XmGeoMatrixRec;

typedef struct _XmGeoMatrixRec *XmGeoMatrix;

typedef void (*XmGeoArrangeProc)(XmGeoMatrix matrix,
Position x, Position y,
Dimension *width_inout,
Dimension *height_inout);

typedef Boolean (*XmGeoExceptProc)(XmGeoMatrix matrix);
typedef void (*XmGeoExtDestructorProc)(XtPointer extension);
typedef void (*XmGeoSegmentFixUpProc)(XmGeoMatrix matrix, int command,

XmGeoMajorLayout row_layout,
XmKidGeometry kid_info);

enum {
XmGEO_ROW_MAJOR,
XmGEO_COLUMN_MAJOR

};

The GeoMatrix is the mother of all GeoUtils structures. In it, we have control information for how
the layout is to be performed, info on each child, margin information, etc. Also, when you look
at the GeoUtils, keep in mind that the developers intended for it to work both in row major and
column major layout (i.e., up and down rows, and side to side columns). The comments inXmP.h
indicate that they didn’t get any further than row major layout, though. Column major layout hasn’t
even been implemented in M*TIF 2.0 – the comments are still there.

Let’s look at each member:

Widget composite;
The BulletinBoard subclass instance that’s currently using the GeoUtils.

Widget instigator;
If from geometry_manager , the child that requested a geometry change, orNULL.

54 5. Fun and Pain with the GeoUtils

XtWidgetGeometry instig_request;
Fromgeometry_manager , the change that the instigator requested, orNULL.

XtWidgetGeometry parent_request;
If from query_geometry , the way our parent wants us to look, orNULL.

XtWidgetGeometry *in_layout;
Used in the cases where multiple calls are made toXtMakeResizeRequest() or Xt-
MakeGeometryRequest() from one of the children. There is a GeoMatrix “cache” in-
stance variable in the BulletinBoard widget structure that gets used also. I don’t think
M*TIF’s usage of this variable, andinstig_request is quitethe same as M*TIF’s.

XmKidGeometry boxes;
This member is used to keep layout information for each of the children of this manager. It
is sort of a “cache” for the current and proposed geometry of each child. It is an array of
structures: one structure for each child, each row of children separated by a structure whose
child pointer isNULL.

XmGeoMajorLayout layouts;
This is used to keep layout information for each row of children (especially things like
whether each child in the row should be the same height, or the same width, or both, etc.
More on this when we go throught the structure involved).

Dimension margin_w;
The margin width of the manager.

Dimension margin_h;
The margin height of the manager.

Boolean stretch_boxes;
Whether or not children should be stretched to fill voids in the layout.

Boolean uniform_border;
Whether or not the children should have the sameXtBorderWidth . This can also be
controlled on a row basis (theXmGeoMajorLayout has auniform_border field, too.
This value, if set, overrides the Layout structure’s variable).

Dimension border;
If uniform_border is true, the value that should be used forXtBorderWidth .

Dimension max_major;
The maximum value of the major layout dimension. For row major layout, this would be the
maximum computed width of all rows.

Dimension boxed_minor;
For row major layout, this is the cumulative height of all the rows, not including fill.

Dimension fill_minor;
For row major layout, this is the amount of fill space needed. In other words, the amount of
“fill space” needed vertically between the rows.

5.3. The Data Structures 55

Dimension width;
This will hold the computed width of the manager.

Dimension height;
This will hold the computed height of the manager.

XmGeoExceptProc set_except;
A manager can override how the geometry of children are set by providing an override
method here.

XmGeoExceptProc almost_except;
I have no clue. Maybe a method that can be used if a parent saysXtGeometryAlmost to
a resize request?

XmGeoExceptProc no_geo_request;
There are certain times when you want to avoid geometry negotiation for a while; usually
in set_values() . This function is called from_XmHandleGeometryManager to de-
termine if negotiation should really happen.

XtPointer extension;
Extension data for use by the override methods. The GeoUtils don’t do anything with this
member directly.

XmGeoExtDestructorProc ext_destructor;
A function that gets invoked when a GeoMatrix is freed, if the matrix has a non-NULL
extension.

XmGeoArrangeProc arrange_boxes;
An override method for arranging the children. If this is non-NULL most of the GeoUtils
will not be used.

unsigned char major_order;
An indicator for whether this matrix is row- or column-major. Currently only row-major is
implemented. The values allowed here areXmGEO_ROW_MAJORand (in principle)XmGEO_-
COLUMN_MAJOR.

5.3.2 The MajorLayoutRec

The next level of structures (actually, a union) control how the individual rows or columns are
layed out.

typedef union _XmGeoMajorLayoutRec {
XmGeoRowLayoutRec row;
XmGeoColumnLayoutRec col;

} XmGeoMajorLayoutRec;

typedef union _XmGeoMajorLayoutRec *XmGeoMajorLayout;

56 5. Fun and Pain with the GeoUtils

The only member of interest is theXmGeoRowLayoutRec. Here’s the layout for both; below,
I’ll describe what the fields mean for theRowLayoutRec – the fields of aColumnLayoutRec
(should it ever get implemented) are similar.

typedef struct {
Boolean end;
XmGeoSegmentFixUpProc fix_up;
Dimension even_width;
Dimension even_height;
Dimension min_height;
Boolean stretch_height;
Boolean uniform_border;
Dimension border;
unsigned char fill_mode;
unsigned char fit_mode;
Boolean sticky_end;
Dimension space_above;
Dimension space_end;
Dimension space_between;
Dimension max_box_height;
Dimension boxes_width;
Dimension fill_width;
Dimension box_count;

} XmGeoRowLayoutRec, *XmGeoRowLayout;

typedef struct {
Boolean end;
XmGeoSegmentFixUpProc fix_up;
Dimension even_height;
Dimension even_width;
Dimension min_width;
Boolean stretch_width;
Boolean uniform_border;
Dimension border;
unsigned char fill_mode;
unsigned char fit_mode;
Boolean sticky_end;
Dimension space_left;
Dimension space_end;
Dimension space_between;
Dimension max_box_width;
Dimension boxed_height;
Dimension fill_height;
Dimension box_count;

} XmGeoColumnLayoutRec, *XmGeoColumnLayout;

enum {
XmGET_ACTUAL_SIZE = 1,
XmGET_PREFERRED_SIZE,
XmGEO_PRE_SET,
XmGEO_POST_SET

};

/* fill modes for the GeoLayoutRec’s below */
enum {

XmGEO_EXPAND,
XmGEO_CENTER,
XmGEO_PACK

5.3. The Data Structures 57

};

/* fit modes for the GeoLayoutRec’s below */
enum {

XmGEO_PROPORTIONAL,
XmGEO_AVERAGING,
XmGEO_WRAP

};

Now for a description of theXmGeoRowLayoutRec:

Boolean end;
If we have processed all the rows, this end flag will be true. In other words, if your widget
has n rows of (child) widgets, your matrix will have(n+ 1) row layout records, with the
(n+1) row having the end flagTrue . All other rows will haveend set toFalse .

XmGeoSegmentFixUpProc fix_up;
Some rows might need special fixing after they’ve been laid out. For example, a separator
in the SelectionBox should go the full width of the SelectionBox (as opposed to going from
margin to margin). Thisfix_up() method allows such special cases to be handled. The
only other special cases that I know about is a fixup for the MenuBar in SelectionBox and
friends (extending the width so that it stretches for the full width of the parent, much like
what is done for Separators).

Dimension even_width;
Dimension even_height;

These two members are overloaded. At the beginning of matrix processing, they are used as
Booleans to indicate whether the children in this row should end up having the same width
and height across the row. If they areTrue , they end up containing the maximum width
and height of all the children in a given row, and then applied to each child after the max is
computed.

Dimension min_height;
The minimum height for any given child in a row.

Boolean stretch_height;
Indicates if we can stretch (or shrink) the widgets in a row if the manager isn’t quite the size
we want.

Boolean uniform_border;
Assuming that the GeoMatrix didn’t set itsuniform_border member, this field indicates
that this row should have a uniform border.

Dimension border;
Assuming that uniform_border (above) is true, the value ofXtBorderWidth for the wid-
gets in this row.

unsigned char fill_mode;
One ofXmGEO_EXPAND, XmGEO_CENTER, or XmGEO_PACK. The only one of these I’ve
seen used isXmGEO_CENTER. I suspect that the other two might be used by RowColumn,

58 5. Fun and Pain with the GeoUtils

and possibly Form. What happens if thefill_mode is XmGEO_CENTERis that extra fill
space is distributed between the children in a row; if notXmGEO_CENTER, the children are
resized proportionally.

unsigned char fit_mode;
One ofXmGEO_PROPORTIONAL, XmGEO_AVERAGING, or XmGEO_WRAP. XmGEO_PRO-
PORTIONALmeans layout the widgets in this row in proportion to the individual sizes of
each widget.XmGEO_AVERAGINGmeans layout the children based on the average dimen-
sions of all children.XmGEO_WRAPmeans if we can’t fit the children on one line, wrap
them around to what is effectively another row. You can see this behavior when you resize
a M*TIF Dialog to be taller and narrower than it wants to be.

Boolean sticky_end;
Indicates that the last box in the row should be as close to the right margin as possible.

Dimension space_above;
Indicates the amount of space that should be left above this row. if the top row’sspace_-
above is less than the requested margin, the margin is used.

Dimension space_end;
Indicates the amount of space that should be left at the ends of the row.

Dimension space_between;
Indicates how much space should be between the widgets in a row.

Dimension max_box_height;
Indicates the hight of the largest box in the row.

Dimension boxes_width;
Indicates the cumulative width of all the widgets in a row.

Dimension fill_width;
Indicates the cumulative fill space in a row, both between widgets and at the row end.

Dimension box_count;
The number of boxes in the row.

In general, the user is only interested in fields up to (and including)space_between . The re-
maining fields are used during the calculations.

5.3.3 The KidGeometryRec

The final structure is the most important one: theXmKidGeometry structure. This structure con-
tains the geometry for a child, and provides a storage place during the layout calculations for that
geometry while the algorithms proceed.

typedef struct _XmKidGeometryRec {

5.4. The GeoUtils Functions 59

Widget kid;
XtWidgetGeometry box;

} XmKidGeometryRec, *XmKidGeometry;

5.4 The GeoUtils Functions

Let’s examine the published interface, as these are really the functions that must be understood if
you want to understand BulletinBoard, and its GeoUtils using subclasses. By the way, in M*TIF,
certain GeoUtils functions are also used by RowColumn. I’ll indicate these as each function is
discussed (well, at least the ones I know about).

5.4.1 The Allocation, Initialization, and Deallocation Functions

First, let’s talk about the functions used when you want to allocate a GeoMatrix (i.e., the widget
method known asgeo_matrix_create()). In that method, you have to compute the number
of rows of children that you are going to layout, and the number of children (total) involved (more
on this when we actually examine a subclass).

The first function, which is actually called from subclass code, takes the information you’ve gath-
ered about your children, and allocates the GeoMatrix, theXmGeoMajorLayout (s) structures,
theXmKidGeometry (s) structures, and mallocs an extra “extSize ” bytes for any extension that
will be used. It returns a pointer to the allocated structure. Note that it doesn’t fill in any informa-
tion in the matrix – it just allocates it.

XmGeoMatrix _XmGeoMatrixAlloc(unsigned int numRows,
unsigned int numBoxes,
unsigned int extSize);

The next function verifies that the child being examined is valid, and sets up theXmKidGeometry
structure to point at this kid.

Boolean _XmGeoSetupKid(XmKidGeometry geo, Widget kidWid);

For those of you interested in writing subclass widgets, those two functions are all you really need
to know (well, except for knowing how to use them, of course). The rest of the functions are either
internal, or buried within the BulletinBoard class.

Finally, when geometry management is complete, the following function deallocates the matrix.

void _XmGeoMatrixFree(XmGeoMatrix geo_spec);

60 5. Fun and Pain with the GeoUtils

5.4.2 Layout Management Functions

Layout management is essentially a five phase process:
• We ask our children how they want to look.
• We figure out how that would make us look.
• We ask our parent if we can look that way.
• We take how our parent says we can look, and recompute how we want to look.
• We apply the recomputed look to our children.

5.4.2.1 Querying the Children

This first function queries all the manager’s children for their geometry. The parametergeoType
can actually be several different values, but in practice I’ve never seen the GeoUtils use anything
other thanXmGET_PREFERRED_SIZE.

void _XmGeoMatrixGet(XmGeoMatrix geoSpec, int geoType);

The pseudo code for this function is as follows:

_XmGeoMatrixGet()
{

while (rows remaining) {
if (end of row)

advance to next row
else

_XmGeoLoadValues(kid);
}

_XmGeoMatrixGet() uses a lower level function to ask children their prefered goemetry:_Xm-
GeoLoadValues() . The behavior of the function is slightly different when the child is the insti-
gator of a geometry management conversation.

void _XmGeoLoadValues(Widget wid, int geoType, Widget instigator,
XtWidgetGeometry *request,
XtWidgetGeometry *geoResult);

Testing indicates that this function is used by the RowColumn in M*TIF.

5.4.2.2 Computing the Desired Size

The next function is the real workhorse in layout computation. Basically, it takes the information
that was recorded from the previous step and determines how that would make us look. It uses
values in theGeoMatrix , the MajorLayoutRec , and theKidGeometryRec to determine
this. It uses this information, in combination with the input parameters, to determine how the total
composite should look.

5.4. The GeoUtils Functions 61

void
_XmGeoArrangeBoxes(XmGeoMatrix geoSpec, Position x, Position y,

Dimension *pW, Dimension *pH);

The pseudo code for this function is as follows:

_XmGeoArrangeBoxes()
{

if (user specified an arrange procedure) {
call user’s arrange
return

}
_XmGeoAdjustBoxes()
_XmGeoGetDimensions()

adjust the overall layout based on the input parameters

while (rows remaining)
_XmGeoArrangeList(row);

if (height needs adjusting) {
if (user allows stretching)

_XmGeoStretchVertical()
else

_XmGeoFillVertical()
}

}

_XmGeoArrangeBoxes() calls this next function to determine the overall layout. In the current
implementation,_XmGeoAdjustBoxes() loops through the rows in the composite, figuring out
how each row would look.

void _XmGeoAdjustBoxes(XmGeoMatrix geoSpec);

The pseudo code for this function is as follows:

_XmGeoAdjustBoxes()
{

while (rows remaining) {
if (children in row should be even width)

_XmGeoBoxesSameWidth();
if (children in row should be even height)

_XmGeoBoxesSameHeight();
if (children in row should have the same border)

adjust the border
}

}

If the relevant flags are set in theMajorLayoutRec , _XmGeoAdjustBoxes() invokes the
following two functions:

62 5. Fun and Pain with the GeoUtils

Dimension
_XmGeoBoxesSameWidth(XmKidGeometry rowPtr, Dimension width);
Dimension
_XmGeoBoxesSameHeight(XmKidGeometry rowPtr, Dimension height);

Next, _XmGeoArrangeBoxes() calls this next function to compute the total picture of the de-
sired geometry. This function takes the overal results computed above, and adjusts values in the
Matrix and Layout data structures.

void
_XmGeoGetDimensions(XmGeoMatrix geoSpec);

5.4.2.3 Computing the Layout

This next function is responsible for actually laying out each row. It is in this function that things
like the fit_mode andfill_mode in theLayout structure are evaluated.

Position
_XmGeoArrangeList(XmKidGeometry boxes, XmGeoRowLayout layout,

Position x, Position y,
Dimension width, Dimension margin);

The pseudo code for this function is as follows:

_XmGeoArrangeList()
{

figure out the width of our children
figure out the "fill" space wanted
figure out the amount of adjusting necessary
figure out the starting height of this row

if (things aren’t going to fit, and layout fit_mode is XmGEO_WRAP) {
_XmGeoLayoutWrap()
return

}
else if (things aren’t going to fit) {

if (fit_mode is Xm_GEO_AVERAGING)
FitBoxesAveraging()

else
FitBoxesProportional()

}
else if (the wanted width is wider than necessary) {

if (fill_mode is XmGEO_CENTER)
_XmGeoCalcFill()

else
FitBoxesProporitional()

}
_XmGeoLayoutSimple()

}

5.4. The GeoUtils Functions 63

Finally, after the rows have been laid out, the y offsets or the widget heights in each row may
need adjusting, based on the actual height of the widget, and the value ofstretch_height .
_XmGeoArrangeBoxes() takes care of that with the following two functions. The first stretches
the rows to fit; the second inserts filler space.

Dimension
_XmGeoStretchVertical(XmGeoMatrix geoSpec, Dimension height, Dimension maxh);
Dimension
_XmGeoFillVertical(XmGeoMatrix geoSpec, Dimension height, Dimension maxh);

I’ll stop at this level. If you want to know more, you’ll need to delve into the code inGeoUtils.c .
What I’ve given should be enough for you to find your way around.

5.4.2.4 Applying the Changes

If after all the above computations have happened, and our parent has agreed to our resize request,
we call the following function:

void _XmGeoMatrixSet(XmGeoMatrix geoSpec);

The pseudo code for this is as follows:

_XmGeoMatrixSet()
{

for (each row) {
for (each child in row)

_XmSetKidGeo()
}

}

The lower level function_XmSetKidGeo() usually calls_XmConfigureObject() . The be-
havior is slightly different during geometry management conversations.

void _XmSetKidGeo(XmKidGeometry kg, Widget instigator);

5.4.3 The Method Functions

The method functions basically implement most of the behavior for certain Xt required methods;
the GeoUtils provide default implementations forset_values() , query_geometry() , and
geometry_manager() .

Theset_values() case (really, the implementation of_XmBulletinBoardSizeUpdate()
– see the section on BulletinBoardset_values()) is handled by_XmHandleSizeUpdate() .
This function is much like thechange_managed() method in BulletinBoard (see the relevant
section for details).

64 5. Fun and Pain with the GeoUtils

void
_XmHandleSizeUpdate(Widget wid, unsigned char policy,

XmGeoCreateProc createMatrix);

Thequery_geometry() method is handled by the following function. Essentially, this function
implements the geometry calculation without doing the layout common to the other methods.

XtGeometryResult
_XmHandleQueryGeometry(Widget wid,

XtWidgetGeometry *intended,
XtWidgetGeometry *desired,
unsigned char policy,
XmGeoCreateProc createMatrix);

The next function handles thegeometry_manager() method. It is truly a nasty function, and
was very difficult to figure out. This is the only place in the entire GeoUtils functionality where
the cache is used (and really, it’s the only place where it needs to be used). There are some pretty
good reasons for this – manager children tend to loop aroundXtMakeResizeRequest() , or
XtMakeGeometryRequest() , until their parent says yes or no. By using a cache, you can
eliminate at least one iteration of the negotiation (which is relatively expensive). I don’t really
think most readers of this document are interested in the gory details. If you are, reading through
the code should give you the necessary information.

XtGeometryResult
_XmHandleGeometryManager(Widget wid, Widget instigator,

XtWidgetGeometry *desired,
XtWidgetGeometry *allowed,
unsigned char policy,
XmGeoMatrix *cachePtr,
XmGeoCreateProc createMatrix);

These next two functions do most of the default behavior for the BulletinBoard, when the widget
class does not use the GeoUtils (unless, of course, the subclass overrides them).

This first function is invoked when a parent queries a BulletinBoard widget for its prefered size.

XtGeometryResult
_XmGMHandleQueryGeometry(Widget w,

XtWidgetGeometry *proposed, XtWidgetGeometry *answer,
Dimension margin_width, Dimension margin_height,
unsigned char resize_policy)

The second function is invoked when a child queries a BulletinBoard parent for a resize.

XtGeometryResult
_XmGMHandleGeometryManager(Widget w, Widget instigator,

XtWidgetGeometry *desired,
XtWidgetGeometry *allowed,
Dimension margin_width, Dimension margin_height,
unsigned char resize_policy, Boolean allow_overlap)

5.4. The GeoUtils Functions 65

5.4.4 Miscellaneous Functions

This function determines if two widget geometries are identical.

Boolean
_XmGeometryEqual(Widget wid, XtWidgetGeometry *geoA,

XtWidgetGeometry *geoB);

The next function checks the desired geometrydesired of the widgetwid against the parent’s
proposal inresponse . It returnsTrue only if the position (x, y), as well as the width and height,
and finally the border width are equal in the desired and proposed geometry. If any one of these five
geometry characteristics is of no concern (the corresponding bit inresponse->request_mode
is unset) then it will be ignored.

Boolean
_XmGeoReplyYes(Widget wid, XtWidgetGeometry *desired,

XtWidgetGeometry *response);

This function asks the parent of the widgetw for a new desired geometrygeom of w. If the parent
answersXtGeometryAlmost then we ask him a second time with the proposed geometry, so he
can accept and set the new geometry. If the parent refuses in any way then we’ll inform the user of
our parent’s impudent habbits (because he doesn’t conform to the geometry negotiation protocol,
see O’Reilly, Vol. 5, pp. 264 for details aboutXtMakeGeometryRequest). This function is at
least only a convenience function but according to informed sources, M*TIF never issues a bare
XtMakeGeometryRequest but uses always_XmMakeGeometryRequest .

XtGeometryResult
_XmMakeGeometryRequest(Widget w, XtWidgetGeometry *geom);

The next function erases the background at both the old and the new position of a rectangle object.
Whereas the old position must be explicitely specified inold the new position is determined from
w. Redrawing events will be triggered (and queued) for the affected areas.

void
_XmGeoClearRectObjAreas(RectObj r, XWindowChanges *old);

The next one reappears asXmeReplyToQueryGeometry in M*TIF 2.0. This function is a
shortcut for simplequery_geometry methods which are interested only in their width and
height but neither their position nor border width. To use it, first compute your desired width
and height in your widget’squery_geometry method and then return the result from the call to
_XmGMReplyToQueryGeometry .

void
_XmGMReplyToQueryGeometry(void);

66 5. Fun and Pain with the GeoUtils

These next two functions are “fixup” functions. They are invoked by_XmGeoMatrixSet() , to
override the generic geometry computation with specific behavior._XmMenuBarFix() forces a
menu bar to be the full width of its composite parent._XmSeparatorFix() does the same for
separators.

void
_XmMenuBarFix(XmGeoMatrix geoSpec, int action,

XmGeoMajorLayout layoutPtr, XmKidGeometry rowPtr);
void
_XmSeparatorFix(XmGeoMatrix geoSpec, int action,

XmGeoMajorLayout layoutPtr, XmKidGeometry rowPtr);

5.4.5 BulletinBoard Helper Functions

The next several functions implement bits of BulletinBoard behavior.

This next function ensures that a BulletinBoard child is constrained within the margins of the
BulletinBoard.

void
_XmGMEnforceMargin(Widget w,

Dimension margin_width, Dimension margin_height,
Boolean useSetValues)

The next function implements theXmNallowOverlap behavior (or rather, ifXmNallowOver-
lap is False , makes sure that children do not overlap).

Boolean
_XmGMOverlap(Widget w, Widget instigator,

Position x, Position y, Dimension width, Dimension height)

The next function computes the desired size of a BulletinBoard.

void
_XmGMCalcSize(Widget w, Dimension margin_w, Dimension margin_h,

Dimension *retw, Dimension *reth)

The next function performs the BulletinBoard layout behavior.

void
_XmGMDoLayout(Widget w, Dimension margin_w, Dimension margin_h,

unsigned char resize_policy, short adjust)

5.5. How to Build a Subclass Using the GeoUtils 67

5.4.6 RowColumn Specific Functions

The following functions are specific to RowColumn functionality, but reside in the GeoUtils im-
plementation.

I don’t know what this first function does, but it looks suspiciously like aGeoMatrix allocation
function, specialized forRCKidGeometry .

XmKidGeometry
_XmGetKidGeo(Widget wid, Widget instigator,

XtWidgetGeometry *request,
int uniform_border, Dimension border,
int uniform_width_margins,
int uniform_height_margins,
Widget help, int geo_type);

There is an undocumented function,XmRCGetKidGeo() , that I believe is similar to_XmGeo-
MatrixGet() . In LESSTIF, I believe this is implemented asinitialize_boxes() in Row-
Column.c .

That function calls this next function, as well as_XmGeoLoadValues() .

int _XmGeoCount_kids(CompositeWidget c);

Anybody out there who knows that this function does?

5.5 How to Build a Subclass Using the GeoUtils

At this point, we’ve come full circle. Now that you know something about how the GeoUtils
work, let’s examine how a subclass can use them. I’ll now talk about theXmTrivial widget
class. It doesn’t implement anything more than an even layout of the button children as if they
were action buttons in a dialog. The order of the buttons in the layout is the same as the creation
order. In order to keep it simple, there are no new Xt or synthetic resources beyond those covered
by BulletinBoard. If you are thinking about using the GeoUtils, theTrivial class makes a pretty
good template. The tested implementation lives in$(LESSTIF_ROOT)/testXm/geometry .

5.5.1 The Header Files

There really isn’t much to say about the header files. They are pretty much standard headers for a
widget implementation (same procedure as every widget. . .). Here’s the public header (from the
file Trivial.h):

#ifndef TRIVIAL_H

68 5. Fun and Pain with the GeoUtils

#define TRIVIAL_H

#include <Xm/Xm.h>
#include <Xm/BulletinB.h>

extern WidgetClass xmTrivialWidgetClass;

typedef struct _XmTrivialRec *XmTrivialWidget;
typedef struct _XmTrivialConstraintRec *XmTrivialConstraint;

#ifndef XmIsTrivial
#define XmIsTrivial(a) (XtIsSubclass(a, xmTrivialWidgetClass))
#endif

Widget XmCreateCreateTrivial(Widget _p, char *_n, ArgList _a,
Cardinal _narg);

#endif

Now, the private header (TrivialP.h):

#ifndef TRIVIAL_P_H
#define TRIVIAL_P_H

#include <Xm/XmP.h>
#include <Xm/BulletinBP.h>
#include "Trivial.h"

typedef struct _XmTrivialClassPart {
int duh;

} XmTrivialClassPart;

typedef struct _XmSmartMessageBoxClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ConstraintClassPart constraint_class;
XmManagerClassPart manager_class;
XmBulletinBoardClassPart bulletin_board_class;
XmTrivialClassPart trivial_class;

} XmTrivialClassRec, *XmTrivialWidgetClass;

typedef struct _XmTrivialPart {
int gaah;

} XmTrivialPart;

typedef struct _XmTrivialRec {
CorePart core;
CompositePart composite;
ConstraintPart constraint;
XmManagerPart manager;
XmBulletinBoardPart bulletin_board;
XmTrivialPart trivial;

} XmTrivialRec, *XmTrivialPtr;

#endif

5.5. How to Build a Subclass Using the GeoUtils 69

5.5.2 The Implementation

In this section I’ll describe the various sections inTrivial.c that are important to the subclass.
The new sections are printed in abold typewriter font. Important parts of the new sections
are typeset in anitalic bold typewriter font.

#include <LTconfig.h>
#include <Xm/XmP.h>
#include <Xm/XmI.h>
#include <Xm/BulletinBP.h>
#include <Xm/PushBP.h>
#include <Xm/PushBGP.h>
#include <Xm/DebugUtil.h>
#include "TrivialP.h"

/*
* Forward Declarations
*/

static void class_initialize();
static void class_part_initialize(WidgetClass class);
static void initialize(Widget request, Widget new,

ArgList args, Cardinal *num_args);
static void destroy(Widget w);
static Boolean set_values(Widget current, Widget request, Widget new,

ArgList args, Cardinal *num_args);

XmGeoMatrix trivial_matrix_create(Widget _w, Widget _from,
XtWidgetGeometry *_pref);

Boolean trivial_NoGeoRequest(XmGeoMatrix _geoSpec);

static XmBaseClassExtRec _XmTrivialCoreClassExtRec = {
/* next_extension */ NULL,
/* record_type */ NULLQUARK,
/* version */ XmBaseClassExtVersion,
/* size */ sizeof(XmBaseClassExtRec),
/* initialize_prehook */ NULL,
/* set_values_prehook */ NULL,
/* initialize_posthook */ NULL,
/* set_values_posthook */ NULL,
/* secondary_object_class */ NULL,
/* secondary_object_create */ NULL,
/* get_secondary_resources */ NULL,
/* fast_subclass */ { 0 },
/* get_values_prehook */ NULL,
/* get_values_posthook */ NULL,
/* class_part_init_prehook */ NULL,
/* class_part_init_posthook */ NULL,
/* ext_resources */ NULL,
/* compiled_ext_resources */ NULL,
/* num_ext_resources */ 0,
/* use_sub_resources */ FALSE,
/* widget_navigable */ NULL,
/* focus_change */ NULL,
/* wrapper_data */ NULL

};

static XmManagerClassExtRec _XmTrivialMClassExtRec = {

70 5. Fun and Pain with the GeoUtils

/* next_extension */ NULL,
/* record_type */ NULLQUARK,
/* version */ XmManagerClassExtVersion,
/* record_size */ sizeof(XmManagerClassExtRec),
/* traversal_children */ NULL /* FIXME */

};

XmTrivialClassRec xmTrivialClassRec = {
/* Core class part */
{
/* superclass */ (WidgetClass)

&xmBulletinBoardClassRec,
/* class_name */ "XmTrivial",
/* widget_size */ sizeof(XmBulletinBoardRec),
/* class_initialize */ class_initialize,
/* class_part_initialize */ class_part_initialize,
/* class_inited */ FALSE,
/* initialize */ initialize,
/* initialize_hook */ NULL,
/* realize */ XtInheritRealize,
/* actions */ NULL,
/* num_actions */ 0,
/* resources */ NULL,
/* num_resources */ 0,
/* xrm_class */ NULLQUARK,
/* compress_motion */ TRUE,
/* compress_exposure */ XtExposeCompressMaximal,
/* compress_enterleave */ TRUE,
/* visible_interest */ FALSE,
/* destroy */ destroy,
/* resize */ XtInheritResize,
/* expose */ XtInheritExpose,
/* set_values */ set_values,
/* set_values_hook */ NULL,
/* set_values_almost */ XtInheritSetValuesAlmost,
/* get_values_hook */ NULL,
/* accept_focus */ NULL,
/* version */ XtVersion,
/* callback offsets */ NULL,
/* tm_table */ NULL,
/* query_geometry */ XtInheritQueryGeometry,
/* display_accelerator */ NULL,
/* extension */ (XtPointer)

&_XmTrivialCoreClassExtRec
},
/* Composite class part */
{
/* geometry_manager */ XtInheritGeometryManager,
/* change_managed */ XtInheritChangeManaged,
/* insert_child */ XtInheritInsertChild,
/* delete_child */ XtInheritDeleteChild,
/* extension */ NULL
},
/* Constraint class part */
{
/* subresources */ NULL,
/* subresource_count */ 0,
/* constraint_size */ 0,
/* initialize */ NULL,

5.5. How to Build a Subclass Using the GeoUtils 71

/* destroy */ NULL,
/* set_values */ NULL,
/* extension */ NULL
},
/* XmManager class part */
{
/* translations */ XtInheritTranslations,
/* syn_resources */ NULL,
/* num_syn_resources */ 0,
/* syn_constraint_resources */ NULL,
/* num_syn_constraint_resources */ 0,
/* parent_process */ XmInheritParentProcess,
/* extension */ (XtPointer)

&_XmTrivialMClassExtRec
},
/* XmBulletinBoard Area part */
{
/* always_install_accelerators */ False,
/* geo_matrix_create */ trivial_matrix_create,
/* focus_moved_proc */ XmInheritFocusMovedProc,
/* extension */ NULL

},
/* XmTrivial Class Part */
{
/* extension */ 0
}

};

WidgetClass xmTrivialWidgetClass = (WidgetClass)&xmTrivialClassRec;

static void
class_initialize()
{

_XmTrivialCoreClassExtRec.record_type = XmQmotif;
}

static void
class_part_initialize(WidgetClass widget_class)
{
}

static void
initialize(Widget request,

Widget new,
ArgList args,
Cardinal *num_args)

{
}

static void
destroy(Widget w)
{
}

static Boolean
set_values(Widget old,

Widget request,
Widget new,

72 5. Fun and Pain with the GeoUtils

ArgList args,
Cardinal *num_args)

{
Boolean refresh_needed = False;

BB_InSetValues(new) = True;

/* do any class specific stuff */

BB_InSetValues(new) = False;

if (refresh_needed && (XtClass(new) == xmTrivialWidgetClass))
{

_XmBulletinBoardSizeUpdate(new);
return False;

}
return refresh_needed;

}

XmGeoMatrix
trivial_matrix_create(Widget _w, Widget _from, XtWidgetGeometry *_pref)
{

XmGeoMatrix geoSpec;
register XmGeoRowLayout layoutPtr;
register XmKidGeometry boxPtr;
Cardinal numKids;
int i, nrows;
Widget child;

numKids = MGR_NumChildren(_w);

/* compute the number of rows you want here. */
nrows = 1; /* Trivial only has one */

geoSpec = _XmGeoMatrixAlloc(nrows, numKids, 0);
geoSpec->composite = (Widget)_w;
geoSpec->instigator = (Widget)_from;
if (_pref)

geoSpec->instig_request = *_pref;
geoSpec->margin_w = BB_MarginWidth(_w) + MGR_ShadowThickness(_w);
geoSpec->margin_h = BB_MarginHeight(_w) + MGR_ShadowThickness(_w);
geoSpec->no_geo_request = trivial_NoGeoRequest;

layoutPtr = &(geoSpec->layouts->row);
boxPtr = geoSpec->boxes;

/* row 1 */
layoutPtr->fill_mode = XmGEO_CENTER;
layoutPtr->fit_mode = XmGEO_WRAP;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
for (i = 0; i < numKids; i++) {

child = MGR_Children(_w)[i];
if ((XmIsPushButton(child) || XmIsPushButtonGadget(child)) &&

XtIsManaged(child) && _XmGeoSetupKid(boxPtr, child))
{

boxPtr++;
}

5.5. How to Build a Subclass Using the GeoUtils 73

}
layoutPtr++;
/* end marker */
layoutPtr->space_above = 0;
layoutPtr->end = TRUE;

return(geoSpec);
}

Boolean
trivial_NoGeoRequest(XmGeoMatrix geo)
{

if (BB_InSetValues(geo->composite) &&
XtClass(geo->composite) == xmTrivialWidgetClass)
return TRUE;

return FALSE;
}

Not bad, only around 350 lines of code. This is about the mininum you can get away with if you
write a manager widget anyway. But now let us go straight into the details.

5.5.2.1 Extra Prototypes

You’ll need to provide two extra prototypes for a GeoUtils subclass - one for thegeo_matrix_-
create() method, and one for theno_geo_request() method. These should match the types
specified inXmP.h. FromTrivial.c :

XmGeoMatrix trivial_matrix_create(Widget _w, Widget _from,
XtWidgetGeometry *_pref);

Boolean trivial_NoGeoRequest(XmGeoMatrix _geoSpec);

5.5.2.2 The Class Structure

The first thing to know is how to typeXtInherit . Unless you really know what you are doing,
and want to override specific behaviors, you should definitely specifyXtInherit in the class
structure of your subclass for the following methods:

• realize() ,
• resize() ,
• expose() ,
• query_geometry() ,
• geometry_manager() ,
• change_managed() .

Unless you are implementing a fairly trivial widget (such asXmTrivial), you’ll probably have
to provide your ownset_values() method. That’s okay, just make sure you follow the rules
outlined in the BulletinBoard section above.

74 5. Fun and Pain with the GeoUtils

5.5.2.3 The set_values() Method

In any interesting widget, theset_values() method will probably do something (but it doesn’t
in Trivial.c). The code below can be considered boilerplate; you should probably base a sub-
class’sset_values() method on this code. Note especially the region reserved for setting class
specific instance variables.

static Boolean
set_values(Widget old,

Widget request,
Widget new,
ArgList args,
Cardinal *num_args)

{
Boolean refresh_needed = False;

BB_InSetValues(new) = True;
/* do any class specific stuff HERE */
BB_InSetValues(new) = False;

if (refresh_needed && (XtClass(new) == xmTrivialWidgetClass))
{

_XmBulletinBoardSizeUpdate(new);
return False;

}
return refresh_needed;

}

5.5.2.4 The NoGeoRequest Method

This method actually doesn’t get placed in the class structure, but rather in the GeoMatrix during
its creation. Again, the implementation inTrivial.c is boilerplate; the only thing a subclass
needs to do is change the tested widget class:

Boolean
trivial_NoGeoRequest(XmGeoMatrix geo)
{

if (BB_InSetValues(geo->composite) &&
XtClass(geo->composite) == xmTrivialWidgetClass)
return TRUE;

return FALSE;
}

5.5.2.5 The GeoMatrixCreate Method

Now we get to the interesting part of the implementation. Thegeo_matrix_create() method
in Trivial.c is not boilerplate, but it does show you what you need to do (well, actually, one
small portion is boilerplate). Instead of repeating the code section here you can look up the method

5.5. How to Build a Subclass Using the GeoUtils 75

in the listing on the preceding pages – but take note that the method inTrivial.c is called
trivial_matrix_create() .

Note that the function has essentially three sections. In the first section, you need to loop through
your children (or evaluate instance variables, as is done in SelectionBox), deciding on how many
rows of children that need to be controlled. Basically, what you are doing is evaluating how many
MajorLayout structures you are going to need. You can also choose to count the number of
managed children you have (this may or may not be the same as the number of children you have);
this is optional, as the wasted space is not very large, and it eventually gets deallocated anyway.

In the second section, we have a small piece of boilerplate: it is very important to duplicate this
code exactly. While the_pref and_from fields are oftenNULL, they arenot when this method
is called from_XmHandleGeometryManager() . Make sure you copy this right.

geoSpec = _XmGeoMatrixAlloc(nrows, numKids, 0);
geoSpec->composite = (Widget)_w;
geoSpec->instigator = (Widget)_from;
if (_pref)

geoSpec->instig_request = *_pref;
geoSpec->margin_w = BB_MarginWidth(_w) + MGR_ShadowThickness(_w);
geoSpec->margin_h = BB_MarginHeight(_w) + MGR_ShadowThickness(_w);
geoSpec->no_geo_request = trivial_NoGeoRequest;

You can be a little creative when you calculate themargin_w andmargin_h variables. Also,
make sure that you hook up theno_geo_request() method as shown in the last line of the
code excerpt above.

The third section of code is basically where the subclass needs to setup theMajorLayout struc-
tures with the desired information for controlling the layout, and setting theKidGeometry struc-
tures to point at the widget children that should appear.

XmTrivial ’s implementation of this method isverysimplistic. Now for a little more demanding
example. The following code is SelectionBox’s version – look for the boilerplate above to find the
separation between the sections:

XmGeoMatrix
_XmSelectionBoxGeoMatrixCreate(Widget _w, Widget _from,

XtWidgetGeometry *_pref)
{

XmGeoMatrix geoSpec;
register XmGeoRowLayout layoutPtr;
register XmKidGeometry boxPtr;
Cardinal numKids;
Boolean newRow;
int nrows, i, nextras;
Widget *extras;

numKids = MGR_NumChildren(_w);

nextras = 0;
extras = NULL;

76 5. Fun and Pain with the GeoUtils

for (i = 0; i < numKids; i++)
{

if (XtIsManaged(MGR_Children(_w)[i]) &&
MGR_Children(_w)[i] != SB_ListLabel(_w) &&
(SB_List(_w)

? MGR_Children(_w)[i] != XtParent(SB_List(_w))
: True) &&

MGR_Children(_w)[i] != SB_SelectionLabel(_w) &&
MGR_Children(_w)[i] != SB_Text(_w) &&
MGR_Children(_w)[i] != SB_Separator(_w) &&
MGR_Children(_w)[i] != SB_OkButton(_w) &&
MGR_Children(_w)[i] != SB_ApplyButton(_w) &&
MGR_Children(_w)[i] != SB_HelpButton(_w) &&
MGR_Children(_w)[i] != BB_CancelButton(_w))

{
nextras++;

}
}

if (nextras)
extras = (Widget *)XtMalloc(sizeof(Widget) * nextras);

nextras = 0;
for (i = 0; i < numKids; i++)
{

if (XtIsManaged(MGR_Children(_w)[i]) &&
MGR_Children(_w)[i] != SB_ListLabel(_w) &&
(SB_List(_w)

? MGR_Children(_w)[i] != XtParent(SB_List(_w))
: True) &&

MGR_Children(_w)[i] != SB_SelectionLabel(_w) &&
MGR_Children(_w)[i] != SB_Text(_w) &&
MGR_Children(_w)[i] != SB_Separator(_w) &&
MGR_Children(_w)[i] != SB_OkButton(_w) &&
MGR_Children(_w)[i] != SB_ApplyButton(_w) &&
MGR_Children(_w)[i] != SB_HelpButton(_w) &&
MGR_Children(_w)[i] != BB_CancelButton(_w))

{
extras[nextras] = MGR_Children(_w)[i];
nextras++;

}
}

nrows = 0;

/* note the starting from one. The zero’th child is the "work area" */
if (nextras > 0) {

for (i = 1; i < nextras; i++) {
if (XmIsMenuBar(extras[i]) && XtIsManaged(extras[i]))

nrows++;
}
if (extras[0] && XtIsManaged(extras[0]))

nrows++;
}

if (SB_ListLabel(_w) && XtIsManaged(SB_ListLabel(_w)))
nrows++;

if (SB_List(_w) && XtIsManaged(SB_List(_w)))

5.5. How to Build a Subclass Using the GeoUtils 77

nrows++;

if (SB_SelectionLabel(_w) && XtIsManaged(SB_SelectionLabel(_w)))
nrows++;

if (SB_Text(_w) && XtIsManaged(SB_Text(_w)))
nrows++;

if (SB_Separator(_w) && XtIsManaged(SB_Separator(_w)))
nrows++;

if ((BB_CancelButton(_w) && XtIsManaged(BB_CancelButton(_w))) ||
(SB_OkButton(_w) && XtIsManaged(SB_OkButton(_w))) ||
(SB_ApplyButton(_w) && XtIsManaged(SB_ApplyButton(_w))) ||
(SB_HelpButton(_w) && XtIsManaged(SB_HelpButton(_w))))
nrows++;

else {
for (i = i; i < nextras; i++) {

if (extras[i] && XtIsManaged(extras[i]) &&
(XmIsPushButton(extras[i]) ||

XmIsPushButtonGadget(extras[i])))
{

nrows++;
break;

}
}

}

geoSpec = _XmGeoMatrixAlloc(nrows, numKids, 0);
geoSpec->composite = (Widget)_w;
geoSpec->instigator = (Widget)_from;
if (_pref)

geoSpec->instig_request = *_pref;
geoSpec->margin_w = BB_MarginWidth(_w) + MGR_ShadowThickness(_w);
geoSpec->margin_h = BB_MarginHeight(_w) + MGR_ShadowThickness(_w);
geoSpec->no_geo_request = _XmSelectionBoxNoGeoRequest;

layoutPtr = &(geoSpec->layouts->row);
boxPtr = geoSpec->boxes;

for (i = 1; i < nextras; i++) {
if (XmIsMenuBar(extras[i]) && XtIsManaged(extras[i]))
{

layoutPtr->fix_up = _XmMenuBarFix;
layoutPtr->space_above = 0;
boxPtr += 2;
layoutPtr++;

}
}

if (SB_ChildPlacement(_w) == XmPLACE_TOP && nextras &&
extras[0] && XtIsManaged(extras[0]) &&
_XmGeoSetupKid(boxPtr, extras[0]))

{
layoutPtr->stretch_height = 1;
layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);

78 5. Fun and Pain with the GeoUtils

layoutPtr++;
boxPtr += 2;
nrows++;

}

if (SB_DialogType(_w) == XmDIALOG_PROMPT &&
SB_ChildPlacement(_w) == XmPLACE_ABOVE_SELECTION && nextras &&
extras[0] && XtIsManaged(extras[0]) &&
_XmGeoSetupKid(boxPtr, extras[0]))

{
layoutPtr->stretch_height = 1;
layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
layoutPtr++;
boxPtr += 2;
nrows++;

}

newRow = False;
if (SB_ListLabel(_w) && XtIsManaged(SB_ListLabel(_w)) &&

_XmGeoSetupKid(boxPtr, SB_ListLabel(_w)))
{

layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->fit_mode = XmGEO_PROPORTIONAL;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
layoutPtr->space_between = BB_MarginWidth(_w);
newRow = TRUE;
boxPtr++;

}

if (newRow)
{

layoutPtr++;
boxPtr++;

}

if (SB_DialogType(_w) == XmDIALOG_COMMAND &&
SB_ChildPlacement(_w) == XmPLACE_ABOVE_SELECTION && nextras &&
extras[0] && XtIsManaged(extras[0]) &&
_XmGeoSetupKid(boxPtr, extras[0]))

{
layoutPtr->stretch_height = 1;
layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
layoutPtr++;
boxPtr += 2;
nrows++;

}

newRow = FALSE;
if (SB_List(_w) && XtIsManaged(SB_List(_w)) &&

_XmGeoSetupKid(boxPtr, XtParent(SB_List(_w))))
{

5.5. How to Build a Subclass Using the GeoUtils 79

layoutPtr->stretch_height = 1;
layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->fit_mode = XmGEO_PROPORTIONAL;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = 0; /* BB_MarginHeight(_w); */
layoutPtr->space_between = BB_MarginWidth(_w);
newRow = TRUE;
boxPtr++;

}

if (newRow)
{

layoutPtr++;
boxPtr++;

}

if (SB_DialogType(_w) != XmDIALOG_COMMAND &&
SB_DialogType(_w) != XmDIALOG_PROMPT &&
SB_ChildPlacement(_w) == XmPLACE_ABOVE_SELECTION && nextras &&
extras[0] && XtIsManaged(extras[0]) &&
_XmGeoSetupKid(boxPtr, extras[0]))

{
layoutPtr->stretch_height = 1;
layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
layoutPtr++;
boxPtr += 2;
nrows++;

}

if (SB_SelectionLabel(_w) && XtIsManaged(SB_SelectionLabel(_w)) &&
_XmGeoSetupKid(boxPtr, SB_SelectionLabel(_w)))

{
layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->even_width = 0;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
layoutPtr++;
boxPtr += 2;

}

if (SB_Text(_w) && XtIsManaged(SB_Text(_w)) &&
_XmGeoSetupKid(boxPtr, SB_Text(_w)))

{
layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->stretch_height = 0;
layoutPtr->even_height = 1;
layoutPtr->even_width = 0;
layoutPtr->space_above = 0; /* BB_MarginHeight(_w); */
boxPtr += 2;
layoutPtr++;

}

if (SB_ChildPlacement(_w) == XmPLACE_BELOW_SELECTION && nextras &&
extras[0] && XtIsManaged(extras[0]) &&
_XmGeoSetupKid(boxPtr, extras[0]))

80 5. Fun and Pain with the GeoUtils

{
layoutPtr->stretch_height = 1;
layoutPtr->fill_mode = XmGEO_EXPAND;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
layoutPtr++;
boxPtr += 2;
nrows++;

}

if (SB_Separator(_w) && XtIsManaged(SB_Separator(_w)) &&
_XmGeoSetupKid(boxPtr, SB_Separator(_w)))

{
layoutPtr->fix_up = _XmSeparatorFix;
layoutPtr->space_above = BB_MarginHeight(_w);
boxPtr += 2;
layoutPtr++;

}

newRow = False;
if (SB_OkButton(_w) && XtIsManaged(SB_OkButton(_w)) &&

_XmGeoSetupKid(boxPtr++, SB_OkButton(_w))) {
layoutPtr->fill_mode = XmGEO_CENTER;
layoutPtr->fit_mode = XmGEO_WRAP;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
newRow = True;

}
for (i = 1; i < nextras; i++)
{

if (extras[i] && XtIsManaged(extras[i]) &&
(XmIsPushButton(extras[i]) || XmIsPushButtonGadget(extras[i])) &&
_XmGeoSetupKid(boxPtr++, extras[i]))

{
layoutPtr->fill_mode = XmGEO_CENTER;
layoutPtr->fit_mode = XmGEO_WRAP;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
newRow = True;

}
}

if (SB_ApplyButton(_w) && XtIsManaged(SB_ApplyButton(_w)) &&
_XmGeoSetupKid(boxPtr++, SB_ApplyButton(_w))) {
layoutPtr->fill_mode = XmGEO_CENTER;
layoutPtr->fit_mode = XmGEO_WRAP;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
newRow = True;

}
if (BB_CancelButton(_w) && XtIsManaged(BB_CancelButton(_w)) &&

_XmGeoSetupKid(boxPtr++, BB_CancelButton(_w))) {
layoutPtr->fill_mode = XmGEO_CENTER;
layoutPtr->fit_mode = XmGEO_WRAP;
layoutPtr->even_width = 1;

5.6. Conclusion and Credits 81

layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
newRow = True;

}
if (SB_HelpButton(_w) && XtIsManaged(SB_HelpButton(_w)) &&

_XmGeoSetupKid(boxPtr++, SB_HelpButton(_w))) {
layoutPtr->fill_mode = XmGEO_CENTER;
layoutPtr->fit_mode = XmGEO_WRAP;
layoutPtr->even_width = 1;
layoutPtr->even_height = 1;
layoutPtr->space_above = BB_MarginHeight(_w);
newRow = True;

}

if (newRow)
{

layoutPtr++;
boxPtr++;

}

layoutPtr->space_above = 0; /* BB_MarginHeight(_w); */
layoutPtr->end = TRUE;
if (nextras)

XtFree((char *)extras);
return(geoSpec);

}

While it may look scary, once you understand what it is doing, it really isn’t. You can see the
advantage of using the GeoUtils in SelectionBox: other than the code above, there really isn’t any
trace of geometry management in SelectionBox – it’s all taken care of automagically.

Another point to note is SelectionBox’sno_geo_request() method – it’s slightly different, as
the Command widget class doesn’t evenhavea geo_matrix_create() method – instead, it
inherits SelectionBox’s.

Boolean
_XmSelectionBoxNoGeoRequest(XmGeoMatrix _geoSpec)
{

if (BB_InSetValues(_geoSpec->composite) &&
(XtClass(_geoSpec->composite) == xmSelectionBoxWidgetClass ||

XtClass(_geoSpec->composite) == xmCommandWidgetClass))
return TRUE;

return FALSE;
}

5.6 Conclusion and Credits

Please keep in mind when reading this document that I’m still discovering new things in the
GeoUtils, and I may not be accurate in some places. I’d dearly like feedback from those of you
who really know the M*TIF implementation to point out where I’m wrong.

I’d like to thank John Cwikla (again), for providing sample code about how to subclass using

82 5. Fun and Pain with the GeoUtils

the GeoUtils; Chris, for starting this project in the first place; Danny, for motivating me to write
this chapter (thin as it is) – I guess it reallyis a pain to have significant portions of your widgets
based on somebody else’s undocumented code (I think there may be two or three informational
comments in GeoUtils); and the rest of the core team (Rob, Peter, perhaps a few more) for helping
out; the team as a whole, for putting up with my mess (what? me opinionated? Nah).

6
Drag and Drop

Harald Albrecht
Mitch Miers

84 6. Drag and Drop

6.1 Introduction

The "Drag & Drop" mechanism is a metaphor for data transfer, which allows the user to pick up
an object with the mouse pointer, and move it to another location (which can be even in another
application) and drop it there. This metaphor is the same no matter what kind of data is transfered.
In most cases, the “Drag & Drop” gesture results in data being moved or copied to the new location,
but it can also invoke an action – like printing a file when dropping the icon of a file on a printer
icon, or de-installing some so-called “operating system” when dropping its flying logo into the
trash bin.

Although the term “Drag & Drop” suggests that both the drag and the drop operation are insepara-
ble, in fact thedropoperation is independent of thedragoperation. To transfer data, only the drop
operation is needed. The drag operation is just there to make the metaphor work better, as an ap-
plication can provide accurate visual feedback about the state of the operation. As a consequence
of this, we’ll discuss the drag protocol and the drop protocol in separate sections.

As you can easily imagine, a good part of the whole protocol mess is undocumented. Fortunately,
Daniel Dardailler’s documentation and initial implementation example of the dynamic drag proto-
col was invaluable help for understanding the drag and drop protocol. Unfortunately, his documen-
tation does only cover thedynamicmode of operation, which is now standardized with CDE 2.
The other mode,preregister, is still undocumented, although it is the default mode for drag and
drop operations in the M*TIF toolkit (one more own goal for the CSF).

6.2 Protocol Basics

The top level window where the drag and drop operation starts is called the “source window”. The
client who owns this window is called the initiator client, or short “initiator”. The drop operation
then takes place in the “destination window” and the client who owns that window is called the
“receiver”. The initiator and the receiver of the drag and drop operation can be the same client –
but this need not necessarily be always the case. Besides this, even the source and the destination
window may be the same.

From the user’s point of view there are no such things like windows recognizable. The only “ob-
jects” the user deals with are the “drop sites”, which appear to her/him as entities supplying or
receiving information. On the technical side, a drop site may be drawn into its own window or
may be drawn as a part of a larger window containing other objects too. The protocol does not put
any restrictions on how drop sites are organized within windows. To avoid a possible upcoming
confusion, the protocol only knows of and works with the top level windows. Remember, accord-
ing to the ICCCM 2.0, top level windows are distinguishable from ordinary windows by their
WM_STATEproperties.

Okay, after you’ve now learned some new “drag and drop” buzz words, you’re now ready to dive
into the world of bitfields and status codes. Afterwards, you’ll meet the various drag and drop
messages which make up the protocol.

6.2. Protocol Basics 85

6.2.1 Drag Operation Modes

Both the drag and the drop protocol are build around X client messages which are send forth and
back between the initiator and receiver of the drag and drop operation. Such messages are emitted
during the start, cancelation or end of a drag and drop operation, or as the user moves the mouse
pointer around the screen and the pointer enters and leaves valid drop sites. This way, the initiator
client and the potential receiver client(s) can provide to the user some visual feedback about the
current state of the drag operation. Such a visual feedback could be highlighting a drop site so
the user notices the existence of a valid drop site. There are two sets of visual feedbacks: the
“drag-over visuals” of the initiator and the “drag-under” visuals of the receiver(s).

The drag operation as well as the handling of the drag-under visuals are different depending on
the operation mode of the drag:

• When both the initiator and receiver have agreed to use thedynamicmode they exchange
protocol messages dealing (for example) with entering and leaving drop sitesduring the
drag operation. The advantages of this mode are that the X server is not grabbed and can
still respond to other event sources, and the receiver can decide what data to accept on-the-
fly. On the other side, the dynamic operation mode requires more overhead on behalf of the
application and the network.

• The preregistermode is the other possible mode of operation (the appropriate protocol is
still undocumented). In this mode, the M*TIF toolkit handles on behalf of the initiator client
the complete processing of the drag-under visuals which would ordinarily occour in the
receiver client. The receiver is not involved in the process until the drop stage begins. But it
has to supply information about drop sites so the initiator can handle the drag-under visuals
accordingly. This mode minimises network trafic, but the drop site can’t determine whether
it wants to accept the drop data until the drop actually occurs. In addition, the server is
grabbed during the drag operation.

6.2.2 Protocol Messages

Unfortunately, X client messages (of typeXClientMessageEvent) are limited in size: you can
only transfer up to 20 bytes within them. For this reason, M*TIF applications use a “drag window”
with special properties attached to it to transfer any additional information which uses up to much
space. Some of the protocol messages therefore just refer to a data structure stored with the drag
window.

The various X client messages used for the drag or drop protocol share a common header and
some common settings.
• Themessage_type of such an X client message event is always set to the atom with the

name_MOTIF_DRAG_AND_DROP_MESSAGE.
• The format of the message event is8, so no byte swapping is performed by the X server.

The clients participating in the drag and drop mechanism must do the byte swapping them-
selves. The reason for this is that the available 20 bytes can be exploited best this way.

86 6. Drag and Drop

• Thewindow identifier of theXClientMessageEvent contains the identifier of the win-
dow receiving this message.
• The first user bytedata.b[0] of the message event indicates why this message was sent.

It is a bitfield with the high bit (bit 7) indicating whether the originator or the receiver
generated the message, and the remaining bits 6–0 denoting the reason. The reason can be
anyone of the message types listed in table 6.1. These message types are discussed in detail
in the sections below.

Reason:
XmTOP_LEVEL_ENTER, XmTOP_LEVEL_LEAVE, ...

0
1

Initiator
Receiver

Origin of message:

07

Identifier Value
XmTOP_LEVEL_ENTER 0x00
XmTOP_LEVEL_LEAVE 0x01
XmDRAG_MOTION 0x02
XmDROP_SITE_ENTER 0x03
XmDROP_SITE_LEAVE 0x04
XmDROP_START 0x05
XmDROP_FINISH 0x06
XmDRAG_DROP_FINISH 0x07
XmOPERATION_CHANGED0x08

Table 6.1:Message types used for the Drag & Drop X client messages.

• data.b[1] indicates the byte order used for the encoding of the following data. Like in the
X Protocol it must be set to either the ASCII uppercase letter ‘B’ when themost-significant
byte is transmitted first, or to the ASCII lowercase letter ‘l ’ when theleast-significant byte
is transmitted first.
• The data bytesdata.b[2] throughdata.b[19] contain the remaining bytes of the drag

and drop message.

6.2.3 Drag & Drop Flags

Many of the drag and drop messages contain a flag bitfield, which is called the “DnD Flags”
throughout this documentation. The “DnD Flags” consist of four distinct bitfields – each of it is
four bits wide and is labeled1© through 4© in figure 6.1.

Not every message makes use of every of the four bitfields. Some drag and drop messages don’t
use the “DnD Flags” at all, although they contain a spare field with the same size and in the

6.2. Protocol Basics 87

same position as the “DnD Flags”. Below, the descriptions of the various drag and drop messages
will refer to this bitfields 1© through 4©. Thus, you can easily tell, which bitfields are used for a
particular message.

XmDROP_COPY, XmDROP_LINK

Operation:
one of XmDROP_NOOP, XmDROP_MOVE,

XmDROP, XmDROP_HELP, XmDROP_CANCEL
Drop Action (Completion):

Other possible operations:
either
XmDROP_MOVE, XmDROP_COPY, XmDROP_LINK

XmDROP_NOOP or one or more of

1234

Drop Site Status (only used by receiver to inform initiator):
XmNO_DROP_SITE, XmDROP_SITE_INVALID,
XmDROP_SITE_VALID

15 04812

Figure 6.1: The “DnD Flags” signal various status conditions during a drag and drop operation.

Their purpose is as follows:

1© Operation: this bitfield contains therecommendedtype of drag and drop operation, if it is
used in a message sent by the initiator. If the message was sent instead by the receiver, then
this bitfield contains theselectedtype of drag and drop operation. Thus, the receiver is free
to “dictate” the kind of drag and drop operation. See table 6.2 for possible values.

2© Drop Site Status: this bitfield is only used by the receiver to inform the initiator whether the
pointer is currently hoovering over a valid/invalid drop site or no drop site at all. See table
6.4 for possible values.

3© Other possible operations: this is a bitset (binary OR) of all the operations that can be carried
out on the current drop site. If the pointer isn’t currently over a valid drop site, then this bitset
has all its bits set to zero (XmDROP_NOOP). See table 6.2 for the values of the various flags.

4© Drop Action: this bitfield is used only when starting thedrop operation. In this particular
case it is used by the receiver to indicate the drop action which the receiver is going to carry
out. See table 6.3 for valid completion status codes.

Identifier Value
XmDROP_NOOP0x00
XmDROP_MOVE0x01
XmDROP_COPY0x02
XmDROP_LINK 0x04

Table 6.2:Operation codes.

Identifier Value
XmDROP 0x00
XmDROP_HELP 0x01
XmDROP_CANCEL 0x02
XmDROP_INTERRUPT0x03

Table 6.3:Completion status codes.

88 6. Drag and Drop

Identifier Value
XmNO_DROP_SITE 0x01
XmDROP_SITE_INVALID 0x02
XmDROP_SITE_VALID 0x03
XmINVALID_DROP_SITE(DEPRECATEDSYMBOL) 0x02
XmVALID_DROP_SITE(DEPRECATEDSYMBOL) 0x03

Table 6.4:Drop site status codes.

6.2.4 The Targets Table

The M*TIF toolkit uses a special persistent, input-only, and override-redirected window to store
some data needed for the whole drag and drop infrastructure. This special window is a child of the
display’s default root window and is called the “M*TIF Drag Window”. In order that clients can
find this window at all, they should watch out for the property_MOTIF_DRAG_WINDOW(of type
WINDOW, with a size of 32) on their display’s default root window. If there’s no such property,
or the window ID stored in the property is either0 or invalid, then an client should create the
“M*TIF Drag Window” itself. The “M*TIF Drag Window” should have a close-down mode of
RetainPermanent (useXSetCloseDownMode() for this), so other applications don’t have
to create it themselves.

The “M*TIF Drag Window” currently seems to posses three properties named_MOTIF_DRAG_-
TARGETS(of type_MOTIF_DRAG_TARGETS, size is 8),_MOTIF_DRAG_ATOMS(of type – guess
which – _MOTIF_DRAG_ATOMS), and finally_MOTIF_DRAG_ATOM_PAIRS(of course of the
type_MOTIF_DRAG_ATOM_PAIRS).

Of primary interest to us is the_MOTIF_DRAG_TARGETSproperty: it is a list of target lists,
which is shared among all clients, and is commonly called the “targets table”. Every target list
within the targets table is a list of target (data types) an initiator can supply to a receiver on
request. Remember, that the X client messages only provide precious little space for the client’s
data. Thus, instead of passing such lists around, you only need to pass a singleCARD16value that
acts as an index (0-based) into the list of target lists. By specifying such an index, a receiver knows
which kinds of data it can request from the initiator during the drop phase.

Whenever a client needs to add his target list(s) to the targets table, it must follow some guidelines,
otherwise the targets table could become messed up. Every target list must be sorted into ascending
order (according to the atom ID’s) to avoid permutations of otherwise compatible target lists. Thus,
if a client supports the target types “B,A,C” and another client supports the target types “C,B,A”,
then they must both use the sorted target types list “A,B,C” instead. Note however that the targets
TARGETSandMULTIPLE – which are mandatory according to the ICCCM – are never listed. The
structure of the targets table is fairly straightforward and is shown in table 6.5.

In order to add its target list(s) to the targets table stored in the_MOTIF_DRAG_TARGETSprop-
erty, a client must grab the X server, so the operation is atomically. Then it has to search the targets
table for a match. Otherwise, the client can add the particular (sorted) target list to the table any-

6.2. Protocol Basics 89

Offset Size Description
+0x00 BYTE Byte Order: either ’B’ (MSB first) or ’l ’ (LSB first).
+0x01 BYTE Protocol Version: currently0.
+0x02 CARD16 Number of Target Lists: this should be really self-

explanatory.
+0x04 CARD32 Data Size: total size of the data stored in the property:

8 bytes for the header +
Number of Target Lists * 2 +
Total Number of Targets * 4

+0x08 CARD16 Number of Targets in List
+0x0A CARD32 List of Targets
+0x?? CARD16 Number of Targets in List
+0x?? CARD32 List of Targets

...and so on...

Table 6.5:Structure of the targets table in the property_MOTIF_DRAG_TARGETS.

where (the target table itself is not sorted – sigh). After it has updated the_MOTIF_DRAG_TARGETS
property, the client can remove the grab.

6.2.5 Advertising a Receiver

A receiver advertises itself by placing a property with the name_MOTIF_DRAG_RECEIVER_INFO
(of type_MOTIF_DRAG_RECEIVER_INFO, size is 8) on its top level window. Depending on the
protocol styles the receiver can handle (dynamic mode and/or preregister mode), this property
contains more or less data. But at least the property must be 16 bytes long.

Offset Size Description
+0x00 BYTE Byte Order: either ’B’ (MSB first) or ’l ’ (LSB first).
+0x01 BYTE Protocol Version of Receiver: currently0.
+0x02 BYTE Protocol Style: one of the protocol styles listed in table 6.7
+0x03 BYTE Padding.
+0x04 CARD32 Proxy Window: – under construction –
+0x08 CARD16 Number of Drop Sites: number of drop site blocks, which

are immediately following this header.
+0x0A CARD16 Padding.
+0x0C CARD32 Total Size: – under construction –

Table 6.6:The structure of the_MOTIF_DRAG_RECEIVER_INFOproperty describes a drag and
drop receiver.

The second half of the header shown in table 6.6 is only used in the preregister mode. For the
dynamic mode and when the drop site is a drop-only site, then the second half within the header is
not needed. Because the preregister mode is really tricky, we’re discussing it later in more detail.

90 6. Drag and Drop

Identifier Value
XmDRAG_NONE 0x00
XmDRAG_DROP_ONLY 0x01
XmDRAG_PREFER_PREREGISTER0x02
XmDRAG_PREREGISTER 0x03
XmDRAG_PREFER_DYNAMIC 0x04
XmDRAG_DYNAMIC 0x05
XmDRAG_PREFER_RECEIVER 0x06

Table 6.7:Drag protocol styles.

When a receiver signals that it can handle the dynamic mode, then it will accept and answer the
drag messages sent by the initiator as specified in the next section. If the protocol style of the
receiver is drop-only, then the initiator should not send any drag messages. The only message the
initiator is allowed to send then is theXmDROP_STARTmessage. In this case the visual effects
during the drag and drop gesture should indicate to the user that the whole top level window of the
receiver works as a single drop site accepting all possible targets and operations.

A receiver with a protocol style ofXmDRAG_NONEwants not to be disturbed by drag and drop
operations at all. The initiator should provide appropriate visual feedback whenever the drag icon
is over such a receiver.

6.2.6 Starting a Drag or Drop

When an initiator starts a drag – or even only a drop –, then it first creates a new property on the
source window. The name of this property can be arbitrary, but it must be of type_MOTIF_DRAG_-
INITIATOR_INFO and have a data size of 8. This property then should contain information about
which targets the initiator is able to serve and what selection atom to use for the data transfer. Table
6.8 shows the structure of this property.

Offset Size Description
+0x00 BYTE Byte Order: either ’B’ (MSB first) or ’l ’ (LSB first).
+0x01 BYTE Protocol Version of Initiator : currently0.
+0x02 CARD16 Targets Index: the index of a targets list within the targets

table. The first list within the targets list has an index of0.
This index advertises which targets the initiator is willing
to handle.

+0x04 CARD32 Selection Atom: atom ID to be used as the selection atom
for the data transfer when the drop actually takes place.

Table 6.8: The structure of the_MOTIF_DRAG_INITIATOR_INFO property describes the ini-
tiator.

Figure 6.2 finally shows the four properties which are representing an important part of the infor-

6.2. Protocol Basics 91

mation infrastructure for the drag and drop mechanism.

ReceiverInitiator

_MOTIF_DRAG_TARGETS property
(type = , size =)_MOTIF_DRAG_TARGETS 8

_MOTIF_DRAG_WINDOW
WINDOW(type = , size =)32

property (on root window of the default display)

In
iti

at
or

In
fo

Byte order

Protocol version initiator

Targets index

Selection atom

J.Doe property (name arbitrary)
(type = , size =)_MOTIF_DRAG_INITIATOR_INFO 8

Byte order

Protocol version receiver

Protocol styleR
ec

ei
ve

r
In

fo

3

1

4

STRING

STRING

PIXMAP GIF

UNICODE PIXMAP

3 Number of target lists

Data size of targets table including header38

Protocol version0

Byte order

H
ea

de
r

L
is

ts

8_MOTIF_DRAG_RECEIVER_INFO(type = , size =)
property_MOTIF_DRAG_RECEIVER_INFO

Figure 6.2: Properties involved in the Drag & Drop game.

92 6. Drag and Drop

6.3 The Drag Protocol

During a drag operation the client is free to skip the drag protocol. Reasons for this might be
either complexity or known latencies. But in turn the client looses the ability to provide accurate
(dynamic) feedback during the drag.

6.3.1 Entering/Leaving Top Level Windows

When the pointer enters a new top level window, the initiator notifies the receiver with aXmTOP_-
LEVEL_ENTERmessage.

Message User Data Size Description
data.b[0] BYTE Reason: XmTOP_LEVEL_ENTER(0x00)
data.b[1] BYTE Byte Order: either ’B’ (MSB first) or ’l ’ (LSB first).
data.b[2..3] CARD16 (DnD Flags: unused)
data.b[4..7] CARD32 Timestamp: set to the timestamp of the corresponding X

event triggering this message.
data.b[8..11] CARD32 Source Window: source window ID of the initiator.
data.b[12..15] CARD32 Drag Initiator Info Atom : atom ID of a property the ini-

tiator set up when it started the drag or drop operation.

Table 6.9:TheXmTOP_LEVEL_ENTERmessage send by the initiator.

The atom ID (in table 6.9 it is called the “Drag Initiator Info Atom”) sent in theXmTOP_LEVEL_-
ENTERdrag message is a selection atom. It must be unique for the duration of the Drag & Drop
transaction. In addition, the initiator must own the selection and must be ready to convert data from
the early beginning of the drag operation, since the receiver can ask for a conversion dynamically
during the drag to validate the operation.

When the pointer leaves a top level window, the initiator notifies the receiver with aXmTOP_-
LEVEL_LEAVEmessage.

Message User Data Size Description
data.b[0] BYTE Reason: XmTOP_LEVEL_LEAVE(0x01)
data.b[1] BYTE Byte Order: either ’B’ (MSB first) or ’l ’ (LSB first).
data.b[2..3] CARD16 (DnD Flags: unused)
data.b[4..7] CARD32 Timestamp: set to the timestamp of the corresponding X

event triggering this message.

Table 6.10:TheXmTOP_LEVEL_LEAVEmessage send by the initiator.

A receiver never replies (echoes) theXmTOP_LEVEL_ENTERandXmTOP_LEVEL_LEAVEmes-
sages.

6.3. The Drag Protocol 93

6.3.2 Pointer Motion

When the pointer moves, the initiator sendsXmDRAG_MOTIONmessages to the receiver (which is
the top level window the pointer is currently in and which is willing to accept drag messages).

Message User Data Size Description
data.b[0] BYTE Reason: XmDRAG_MOTION(0x02)
data.b[1] BYTE Byte Order: either ’B’ (MSB first) or ’l ’ (LSB first).
data.b[2..3] CARD16 DnD Flags: 1© + 3©
data.b[4..7] CARD32 Timestamp: set to the timestamp of the corresponding X

event triggering this message.
data.b[8..9] CARD16 Root X: x position of the drag-over icon relative to the root

window.
data.b[10..11] CARD16 Root Y: y position relative to the root window.

Table 6.11:TheXmDRAG_MOTIONmessage send by the initiator.

Whenever the initiator sends aXmDRAG_MOTIONmessage, the receiver responds with one out
of three different messages, depending on whether the pointer entered or left a valid drop site
(XmDROP_SITE_ENTER, XmDROP_SITE_LEAVE), or just moved around (XmDRAG_MOTION).

Message User Data Size Description
data.b[0] BYTE Reason: XmDROP_SITE_ENTER(0x83)
data.b[1] BYTE Byte Order: either ’B’ (MSB first) or ’l ’ (LSB first).
data.b[2..3] CARD16 DnD Flags: 1© + 2© + 3©
data.b[4..7] CARD32 Timestamp: set to the timestamp of the corresponding X

event triggering this message.
data.b[8..9] CARD16 Root X: better x position (hint for the initiator) of the drag-

over icon relative to the root window.
data.b[10..11] CARD16 Root Y: better y position relative to the root window.

Table 6.12:TheXmDROP_SITE_ENTERmessage replied by the receiver.

Message User Data Size Description
data.b[0] BYTE Reason: XmDROP_SITE_LEAVE(0x84)
data.b[1] BYTE Byte Order: either ’B’ (MSB first) or ’l ’ (LSB first).
data.b[2..3] CARD16 (DnD Flags: unused)
data.b[4..7] CARD32 Timestamp: set to the timestamp of the corresponding X

event triggering this message.

Table 6.13:TheXmDROP_SITE_LEAVEmessage replied by the receiver.

94 6. Drag and Drop

Message User Data Size Description
data.b[0] BYTE Reason: XmDRAG_MOTION(0x82)
data.b[1] BYTE Byte Order: either ’B’ (MSB first) or ’l ’ (LSB first).
data.b[2..3] CARD16 DnD Flags: 1© + 2© + 3©
data.b[4..7] CARD32 Timestamp: set to the timestamp of the corresponding X

event triggering this message.
data.b[8..9] CARD16 Root X: better x position (hint for the initiator) of the drag-

over icon relative to the root window.
data.b[10..11] CARD16 Root Y: better y position relative to the root window.

Table 6.14:TheXmDRAG_MOTIONmessage echoed by the receiver.

6.3.3 Changing the Operation

The user is free to change the drag operation (copy, move, link) at any time during the drag
gesture – for example, if she/he presses or releases modifier keys. The initiator then sends an
XmOPERATION_CHANGEDmessage.

Message User Data Size Description
data.b[0] BYTE Reason: XmOPERATION_CHANGED(0x08)
data.b[1] BYTE Byte Order: either ’B’ (MSB first) or ’l ’ (LSB first).
data.b[2..3] CARD16 DnD Flags: 1© + 3©
data.b[4..7] CARD32 Timestamp: set to the timestamp of the corresponding X

event triggering this message.

Table 6.15:TheXmOPERATION_CHANGEDmessage send by the initiator.

The receiver then echoes theXmOPERATION_CHANGEDmessage.

Message User Data Size Description
data.b[0] BYTE Reason: XmOPERATION_CHANGED(0x88)
data.b[1] BYTE Byte Order: either ’B’ (MSB first) or ’l ’ (LSB first).
data.b[2..3] CARD16 DnD Flags: 1© + 2© + 3©
data.b[4..7] CARD32 Timestamp: set to the timestamp of the corresponding X

event triggering this message.

Table 6.16:TheXmOPERATION_CHANGEDmessage echoed by the receiver.

6.4. The Drop Protocol 95

6.4 The Drop Protocol

The drop protocol can be used independently of the drag protocol, for example when a drop site
is in theXmDRAG_DROP_ONLYmode. Fortunately, the whole drop protocol is really lean – it just
consists of the single messageXmDROP_STARTsent by the initiator, which must be echoed by the
receiver.

Message User Data Size Description
data.b[0] BYTE Reason: XmDROP_START(0x05)
data.b[1] BYTE Byte Order: either ’B’ (MSB first) or ’l ’ (LSB first).
data.b[2..3] CARD16 DnD Flags: 1© + 3©
data.b[4..7] CARD32 Timestamp: set to the timestamp of the corresponding X

event triggering this message.
data.b[8..9] CARD16 Root X: x position relative to the root window.
data.b[10..11] CARD16 Root Y: y position relative to the root window.
data.b[12..15] CARD32 Drag Initiator Info Atom : atom ID of a property the ini-

tiator set up when it started the drag (or drop, if we’re in
XmDRAG_DROP_ONLYmode).

data.b[16..19] CARD32 Source Window: source window ID of the initiator.

Table 6.17:TheXmDROP_STARTmessage send by the initiator.

The receiver then echoes thisXmDROP_STARTmessage, indicating whether it is willing to accept
the drop and what operation (move, copy or link) it want to carry out.

Message User Data Size Description
data.b[0] BYTE Reason: XmDROP_START(0x85)
data.b[1] BYTE Byte Order: either ’B’ (MSB first) or ’l ’ (LSB first).
data.b[2..3] CARD16 DnD Flags: 1© + 2© + 3© + 4©
data.b[4..5] CARD16 Better X: better x position (hint for the initiator) of the

drag-over icon relative to the root window.
data.b[6..7] CARD16 Better Y: better y position (hint for the initiator) of the

drag-over icon relative to the root window.

Table 6.18:TheXmDROP_STARTmessage echoed by the receiver.

If the receiver did not cancel the drop (which it must indidicate within the echoed message), then
it can proceed to transfer the drop data using the X selection transfer mechanism. The receiver can
request as many transfers as it wants, using the selected targets. For each conversion request, the
initiator replies using the ICCCM selection.

The resources allocated during the drag operation should not be released until the drop is finished.
The receiver indicates this by requesting a conversion for the targetsXmTRANSFER_SUCCESSor
XmTRANSFER_FAILURE. When the initiator receives such a conversion request, then it must reply

96 6. Drag and Drop

with an empty value.The receiver as well as the initiator can then release all resources allocated for
the drop operation. In addition, it’s the right time to show the melting or failure/snapback visual
effect.

6.5 The Preregister Mode

The full protocol described in this chapter so far is only used when both the initiator and receiver
have agreed to use the dynamic mode. When using the preregister mode, the initiator grabs the
server when the drag starts, and whenever the pointer enters a new top level window, it reads all
the drop site information it needs for doing its tracking, visual feedback, etc., from a preregistered
database attached to the_MOTIF_DRAG_RECEIVER_INFOproperty of each participating client
top level window. Obviously, no drag X client messages are sent, since no one is listening to them
(remember, that the X server is grabbed). The server gets ungrabbed when the user drops the
object, at which point the documented drop protocol comes in effect (together with the convention
for the transfer success or failure).

For the preregister mode, the_MOTIF_DRAG_RECEIVER_INFOproperty has also valid informa-
tion stored in the second half, as descibed in table 6.6. In addition, the header (which has a size of
16 bytes) is followed by “drop site blocks” that describe the drop sites located within the top level
window of a receiver.

...

_MOTIF_DRAG_RECEIVER_INFO property

Receiver Info Header

Drop Site Block

Drop Site Block

...

Drop Site Header

Visual Info Block

Geometry Box

Geometry Box

Drop Site Block

Figure 6.3: Overall structure of the_MOTIF_DRAG_RECEIVER_INFOproperty for the prereg-
ister mode.

For each drop site there is a corresponding drop site block in the_MOTIF_DRAG_RECEIVER_INFO
property. Each drop site block starts with a 8 bytes long “drop site header”, and is followed by a
“visual info block” and a series of geometry boxes giving geometry information about a drop site.
This overall structure is shown in figure 6.3.

6.5. The Preregister Mode 97

Offset Size Description
+0x00 CARD16 Drop Site Flags: bitfield containing various flags which

describe the possible operations, the drop type, the anima-
tion style, as well as some other things.

+0x02 CARD16 Targets Index: the index of a targets list within the targets
table. The first list within the targets table has an index of
0. This index advertises which targets the initiator is will-
ing to handle. This value is used in the same way as the
Targets Index of the_MOTIF_DRAG_INITIATOR_INFO
property.

+0x04 CARD32 Number of Geometry Boxes: the number of geometry
boxes following the visual info block for this drop site
block.

Table 6.19:The structure of a drop site block header

– under construction –

98 6. Drag and Drop

7
When the Keyboard Goes Wild

Harald Albrecht

100 7. When the Keyboard Goes Wild

7.1 Introduction

To some extent, the way X treats keyboard input is more complicated than handling the pointing
device events (or many other events). The information about a key in the event structure isn’t
suitable for immediate use, instead it has to go through one of several conversion stages before it
becomes useful to the application. The main reason is that X is designed to support all kinds of
keyboards. However, the drawback is increased complexity.

Keyboard input appears in three “flavours”: as keycodes, keysyms or keystrings. Naturally, M*TIF

adds a fourth one: the CSF keysyms. They are a special set of keysyms. Figure 7.1 shows how
keycodes, keysyms and keystrings relate.

Shift

������

XTranslateKey()

XmTranslateKey()�������������� XK_Xkeysym

������������

	�	
�
 ������ ����������
Modifier state

MappingNotify
or

KeyPress event with
hardware-dependent keycode

Caps Ctrl

keyboard mapping keyboard mapping
cache

X/LessTif ClientX Server

X

XRefreshKeyboardMapping()

XChangeKeyboardMapping()

keystring ’x’

Figure 7.1: Keyboard event processing.

A keycode is a hardware-dependent coding of the key being pressed or released. Thus, keycodes
aren’t really usefull to LESSTIF application writers. With the help of the keyboard mapping, ev-
ery Xlib and/or Xt intrinsics client converts the hardware-dependent keycodes into hardware-
independent keysyms. These keysyms are integers representing the symbol engraved on a key
(“a”, “A”, “+” as well as “Shift”, “PageDn” and other ones). The keyboard mapping is read from
the server and cached to speed up look-ups and prevent unnecessary round-trips to the server. The
translation from keycodes to keysyms can be done withXtTranslateKeycode() . This calls
the currently registered key translator procedure, which isXmTranslateKey() by default. The
translation manager calls the key translator procedure, too.

Keysyms that represent printable characters can be further translated into keystrings by calling
XTranslateKey() . This mapping between keysyms and keystrings is not stored in the X server,
but rather hardwired into the Xlib.

7.2. The Virtual Bindings 101

7.2 The Virtual Bindings

Unfortunately the concept of keysyms leaves too much room for vendor-dependent interpretations
on how to bind keycodes to keysyms. A constant source for confusion and frustration is the key
←− at the top right of the alphanumeric key area. Some vendors bind this key to the keysym

XK_BackSpace , some others to the keysymXK_Delete .

The simplest way would be to change the keyboard mapping of the server. But this would af-
fect all clients connected to that server – especially the non-LESSTIF ones. In order to reassert
some (basic) consistency, the CSF introduced the “CSF keysyms”. The CSF keysyms form a
special set of keysyms. Depending on the X server’s vendor, certain keycodes are translated into
CSF keysyms. The mappings between keysyms and CSF keysyms are also known as the “vir-
tual bindings” (see figure 7.2). The conversion between keypresses and keysyms takes place in
XmTranslateKey() .

������
outgoing keysym

osfXK_BackSpace
������
������

������

CSF keysymkeysym and

virtual bindings

???

incomming keycode

Ctrl

MetaAlt

Shift

modifiers

Caps

mapping table

XK_BackSpace

incomming keysym

Figure 7.2: The “virtual bindings” take care of some basic consistency between different key-
boards.

When converting ordinary innocent keysyms into CSF keysyms the modifiers must be taken into
consideration. Unfortunately, we have to cope with different kinds of modifiers when looking at
the virtual binding mechanism or the translation manager. An example shall enlighten the problem
arising from this. Suppose your new WYSIWYWAA widget (WHAT YOU SEE ISN’ T WHAT YOU

WANTED AFTER ALL) also features an “undo” operation. The undo is activated by pressing the
keys ALT and ←− together. Somewhere in your widget’s translation table you’ll have to write:

Alt<Key>osfDelete: undo()
Meta<Key>osfDelete: undo()

As LESSTIF – or its “alter ego” M*TIF – converts some of the standard keysyms into virtual

102 7. When the Keyboard Goes Wild

keysyms, you can’t use the standard keysym nameDelete but must useosfDelete . The trans-
lation manager will never see the original keysym but only the virtual keysym.

Although the “Alt ” modifier preceeding the keypress translation “<Key> ” looks suspiciously
like any ordinary modifier (e.g.,Shift), it isn’t one! X provides for eight modifiers alltogether,
but onlyShift , Lock , andControl are predefined. The remaining five modifiersMod1 up to
Mod5 can be freely mapped to any key. Smart as the Xt intrinsics are, they convert the translation
Alt<Key>osfDelete into a translation using theAlt keyinstead of a (ficious) “Alt”modifier.
Unfortunately, many programmers aren’t aware of this.

Thus, when looking at translations, it is very important to distinct between the two sets ofreal
modifiers andfakemodifiers: The real modifiers are:Shift , Lock , Ctrl , Mod1up toMod5, and
the mouse buttonsButton1 up to Button5 , whereas fake modifiers are:Alt , Meta , Super ,
andHyper .

During the process of converting keysyms into CSF keysyms (inXmTranslateKey()) no trans-
lation mechanism is present. All we have is the current state of the modifiers recorded in the Key-
Press event. But onlyShift , Lock , andControl are predefined. So what to do with virtual
bindings which are supposed to translateAlt ’ed keysyms into CSF keysyms?

The CSF decided to ignore the problem as good as possible when developing M*TIF, and depends
on the user mapping theAlt key on the keyboard to theMod1 modifier. You can test this by
changing your mapping such, thatAlt maps toMod2. The respective virtual bindings won’t work
any longer.

LESSTIF is much smarter than M*TIF (What?! Impossible!). Unfortunately, theXmTranslate-
Key() converter can’t maintain the current keyboard state of theAlt and Meta keys as it gets
called from the translation manager many times even for everysingle keystroke. Thus, during
startup LESSTIF tries to find out to which modifier theAlt key has been bound to. LESSTIF does
this basically by scanning the modifier mapping (as returned byXGetModifierMapping())
for the modifier bound to the keysymsXK_Alt_L or XK_Alt_R . If none can be found LESSTIF

falls back to useMod1. The whole procedure is so easy to implement, I can’t understand why the
CSF didn’t get the trick in the past. If you’re interested how LESSTIF does it, take a look at the
file $(LESSTIF_ROOT)/libXm/VirtKeys.c . The source is commented (really!).

7.3 Managing the Modifier Mappings

There are three functions available for messing about with the current mapping of theAlt modifier
(remember that these ones are LESSTIF-specific!):

XmModifierMaskSetReference _XmGetModifierMappingsForDisplay(Display *dpy);
void _XmInvalidateModifierMappingsForDisplay(Display *dpy);
void _XmRefreshVirtKeys(Widget w);

You’ll normally use only_XmGetModifierMappingsForDisplay() . This function reports
the current mapping as a pointer to aXmModifiersMaskSet (and surely gets an olympic medal

7.4. Managing the Virtual Bindings 103

for its name’s length). This set is simply an array that holds the modifier masks for theAlt , Meta ,
Super , and Hyper modifier keys. If LESSTIF can’t find a binding for theAlt key it will fall back

to theMod1 modifier mask as theAlt modifier mask.

To get the modifier mask of theAlt modifier, just use the indexALTModifier into the array:

#ifdef LESSTIF_VERSION
#include <Xm/VirtKeysP.h>

XmModifierMaskSetReference ModifierMasks;
#endif

Modifiers Alt, someModifierFlags;

#ifdef LESSTIF_VERSION
ModifierMasks = _XmGetModifierMappingsForDisplay(dpy);
Alt = ModifierMasks[ALTModifier];

#else
Alt = Mod1Mask;

#endif

someModifierFlags = ... ;
if (someModifierFlags & Alt) {

.... ;
}

The result of_XmGetModifierMappingsForDisplay() is cached so all but the first request
won’t result in a round-trip to the X server. The modifier mask set belongs to the cache, so be sure
to never free it.

When the user changes the modifier mapping during the lifetime of a LESSTIF based application,
LESSTIF receives a MappingNotify event and updates its modifier cache as well as the virtual
bindings by calling_XmRefreshVirtKeys() . If for any reason you must invalidate the modi-
fier mapping cache, you can call_XmInvalidateModifierMappingsForDisplay() . Any
pointer to the modifier mapping array for the respective display then gets invalid!

7.4 Managing the Virtual Bindings

The virtual binding mechanism inVirtKeys.c provides four additional (“undocumented”) func-
tions to mess with:

void _XmVirtualToActualKeysym(Display *Dsp, KeySym VirtualKeysym,
KeySym *RealKeysymReturn,
Modifiers *ModifierReturn);

void _XmVirtKeysInitialize(Widget w);
Boolean _XmVirtKeysLoadFileBindings(String filename, String *binding);
int _XmVirtKeysLoadFallbackBindings(Display *Dsp, String *Bindings);

These four functions are available with M*TIF as well as with LESSTIF. With _XmVirtualTo-
ActualKeysym() you can check how a virtual keysym would look like in real life. You also get

104 7. When the Keyboard Goes Wild

back from the function the necessary modifiers which must be active in order to convert the real
keysym into a CSF keysym.

The contents of a file can be loaded into memory by means of the_XmVirtKeysLoadFile-
Bindings() function. The memory needed to hold the contents is allocated by the function and
must be freed when it’s not needed any more. If the function fails for any reason (file not found,
not enough memory available)_XmVirtKeysLoadFileBindings() returnsFalse .

If for any reason you need to set up the_MOTIF_DEFAULT_BINDINGSproperty of the root win-
dow of a given display, you can use_XmVirtKeysLoadFallbackBindings() for this task.
If applicable, the function will load a vendor-specific set of virtual bindings. Otherwise it will fall
back to a generic set of virtual bindings._XmVirtKeysLoadFallbackBindings() returns
in the parameterBindings the current set of virtual bindings. You are responsible for freeing the
string withXtFree() when you don’t need it any longer. The most interesting use of this function
is within thexmbind client. If no binding file is specified and there is no.motifbind file avail-
able, thenxmbind can install the default fallback bindings in the_MOTIF_DEFAULT_BINDINGS
property. More on this in the next section.

You will hardly need to call_XmVirtKeysInitialize() , as this sets up the virtual bind-
ings on aXmDisplay widget. It gets automatically called during the initialising phase of this
kind of widget. This function is solely for use within the LESSTIF modulesVirtKeys.c and
Display.c .

7.5 The xmbind Client

The current virtual bindings are stored in one of two possible properties on the root window of
screen#0. There can be only one set of active virtual bindings at the same time on a givendisplay
as there exists onlyonekeyboard per display. Therefore the current bindings are always stored
in a property of the root window of screen #0. Please note that they arenot attached to the root
window of the default screen, as the default screen can be any screen of a given display and may
even change from application to application (see figure 7.3). The storage for the current virtual
bindings is provided by one of the following properties (both of typeXA_STRING):

• The property_MOTIF_DEFAULT_BINDINGS(if existent) contains the default virtual bind-
ings for the display.
• The property_MOTIF_BINDINGS contains virtual bindings loaded either from the user’s

$(HOME)/.motifbind file or from xmbind.alias (available in several good places).

If none of the two properties exist, LESSTIF’s startup-code first tries to find user-specific bind-
ings and if it succeeds, it sticks them to the_MOTIF_BINDINGS property. Otherwise the starup-
code figures out the default virtual bindings (according to the display) and loads them into the
_MOTIF_DEFAULT_BINDINGSproperty. In every case, after starting a LESSTIF application the
root window of screen #0 contains a property specifying the current virtual bindings.

Thexmbind client can be used to change or setup the properties related to the virtual bindings.
This client is remarkable simple, as most of the functionality needed is already laid down in the

7.5. The xmbind Client 105

Property _MOTIF_BINDINGS
or _MOTIF_DEFAULT_BINDINGS

Windooze 96 booting...
Please stand by...stand by...
...stand by...stand by...

Root Window

Display

Screen #0 Root Window Screen #1

Default Screen

Figure 7.3: Displays, Screens and the Virtual Bindings.

LESSTIF library (mostly in the form of “undocumented” functions). Following is the pseudo-code
of xmbind (the source resides in$(LESSTIF_ROOT)/clients/xmbind/xmbind.c):

if (user specified a file on the command line) {
delete the _MOTIF_DEFAULT_BINDINGS property
load the file into the _MOTIF_BINDINGS property

} else {
if (there is a .motifbind file) {

delete the _MOTIF_DEFAULT_BINDINGS property
load the file into the _MOTIF_BINDINGS property

} else {
delete the _MOTIF_BINDINGS property
load fallback bindings into the _MOTIF_DEFAULT_BINDINGS property

}
}
flush the connection to the display and terminate

106 7. When the Keyboard Goes Wild

8
Inside XmStrings

Chris Toshok
Harald Albrecht

108 8. Inside XmStrings

8.1 Introduction

This chapter gives a cursory explanation of the way XmStrings are encoded in M*TIF 1.2 (and
LESSTIF). This information is still being discovered, so explanations of where it is wrong are
welcome.

Sometime last year on the LESSTIF mailing list, a well known SGI persona, Doug Rand, sent an
email that described the things that were changed from 1.2 to 2.0. One of the things he mentioned
was that the encoding rules for the external representation of XmStrings can no longer be consid-
ered to be in ASN.1 format (ASN means “Abstract Syntax Notation Number One”). If you wonder
why there is a full stop in the acronym – there’s a simple reason for it. First written as “ASN1”
many people just misread it as ASNI (note the letter “I” and not the digit “1” at the end). And this
rapidly mutated into ANSI, what was probably not meant at all. So the OSI wrote it with a full
stop and no-one every confused it with the ANSI anymore.

8.2 Get Ready for the Acronyms

If you don’t care where the rules come from, or what they are for, you can skip this section.

I happen to work in the telecommunications industry, and I have experience with ASN.1 and re-
lated standards as defined by the ITU (others know these standards either through the ISO or from
RFC’s). ASN.1 is used by the GDMO (roughly, “Guidelines for the Development of Managed
Objects” – there are several ways I know of to decompose that acronym) to describe MIBs (Man-
agement Information Bases). The “Simple Network Management Protocol” (SNMP) for example
works with a MIB describing various aspects of a networked device (like network cards, routing
tables, and IP addresses).

Basically, ASN.1 is a way to describe data types in a machine independent way from a text de-
scription (something like XDR – the eXternal Data Representation used by ONC/RPC. Go and
find out yourself what the latter is). Vaguely associated with ASN.1 are sets of encoding rules,
such as BER (or Basic Encoding Rules) which describe how to actually create external represen-
tations of data. There are other encoding rules (e.g., FER), but you’ve had enough acronyms for
now. ASN.1 is really a very powerful tool – you may want to learn more about it on your own.

8.3 How It Works

Ok, enough of the background. Let’s see how it works in practice. The basic idea is to describe
data elements as a three piece combination: tag/length/value, sometimes referred to as TLV. You
basically have:

• a tag, which describes what type of data this is,
• a length, which says how long the following value is,
• and a value, which is basically an octet (or byte) sequence that describes the value.

8.3. How It Works 109

The basic unit of information is the octet (or byte): 8 bits of information. You can see how 8 bits
might be a little small to describe large strings – more on that later. One thing that must be noted
is that TLVs can be nested, that is, the value part of a TLV tuple can contain TLVs.

I’m going to skip a full description of BER and just report the basics of how they relate to
XmString s. Let’s take a trivial example:

xmstr = XmStringCreateLtoR("Hello\nWorld", XmFONTLIST_DEFAULT_TAG);

The first thing to notice is theXmFONTLIST_DEFAULT_TAG. That’s a clue to M*TIF that the
string passed in is represented in the current locale (I’m not even going to try to talk about NLS –
look elsewhere for what locale means). The second thing to notice is that we usedXmStringCreate-
LtoR , which means the function should be aware of separators (normally, this means “look for
newlines”). So M*TIF would parse that as “Hello ” (locale text), “\n ” (separator in this locale),
and “World ” (locale text).

Identifier Value
XmSTRING_COMPONENT_UNKNOWN 0x00
XmSTRING_COMPONENT_CHARSET 0x01
XmSTRING_COMPONENT_TEXT 0x02
XmSTRING_COMPONENT_DIRECTION 0x03
XmSTRING_COMPONENT_SEPARATOR0x04
XmSTRING_COMPONENT_LOCALE_TEXT0x05

Table 8.1:Component identifiers forXmString s.

Let’s look at what Motif does tell us about encodings – eachXmString component has a different
identifier (see figure 8.1). Hmm, these could be the tag part of the TLVs! Given that, theXmString
that M*TIF 1.2 generates is the following (in hex and chars, with the0x prefix removed from the
hex):

DF 80 06 10 05 05 ’H’ ’e’ ’l’ ’l’ ’o’ 04 00 05 05 ’W’ ’o’ ’r’ ’l’ ’d’

which makes absolutely no sense when you look at it that way. Try this:

0xDF 0x80 this is a M*TIF string (essentially)
0x06 0x10 which contains a 16 byteXmString

0x05 0x05 which contains 5 bytes of locale text
“Hello ” which has the value “Hello ”

0x04 0x00 and a separator
– nothing– which has no data (never does)

0x05 0x05 and 5 more bytes of locale text
“World ” which has the value “World ”

110 8. Inside XmStrings

The first number (on lines that have them) is the tag; the second number is the length. You
can see that this description shows how TLVs can be nested. Look at it this way; if I just de-
scribe the string above structurally, it comes out as (using parentheses as an indicator of nesting):
TLV=(TLV=(TLV,TLV,TLV)).

The first tag value0xDF identifies everyXmString . While this value seems arbitrary at the first
glance it makes some sense. The tag value can be decomposed into three separate fields as shown
below.

1 1 111110

format bit: primitive encoding

tag ID
private tag class

The most significant bits 7 and 6 indicate that this is a private tag class, thus the bits 4 to 0 are just
set to an arbitrary value. The “F” flag (bit 5) indicates that this is a simple tag encoding and not a
composed one. Ok, after this you’re scratching your head once again. Where does the next value
0x80 (the first length) fit in? Remember how I said that 8 bits was a little small for describing
lengths? Well, that’s where BER kicks in. There are really three ways for describing lengths: short
form, long form, and indeterminate form. As far as I know, Motif cheats horribly on this (more on
this below). Here’s how you describe lengths in BER:

• If the length< 0x80 , then length is contained in one octet.

Length of following
data block

0 data octets data octets

Value block

...

• If the length> 0x80 (but not indeterminate), then the length octet is defined as0x80 plus
the number of octets needed to describe the length (up to 127 additional octets, so this can
describe lengths up to 2127·8, or 21016, which isreally huge). The octets describing the length
immediately follow the length octet and come before the value octets. In practice (as far as
I know), M*TIF limits this to two additional length octets, which implies a maximum value
length of 65535. Maybe the CSF once planned to port M*TIF to M$Windooze. . .

8.3. How It Works 111

1 data octets

Number of octets
describing the size
block following

Most Significant Byte

...

Least Significant Byte

Value blockLength of following value block

...

• If the length> 21016, or you are really lazy (like M*TIF is), then the length octect contains
0x80 , and you’re to parse the value (which contains TLV tuples) until you come to a TLV
whose tag and length are both 0. M*TIF uses the indeterminate form only for encoding the
first TLV, but never when encoding the subsequent TLV’s.

1 0 0 0 0 0 0 0 Tag Len Value Tag Len Value 0x000x00

End TL tuple
without a value block

M*tif allows only for one Tag/Len/Value tuple
following, and no end TL tuple!

Indeterminate size

...

Any number of Tag/Len/Value tuples

As I said before, M*TIF is really lazy (what else did you expect?!). The first header (0xDF 0x80)
should imply that anXmString parser should look for a tag and length that are both 0. In practice,
Motif strings contain onlyoneelement in the value: theXmString . I’ve parsed strings in M*TIF

looking for the (0x00 0x00) tag/length, and run off into space. Therefore, LESSTIF stops after
finding the firstXmString component. In effect, a length of0x80 in M*TIF means “I don’t know
how long my value is, but my value is really a TLV, and there’s only one of them”.

Let’s look at our example string again, in light of this information:

0xDF 0x80 XmSTRING_TAG, XmSTRING_LENGTH
0x06 0x10 XmSTRING_COMPONENT_XMSTRING, 16 bytes

0x05 0x05 XmSTRING_COMPONENT_LOCALE_TEXT, 5 bytes
“Hello ” “ Hello ”

0x04 0x00 XmSTRING_COMPONENT_SEPARATOR, 0 bytes
– nothing–

0x05 0x05 XmSTRING_COMPONENT_LOCALE_TEXT, 5 bytes
“World ” “ World ”

That should make more sense, now. Note that the tags 6–125 are said to be reserved in M*TIF’s
header files; now you should understand why the value 6 isXmSTRING_COMPONENT_XMSTRING
(which doesn’t appear in any Motif header). The lengthXmSTRING_LENGTHis used within
LESSTIF as a synonym for the indeterminate length value of0x80 . You’ll find its definition in
$(LESSTIF_ROOT)/libXm/XmString.c .

112 8. Inside XmStrings

8.4 Structures

[Need to explain here why order is important in the strings – the charsets MUST come before the
strings that use them].

8.5 The Other Side of XmStrings

As you can easily imagine, the ASN.1 representation of aXmString isn’t very suitable for fast
handling, yet saves memory. Another advantage of aXmString is that it is independent of a
XmFontList . Only when you need to know the height and/or width of aXmString or want to
render it into a drawable aXmFontList must be specified so that the individual string compo-
nents can be “connected” to the fonts from the font list.

If you need to work many times with a particularXmString (like the list widget) it is more
convenient to “compile” the ASN.1 representation of aXmString into an internal form – a
_XmString . The individual TLV’s from the ASN.1XmString are thereby transformed into
string components accessible through pointers. The compilation is carried out with_XmStringCreate()
which takes aXmString and returns a_XmString . Next after the transformation the references
to the fonts should be resolved – use_XmStringUpdate() for this task. Lateron, you can update
the fonts the (internal)_XmString will use whenever you want by calling_XmStringUpdate() .

A _XmString is merely a pointer to a__XmStringRec . This structure points to a table of
pointers to the string’s components. In addition the__XmStringRec also accounts for the size
of that table of pointers (see figure 8.1). As the table of pointers can grow and shrink whenever
the string gets manipulated, it may also move in memory. Thus the the_XmString pointer can’t
point directly to the components table but must point to a data structure instead which stays at
the same memory location all the time (well – at the samelogical or linear memory location as
modern virtual memory management may move memory blocks at any time around the physical
memory).

In turn the string components are described by__XmStringComponentRec s, which contain the
type of a component (see table 8.1 on page 109), the component’s data, its length, and finally the
font to be used. Every__XmStringComponentRec can thus be regarded as a TLV converted
to a more suitable form to the CPU. Thefont member of the component record is just an index
into aXmFontList . So be sure to update these indices with_XmStringUpdate() whenever
the font list changes which is used for rendering the_XmString .

8.5. The Other Side of XmStrings 113

__XmStringComponentRec **components;
int number_of_components;

__XmStringRec

XmStringComponentType type;
int length;
char *data;
short font;

__XmStringComponentRec

...

...

data octets

_XmString

Components Table

XmFontList

_XmFontListRec

Figure 8.1: Internal representation of a “compiled”_XmString .

114 8. Inside XmStrings

9
Hash & Cache

Harald Albrecht

116 9. Hash & Cache

9.1 Introduction

Caches within LESSTIF serve two main purposes: avoiding unnecessary round-trips to the X server
as well as resource sharing. The resource sharing can either occur on the server side (pixmaps,
graphics contexts,...) or on the side of the client (images, memory). Caching can also improve
performance (although this is at some times only an idle wish...).

When working with caches, very often you need to check a cache for the existence of a particular
item. Because the cache may contain many items this lookup has to be fast. In almost every case a
simple linked list isn’t suitable when you need speed – but (at least) a linked list is easy to code.

As a way out theXContext s of the Xlib come to mind. Unfortunately, they can only be used
if you have a display pointer ready at hand. And aXContext is destroyed when the display it
belongs to is closed. Therefore theXContext s are neither suitable for all caching purposes nor
as a general associative array.

9.2 The Hash Table Module

Whenever you need a cache or an associative array that must be independent of a particular display
pointer then you should use the generic hash table mechanism within LESSTIF. Generally, it offers
much better performance than a simple linked list, especially if there are many items to manage.
The hash table mechanism makes reinventing the wheel unnecessary in almost every case.

You can think of a hash table as some kind of associative array. You first put a value named by
an identifier into the hash table. Lateron you can ask for the value using the identifier. Both an
identifier and its associated value make up an “item”. The values and identifiers for the hash tables
within LESSTIF are typedef’ed in a portable fashion:

typedef XtPointer LTHashItemID;
typedef XtPointer LTHashItemValue;

This allows you to use the broad range of integral data types in C for both values and identifiers.
And if the space provided by these data types isn’t sufficient, you can use the identifiers and values
as pointers to structures instead. Because of this broad range of data types you may have to provide
functions for comparing two items and calculating a hash value of an item:

typedef unsigned int (*LTHashGetHashFunction)(LTHashItemID);
typedef Boolean (*LTHashCompareFunction)(LTHashItemID, LTHashItemID);

A LTHashGetHashFunction returns an unsigned integer that represents the hash value for that
particular item specified as the parameter to the function. ALTHashCompareFunction must
returnTrue if the two items specified by the parameters are equal.

9.2. The Hash Table Module 117

Hash tables are created and destroyed using the following two functions. You don’t have to supply
a size when creating a hash table because LESSTIF’s hash tables grow as needed whenever new
entries are added.
LTHashTable LTHashTableCreate(LTHashGetHashFunction GetHash,

LTHashCompareFunction Compare,
unsigned int IDSize);

Creates a fresh hash table and returns a pointer to it for subsequent use. You can either
specify your own functions for calculating a hash key and comparing items (more precisely:
comparing their identifiers) inGetHash andCompare or NULL. In the latter case the hash
table will use default functions. If you use data structures as identifiers then you probable
have to supply your own functions.

The final parameterIDSize indicates what type of identifiers you’re working with and
whether the memory occupied by the identifier belongs to the hash table. If you specify
hereLTHASH_ID_NOCOPY, then the hash table will not make a copy of a data structure
an identifier points to when adding or replacing items. Another special case are strings for
which you can specifyLTHASH_ID_STRING. The hash table will then take care of copying
and freeing the string identifiers. If you specify forIDSize any size (other than zero or one,
as these ones are reserved), then the hash table mechanism will copy the data structure of
that size pointed to by aLTHashItemID to private allocated storage whenever you add or
replace items in the hash table.

void LTHashTableDelete(LTHashTable ht);
Deletes a hash table and frees all memory occupied by it.

At any time you can ask a hash table how much items it currently contains.

int LTHashTableGetNumItems(LTHashTable ht);

After creating a hash table you can add (or remove) items to (from) it.
Boolean LTHashTableAddItem(LTHashTable ht, LTHashItemID id,

LTHashItemValue value);
Adds the item identified byid with the valuevalue to the hash table. If there is already an
item with the same identifier in the hash table then the function doesn’t modify the value of
that item and returnsFalse . Otherwise, the function adds the item to the table and indicates
success by returningTrue .

If either id or value are pointers to data structures, make sure that these data structues are
not allocated in automatic storage. Because the hash table only stores the pointers you must
not free the data structures until the item is removed from the hash table. The only exception
occurs when you have specified the size of the data structure of your item identifiers when
creating the hash table. In this case the hash table will make a copy of the identifier.

Boolean LTHashTableReplaceItem(LTHashTable ht,
LTHashItemID id,
LTHashItemValue value,
LTHashItemValue *value_ret);

118 9. Hash & Cache

Much the same asLTHashTableAddItem() . But when the hash table already contains
an item with the identifierid , thenLTHashTableReplaceItem() replaces the item’s
value withvalue . The item’s previous value is returned in*value_ret as long as you
don’t specify aNULLpointer for the final parameter. If a replace took place then the function
returnsTrue . This return value is especially useful if the value of an item is a pointer to
memory allocated usingXtMalloc() . In this case you can free the memory occupied by
the old value wheneverLTHashTableReplaceItem() returnsTrue .

Boolean LTHashTableReplaceItemAndID(LTHashTable ht,
LTHashItemID id,
LTHashItemValue value,
LTHashItemID *id_ret,
LTHashItemValue *value_ret);

Much the same asLTHashTableReplaceItem but this time even the identifier of the
item will be replaced with the new identifier. If you don’t specifyNULL for id_ret then
you’ll get the old identifier of the item. In the cases where the hash table mechanism takes
care of the memory occupied by identifiers (within the hash table), it’ll free that storage if
the identifier of an item was replaced.

Boolean LTHashTableRemoveItem(LTHashTable ht, LTHashItemID id,
LTHashItemID *id_ret,
LTHashItemValue *value_ret);

Removes an item identified byid from the hash table and returnsTrue if it succeeds In this
case you will get back the identifier and the value of the item in*id_ret and*value_ret
as long as you don’t specifyNULLfor these pointers. The information returned can help you
to free the data allocated to hold the identifier and the value. In the cases where the hash
table mechanism takes care of the memory occupied by identifiers (within the hash table),
it’ll free the storage used by the identifier.

Boolean LTHashTableLookupItem(LTHashTable ht, LTHashItemID id,
LTHashItemValue *value);

Looks up an item identified byid within the hash tableht . If it succeeds then it returns the
value of the item invalue and returnsTrue . Otherwise the function returnsFalse if the
item can’t be found.

int LTHashTableForEachItem(LTHashTable ht,
LTHashForEachFunction iter,
XtPointer ClientData);

From time to time you need to iterate over the contents of a hash table. This is where you’ll
use this iterator function. For every item in the hash table the iterator functioniter is
called. The function prototype for such an iterator function is as follows:

typedef LTHashForEachIteratorResult
(*LTHashForEachFunction)(LTHashTable,

LTHashItemID, LTHashItemValue, XtPointer);

The iterator gets as its final parameter theClientData parameter from the call toLT-
HashTableForEachItem . The iterator function then should return one of the following
results depending on whether the iteration process should continue or not. The function
LTHashTableForEachItem returns the value of a counter that is initialized at the start

9.2. The Hash Table Module 119

Identifier Operation
LTHASH_BREAK Exit the iteration loop.
LTHASH_CONT Continue.
LTHASH_COUNT Continue and increment the counter.
LTHASH_COUNTANDBREAKIncrement the counter but exit the iteration loop.

Table 9.1:Results the iterator function of a hash table can return.

of the iteration process and is incremented whenever the iterator function indicates this.

120 9. Hash & Cache

A
Appendix

122 A. Appendix

Object

RectObject

unnamed

Core

XmGadget XmArrowButtonGadget

XmSeparatorGadget

XmLabelGadget XmCascadeButtonGadget

XmPushButtonGadget

XmToggleButtonGadget

XmDropSiteManager

XmDropTransferObject

XmTextInner

XmExtObject XmProtocolClass

XmDesktopObject

XmSeparatorGCacheObjClass

XmLabelGCacheObjClass

XmVendorShellExtObject

XmWorldObject

XmDialogShellExtObject

XmCascadeButtonGCacheObjClass

XmPushButtonGCacheObjClass

XmToggleButtonGCacheObjClass

XmDragIcon

XmDragContext

WMShell

XmScreen

Composite

Constraint

Shell

OverrideShell

XmScrolledWindow XmMainWindow

XmMenuShell

XmScale

XmRowColumn

XmCommand

XmFileSelectionBox

XmSelectionBox

XmMessageBox

XmFormXmBulletinBoard

XmDrawingArea

XmFrame

XmPanedWindow

XmManager

XmTextField

XmText

XmSeparator

XmScrollbar

XmList

XmArrowButton

XmLabel
XmDrawnButton

XmCascadeButton

XmPushButton

XmToggleButton

XmPrimitive

XmSash
XmTearOffButton

(Xm)VendorShell

TopLevelShell ApplicationShell

XmDragOverShell

TransientShell XmDialogShell

SessionShell (X11R6 only)

XmDisplayKEY

Xt Intrinsics class
LessTif class
LessTif internal class

Figure A.1: The big picture of all widget classes.

Index 123

Index

_MOTIF_DRAG_AND_DROP_MESSAGE, 85
_MOTIF_DRAG_RECEIVER_INFO, 89, 90
_MOTIF_DRAG_TARGETS, 88
_XmAddGrab, 25
_XmBuildResources , 4
_XmBulletinBoardSizeUpdate , 50, 51, 63
_XmClearShadowType , 43, 46, 47, 49, 51
_XmConfigureObject , 63
_XmDrawShadows, 43, 46, 47, 49, 51
_XmExtGetValuesHook , 3
_XmExtImportArgs , 3
_XmFastSubclassInit , 21
_XmFreeWidgetExtData , 20
_XmFreeWrapperData , 12
_XmGMCalcSize , 66
_XmGMDoLayout, 43, 47, 66
_XmGMEnforceMargin , 43, 47, 66
_XmGMHandleGeometryManager , 48, 49, 64
_XmGMHandleQueryGeometry , 64
_XmGMOverlap, 66
_XmGMReplyToQueryGeometry , 65
_XmGadgetGetValuesHook , 3
_XmGadgetImportArgs , 3
_XmGadgetImportSecondaryArgs , 3
_XmGeoAdjustBoxes , 61
_XmGeoArrangeBoxes , 45, 47, 60, 61
_XmGeoArrangeList , 61, 62
_XmGeoBoxesSameHeight , 61
_XmGeoBoxesSameWidth , 61
_XmGeoCalcFill , 62
_XmGeoClearRectObjAreas , 65
_XmGeoFillVertical , 61, 63
_XmGeoGetDimensions , 61, 62
_XmGeoLayoutSimple , 62
_XmGeoLayoutWrap , 62
_XmGeoLoadValues , 60
_XmGeoMatrixAlloc , 59
_XmGeoMatrixFree , 45, 47, 59
_XmGeoMatrixGet , 45, 47, 60
_XmGeoMatrixSet , 46, 47, 63

_XmGeoReplyYes , 65
_XmGeoSetupKid , 59
_XmGeoStretchVertical , 61, 63
_XmGeometryEqual , 65
_XmGetBaseClassExtPtr , 20
_XmGetClassExtensionPtr , 20
_XmGetCount_kids , 67
_XmGetKidGeo , 67
_XmGetModifierMappingsFor-

Display , 102
_XmGetWidgetExtData , 20
_XmGetWrapperData , 12
_XmHandleGeometryManager , 50, 64
_XmHandleQueryGeometry , 48, 64
_XmHandleSizeUpdate , 51, 63
_XmInitializeExtensions , 8, 21
_XmInvalidateModifierMappings-

ForDisplay , 102
_XmIsFastSubclass , 21
_XmIsSlowSubclass , 21
_XmIsStandardMotifWidgetClass , 21
_XmMakeGeometryRequest , 34, 35, 65
_XmManagerGetValuesHook , 3
_XmManagerImportArgs , 3
_XmMenuBarFix , 66
_XmNavigChanged , 44
_XmNavigResize() , 16
_XmPopWidgetExtData , 19
_XmPopWrapperData , 12
_XmPrimitiveGetValuesHook , 3
_XmPrimitiveImportArgs , 3
_XmPushWidgetExtData , 19
_XmPushWrapperData , 12
_XmRCGetKidGeo, 67
_XmRefreshVirtKeys , 102
_XmRemoveGrab, 25
_XmSelectionBoxGeoMatrix-

Create , 75
_XmSelectionBoxNoGeo-

Request , 50, 81

124 Index

_XmSeparatorFix , 66
_XmSetKidGeo , 63
_XmStringCreate() , 112
_XmStringUpdate() , 112
_XmVirtKeysInitialize , 103
_XmVirtKeysLoadFallbackBin-

dings , 103
_XmVirtKeysLoadFileBindings , 103
_XmVirtualToActualKeysym , 103

A
Abstract Syntax Notation, 108
ASN, 108

B
BaseClass extension record, 12
Basic Encoding Rules, 108
BB_InSetValues , 50
BCE record, 12
BER, 108
BulletinBoard, 42
byte order, 86

C
change_managed method, 38, 42
class_part_initialize method, 8
client message, 85
constraint_initialize method, 39
constraint_set_values method, 39
creating

dialog shells, 28
CWBorderWidth , 34
CWHeight , 34
CWWidth, 34
CWX, 34
CWY, 34

D
delete_child method, 38
drag

client message, 85
dynamic mode, 85
flags, 86
initiator info atom, 92
preregister mode, 85

protocol, 92
window, 85

drop
initiator, 84
protocol, 95
receiver, 84
site, 84

dynamic mode, 85

E
export

procedure, 4
extension

object, 29
record (BaseClass), 12

G
geo_matrix_create , 42
geometry management, 42
geometry policy, 35
geometry_handler method, 16
geometry_manager method, 37, 42
GeoUtils, 42
get_values method, 8
grabs

adding or removing, 25
exclusive and non-exclusive, 24
internal layer, 25
Xlib and Xt, 24

H
handle_change_managed method, 44
hash table, 116
hook

method, 8
wrapper, 8

I
import

operator, 4
procedure, 4

initialize method, 8, 36
initiator, 84
insert_child method, 38
internal grab layer, 25

Index 125

K
keycode, 100
keysym, 100

L
LTAddGrab , 24
LTHashItemID , 116
LTHashItemValue , 116
LTHashTableAddItem , 117
LTHashTableCreate , 117
LTHashTableDelete , 117
LTHashTableGetNumItems , 117
LTHashTableLookupItem , 118
LTHashTableRemoveItem , 118
LTHashTableReplaceItem , 117
LTHashTableReplaceItemAndID , 118
LTRemoveGrab, 24

M
mapping chache, 102
method hook, 8
method wrappers, 16
modifiers, 101

fake, 101
get mapping for display, 102
invalidate mapping cache, 102

O
object

secondary, 14

P
policy

geometry, 35
posthook, 8
prehook, 8
preregister mode, 85

Q
query_geometry method, 37, 42

R

realize method, 16, 37, 42
receiver, 84
resize method, 16, 37, 42
resolution independence, 2
resource

synthetic, 2

S
secondary

object, 14
resources, 14, 15

set_values method, 8, 36, 42
shadow shell tree, 29
SmartMessageBox, 42
synthetic resources, 2

T
tag/length/value, 108
targets table, 88
TLV, 108

V
virtual bindings, 101

W
wrapper

data stack, 10
method, 8, 16

X
XClientMessageEvent , 85
Xlib grabs, 24
XmBaseClassExtRec , 13
XmDesktopObject , 30
XmDisplay , 32
XmDRAG_MOTION, 93
XmDROP_SITE_ENTER, 93
XmDROP_SITE_LEAVE, 93
XmDROP_START, 95
XmeReplyToQueryGeometry , 65
XmExportProc , 4
XmExtObject , 29
XmGEO_AVERAGING, 56
XmGEO_CENTER, 56

126 Index

XmGEO_COLUMN_MAJOR, 52
XmGEO_EXPAND, 56
XmGEO_PACK, 56
XmGEO_POST_SET, 56
XmGEO_PRE_SET, 56
XmGEO_PROPORTIONAL, 56
XmGEO_ROW_MAJOR, 52
XmGEO_WRAP, 56
XmGeoArrangeProc , 52
XmGeoColumnLayoutRec , 56
XmGeoCreateProc , 42
XmGeoExceptProc , 52
XmGeoExtDestructorProc , 52
XmGeoMajorLayoutRec , 55
XmGeoMatrixRec , 52
XmGeoRowLayoutRec, 56
XmGeoSegmentFixUpProc , 52
XmGET_ACTUAL_SIZE, 56
XmGET_PREFERRED_SIZE, 56
XmImportOperator , 4
XmImportProc , 4
XmKidGeometryRec , 58
XmNlogicalParent , 29
XmOPERATION_CHANGED, 94
XmScreen , 30
XmSTRING_COMPONENT_CHARSET, 109
XmSTRING_COMPONENT_DIRECTION, 109
XmSTRING_COMPONENT_LOCALE_TEXT, 109
XmSTRING_COMPONENT_SEPARATOR, 109
XmSTRING_COMPONENT_TEXT, 109
XmSTRING_COMPONENT_UNKNOWN, 109
XmSTRING_COMPONENT_XMSTRING, 111
XmSYNTHETIC_LOAD, 5
XmSYNTHETIC_NONE, 5
XmSyntheticResource , 4
XmTOP_LEVEL_ENTER, 92
XmTOP_LEVEL_LEAVE, 92
XmTRANSFER_FAILUR, 95
XmTRANSFER_SUCCESS, 95
XmTrivial , 67
XmVendorShellExtObject , 30
XmWidgetExtDataRec , 18
XmWrapperDataRec , 10
Xt grabs, 24
XtAddGrab , 25
XtCreatePopupShell , 28
XtCreateWidget , 28
XtCWQueryOnly , 34
XtDispatchEvent , 24

XtGeometryAlmost , 35
XtGeometryDone , 35
XtGeometryNo , 35
XtGeometryYes , 35
XtMakeGeometryRequest , 34, 35, 65
XtMakeResizeRequest , 34
XtRemoveGrab , 24, 25
XtWidgetGeometry , 34

	Foreword
	Synthetic Resources and Resolution Independence
	Introduction
	The Implementation of Synthetic Resources
	How to Use Synthetic Resources

	Pandora's Box: the BaseClass Stuff
	Introduction
	The Method Hooks
	The Wrapper Data Stacks
	The BaseClass Extension Record

	The Method Wrappers
	The Widget Extension Data
	Other Undocumented Stuff

	Diverting User Input with Grabs
	Introduction
	The Grab Layer and the Grab List
	Full Application Modal Dialogs
	Modeless Dialogs
	System Modal Dialogs
	Primary Application Modal Dialogs

	Creating Dialog Shells the Right Way
	Extending the VendorShell
	The Shadow Shell Tree

	Messy Geometry Management
	Introduction
	Making Geometry Requests
	The Xt Intrinsics Way
	The LessTif Way

	Geometry Management and the Widget Methods
	The initialize() Method
	The set_values() Method
	The resize() Method
	The realize() Method
	The query_geometry() Method
	The geometry_manager() Method
	The change_managed() Method
	The insert_child() and delete_child() Methods
	The constraint_initialize() Method
	The constraint_set_values() Method
	The Geometry Management Helper Interfaces

	Fun and Pain with the GeoUtils
	Introduction
	The BulletinBoard Class
	The change_managed() and realize() Methods
	The resize() Method
	The query_geometry() Method
	The geometry_manager() Method
	The set_values() Method

	The Data Structures
	The GeoMatrix
	The MajorLayoutRec
	The KidGeometryRec

	The GeoUtils Functions
	The Allocation, Initialization, and Deallocation Functions
	Layout Management Functions
	Querying the Children
	Computing the Desired Size
	Computing the Layout
	Applying the Changes

	The Method Functions
	Miscellaneous Functions
	BulletinBoard Helper Functions
	RowColumn Specific Functions

	How to Build a Subclass Using the GeoUtils
	The Header Files
	The Implementation
	Extra Prototypes
	The Class Structure
	The set_values() Method
	The NoGeoRequest Method
	The GeoMatrixCreate Method

	Conclusion and Credits

	Drag and Drop
	Introduction
	Protocol Basics
	Drag Operation Modes
	Protocol Messages
	Drag & Drop Flags
	The Targets Table
	Advertising a Receiver
	Starting a Drag or Drop

	The Drag Protocol
	Entering/Leaving Top Level Windows
	Pointer Motion
	Changing the Operation

	The Drop Protocol
	The Preregister Mode

	When the Keyboard Goes Wild
	Introduction
	The Virtual Bindings
	Managing the Modifier Mappings
	Managing the Virtual Bindings
	The xmbind Client

	Inside XmStrings
	Introduction
	Get Ready for the Acronyms
	How It Works
	Structures
	The Other Side of XmStrings

	Hash & Cache
	Introduction
	The Hash Table Module

	Appendix
	Index

