
Getting Started with
Gardens Point Component Pascal

Version 1.2.0 JVM (September 2002)

1. Introduction

Gardens Point Component Pascal (gpcp) is an implementation of the Component
Pascal Language, as defined in the Component Pascal Report from Oberon
Microsystems. It is intended that this be a faithful implementation of the report, except
for those changes that are explicitly detailed in the release notes. Any other
differences in detail should be reported as potential bugs.

The compiler produces either Microsoft.NET intermediate language or Java byte-codes
as output. The compiler can be bootstrapped on either platform. These notes refer to
the Sun Microsystems JVM platform.

Details on the specifics of this implementation of Component Pascal are found in the
release notes that come with the distribution.

2. Installing and Testing the Compiler

gpcp

bin
docs

examples
agent
hello

libs
csharp
dll

source (tree)
work

java

CP (tree)

Environment
The compiler requires a Java Runtime Environment which implements the runtime for
Java 2. All testing of the compiler has been done using Sun Microsystems JDK
versions 1.2 or 1.3, or in some cases version 1.1.7.

The compiler is distributed as a single zip file, which
has the structure shown on the left. It is also
available in as gpcp.tar.gz for Unix systems. From
version 1.1.4 the compiler is also available as a
windows installer file.

The archive is typically expanded into a root
directory named gpcp and has seven subdirectories.
These include the binary files of the compiler, the
documentation, the program examples, the library
symbol files, and the source of the compiler.

This section describes the steps required to install
and try out the compiler.

 2

The distribution
The seven subdirectories of the distribution are –

• bin the binary and shell/batch files of the compiler
• CP the class file tree of the compiler and tools
• docs the documentation, including this file
• examples some example programs
• libs contains the symbol files for the library modules
• source the compiler source files
• work a working directory to play around with

The bin directory needs to be on your PATH, and the environment variable CPSYM
must point to the libs directory. Typical commands to set these variables are –
 set CPSYM=.;C:\gpcp\libs

set PATH=%PATH%;C:\gpcp\bin
On Unix or similar systems the commands would be
 CPSYM=.:$CPROOT/gpcp/libs

PATH=$PATH:$CPROOT/gpcp/bin
Where CPROOT is an environment variable that points to the root of the installation.

If you use the Windows installer version, simply run the setup.exe file, and respond
to the prompts. The installer will modify the paths as necessary.

Running your first program

Go to the work directory. With your favorite editor create the file (say) hello.cp.

 MODULE Hello;

IMPORT CPmain, Console;
BEGIN
Console.WriteString(“Hello CP World”);
Console.WriteLn;

END Hello.

Make sure that the CPSYM environment variable includes the gpcp/libs directory,
and that gpcp/bin is on the executable path.

From the command line, type

> cprun gpcp hello.cp the system should respond …
Generated: CP/Hello/Hello.class
#gpcp: <Hello> no errors
> !!!!

The files Hello.cps and CP/Hello/Hello.class should have been created in the
working directory.

In order for this program to run, it must have access to the facilities of the CP runtime
system. These facilities will be found in the class tree rooted at gpcp/CP, which is on
the suggested classpath.

You may now run the program by the command “cprun Hello”.

 3

The examples

The example programs are in sub-directories under the examples directory. The folder
hello holds some simple command line programs. HelloWorld.cp is an elaborate
version of the “hello world” canonical program. Nqueens.cp is a recursive
backtracking version of the N-Queens problem solved for all board sizes from 8 to 13.
Hennessy.cp is a version of the Hennessy integer benchmarks.

A file README.txt gives instructions for compiling and running the programs.

3. Browsing Modules

The Browse tool has been included with this release. This tool can show the exported
interface for modules in either text or html format. Details on the use of this tool can
be found in the Release Notes.

4. Reporting Bugs
If you find a bug

If you find what you believe is a bug, please send a report to gpcp@qut.edu.au with
the detail of the event. It would be particularly helpful if you can send the code of the
shortest program that can illustrate the error.

If the compiler crashes

The compiler has an outer-level exception rescue clause (you can see this in the body
of procedure CPascal.Compile()) which catches any exceptions raised during any
per-file compilation attempt. The rescue code displays a “<<compiler panic>>”
message on the console, and attempts to create a listing in the usual way. In most
cases the rescue clause will be able to build an error message from the exception call
chain, and will send this both to the screen and to the listing file.

In almost all cases, the compiler panic will be caused by failed error recovery in the
compiler, so that the other error messages in the listing will point to the means of
programming around the compiler bug. Nevertheless, it is important to us to remove
such bugs from the compiler, so we encourage users who turn up error of this kind to
send us a listing of a (hopefully minimal) program displaying the phenomenon.

In order to see how such a rescue clause works, here is an example of a program which
deliberately causes a runtime error. When the program is run, the error is caught at the
outer level and an error message is generated. After generating the error message,
there is still the option of aborting the program with the standard error diagnostics.
This is done by re-raising the same exception, and this time allowing the exception to
propagate outwards to the invoking command line processor.

 4

MODULE Crash;
IMPORT CPmain, Console, RTS;
TYPE Ptr = POINTER TO ARRAY OF CHAR;
VAR p : Ptr;
PROCEDURE Catch;
BEGIN
P[0] := “a”;

RESCUE (exc) (* exc is of type RTS.NativeException *)
Console.WriteString(“Caught Exception: ”);
Console.WriteString(RTS.getStr(exc));
Console.WriteLn;
(* THROW(exc) *)

END Catch;
BEGIN
Catch

END Crash.

When this program is compiled and run, the following is the result –
" cprun gpcp Crash.cp
" Generated: CP/Crash/Crash.class
" #gpcp: <Crash> No errors
" cprun Crash
Caught Exception: java/lang/NullPointerException
" !!!!

If the detailed stack trace is required, the exception is re-raised by calling the non-
standard built-in procedure THROW(ex). The comment in the source code shows
where to place the call.

Posting to the Mail Group

The Gardens Point Modula-2 mail group can be used to discuss issues concerning the
evolution of gpcp. In order to join this mail group, send email to
majordomo@dstc.qut.edu.au with a blank subject line and the words subscribe gpm in
the body. The team will post notices regarding updates to that mail group.

