Release Notes [1 Gardens Point Component Pascal
Version 1.2.0 for .NET (September 2002, RTM version)

1. Introduction

Gardens Point Component Pascal (gpcp) is an implementation of the Component
Pascal Language, as defined in the Component Pascal Report from Oberon
Microsystems. It isintended that this be a faithful implementation of the report, except
for those changes that are explicitly detailed here. Any other differencesin detall
should be reported as potential bugs.

The distribution consists of four programs, and a number of libraries. The programs
are the compiler gpcp, the make utility CPMake, a modul e interface browser tool
Browse, and atool for producing interfaces from assemblies written in other .NET
languages N2cps. There will be other utilities added | ater.

The compiler produces either Microsoft.NET intermediate language (“MSIL”) or Java
byte-codes as output. The compiler can be bootstrapped on either platform. These
release notes refer to the Microsoft.NET platform.

There are a number of syntactic extensions to the Component Pascal language
accepted by the compiler which are introduced to alow interworking with the native
libraries of the underlying platform. The guiding philosophy in such casesis to not
significantly extend the semantics of the constructs that form part of Component
Pascal, but rather to provide syntax for accessing features of other languages, which
have no direct counterpart in Component Pascal.

2. Overall Structure

2.1 Input and Output files

In normal usage the compiler creates either three or four output files for every source
file. If thefile Hel | 0. cp contains the module “Hello”, and is compiled, then the
output fileswill beHel | 0. cps, Hel l o.il, andeither Hel l o.dl | or

Hel | 0. exe. The“*.cps’ fileisthe symbol file which contains the meta-information
that describes the facilities exported from the module. The “*.il” file contains the
MSIL intermediate language representation of the program. The program executable
will be “*.exe” if the program contains an entry point (i.e. if the module imports
CPmai n), otherwise the compilation will create adynamic link library “*.dIl”. All of
these files are created in the current directory. If alistingfileis created it will have
extension “.Ist”.

Be aware that the stem name of the output files comes from the module name, not from
the source-file name. Thus if module “Foo” isin source file “Hello.cp” then all of the
output fileswill have stem name “Foo”.

It is possible to invoke the compiler so as to produce just the intermediate language
file, and then invoke the intermediate language assembler manually. The assembler
i I asm may then be used to produce any of its possible output formats.

2.2 Invoking the compiler
The compiler isinvoked from the command line using the command

$> gpcp [options] files+

where options include

/ copyri ght display the copyright notice

/hel p emit this usage prompt

/11 st create an output listing if there are errors (default)
[1ist+ always create an output listing

/1ist- never create an output listing

/ debug emit debugging symbols (default)

/dost ats emit timing and other statistics

/ hsi ze=NNN set hashtable size > NNN (0 .. 65000)

[ilasm usei | asm even with/ nodebug

/ noasm produce a symbol file, but no il

/ nocode create il output, but do not assemble

/ nodebug do not emit debugging symbols

/ nosym produce no output files, not even a symbol file

/ nocheck produce code without arithmetic overflow checks
/ver bose chatter on about progress during compilation
/version emit version information

/ war n- suppress warning messages from the console

/ nowar n same as/ war n-

[t ar get =xxx emit assembler output for platform “xxx”

/ speci al used for creating symbol files for foreign interfaces
/strict disallow the use of non-standard language constructs
[symdi r =xxx place symbol filesin directory “xxx”

/ bi ndi r =xxx

place PE (and pdb) filesin directory “xxx”

Any number of files may be added in a white-space separated list. The compiler also
accepts Unix-style comments starting with *-. In the JVM version the *-* formisthe
expected default.

2.3 Target choice
The compiler may choose its output language at runtime. The default output when
running on the .NET platform is .NET assembler (.il) for the .NET virtual object
system. The recognized options are —
/ t ar get =net thisisthe default .NET virtual object system format
/target=jvm this causes Java byte codes to be emitted
/ t ar get =dcf this chooses the Gardens Point “d-code” form

The Java output option produces either jvm class files directly, or produces assembly
language files for the “Jasmin” byte code assembler.

The dcf format is not yet available, but isintended to access the Gardens Point native
code generators on all the platforms for which Gardens Point Modula-2 is
implemented.

Qutput files
Running the compiler with the / nosymflag causes the input files to be parsed and
type-checked, but no output files are created except possibly alisting file.

If the compiler is run with the/ noasmflag, the input files are parsed and type-
checked, and a symbol fileis produced for each input file. No assembly language or
program executable file output is produced however.

If the compiler is run with the/ nocode flag, the input files are parsed and type-
checked, and a symbol file and one MSIL assembly language file is produced for each
input file. No executable files are produced in this case.

If the compiler is run without any flags, the input files are parsed and type-checked,
and a symbol file, and a program executable (PE) file (either .DLL or .EXE) is
produced for each input file. If the default / debug flag isin effect then a textual IL
file (extension .il) is produced and the PE file is created by thei | asmtool. If the

/ nodebug flagisin effect then a PE-file is directly produced using the PEAPI
component. This behavior may be overridden by use of the/ i | asmflag, which causes
textual IL to be produced, even in the presence of the/ nodebug flag.

Qutput files with /target=jvm

If the compiler isrun with the/ t ar get =j vmflag, the input files are parsed and type-
checked, and a symbol file and one or more class files will be produced. These class
files are written directly, and do not require the installation of Jasmin.

If, in addition, the/ nocode flag is used, then Jasmin assembly language (* .j) fileswill
be produced, but the assembler will not be invoked.

If, instead of / nocode the/ j asmi n flag is added, Jasmin assembly language files are
produced for each input file. Following this, the Jasmin assembler will be
automatically invoked to create the corresponding classfiles. Because a separate
process needs to be created for each invocation of Jasmin, thisis quite slow.

2.4 Overflow checking

Ordinarily the compiler produces code that performs arithmetic overflow checks on all
operations. Narrowing assignments (such as assigning along value to an integer
variable) are also range checked. Compiling with the/ nocheck option removes these
checks. Thereisavery small speed gain if checks are turned off. Checks may also be
turned off on a per-procedure basis, as described below.

2.5 Listing output

The compiler, by default, produces alisting file only if there are compile-time errors or
warnings. It is possible to force the compiler to produce alisting, using the/ | i st +
option. Equally, it is possible to prevent the creation of alisting file even if there are
errors, by usingthe/ | i st - option.

The listing file contains the complete listing of the program, with four digit line
numbers prepended. Errors are reported in the following format —

MODULE Bar Mod;
| MPORT
FooMod;
TYPE
Bar* = PO NTER TO ABSTRACT RECORD (FooMbd. Foo) END;
A Only ABSTRACT basetypes can have abstract extensions
6 i,j,k : I NTEGER
7 END;
8 END Bar Mod.

rabhwOWNER

* % %

2.6 Statistics output
If the compiler isinvoked with option/ dost at s then compile time statistics are

produced. Here is an example for the program Browse.
C. \gpcp\wor k> gpcp /dostats Browse.cp
#gpcp: created Browse. exe
#gpcp: <Browse> No errors
#gpcp: net version 1.1.4 of 25 Decenber 2001
#gpcp: 2165 source |ines
#gpcp: import recursion depth 3
#gpcp: 796 entries in hashtable of size 4099

#gpcp: inport tinme 70nBec
#gpcp: source tinme 110nBec
#gpcp: parse time 231ntec

#gpcp: analysis tine 60ntec
#gpcp: symiWite tinme 20nBec
#gpcp: asnmWite tine 210nBec
#gpcp: assenble tine 391nf5ec
#gpcp: total time 1092ntec

The meaning of the values written to the console is as follows.

* The compiler imports symbol files in dependency order, if necessary. The
maximum recursion depth for this example turned out to be 3.

* The size of the hash-table, and the number of entries used is shown

* Import timeis the time to read and process metainformation for al imports. In
the example Browse imports much of the compiler data structures.

» Sourcetimeisthe time to read the source file into the internal buffer.

* Parsetimeisthe time to parse the buffer, create the syntax tree and resolve all
identifiers.

* Analysistimeisthe time to do type checking, and dataflow analysis.

* SymWritetimeis the time to write out metatdata to the symbol file.

e AsmWrite time is the time to write out the assembly language (il) output.

* Assembletimeisthe time taken to spawn anew process and runi | asm(or
jasm nif/jasm n hasbeen set). Assembletimeisaways zero if the direct
to PE output path is selected by / nodebug.

2.7 Setting the hash table size

The compiler uses closed hashing internally, with a default number of identifiers of
4099 in the current version. |t is possible to increase the number of entries by means
of the/ hsi ze=NUMBER option. Numbers up to 66000 are meaningful to the
program.

I the hash table overflows, the compiler gives an error message, with a hint to increase
the size. There is a example program with the distribution that creates a program that

will break the compiler, so that users may test this feature. The compilation fails with
the default table, but succeeds with / hsi ze=5000.

2.8 Choosing the Output Directories
By default all output files are created in the current directory. This behavior may be
overridden with the new options/ bi ndi r and/ syndi r. The symbol fileis placed in
the directory specified by the option —

/ symdi r =target-directory
Note carefully that if atarget directory is chosen that is not on the “CPSYM” path then
gpcp will not be able to find the symbol files automatically.

Program executabl e directories, and debug filesin the case that debugging symbols are
being created may be placed in a specified directory using the —

/ bi ndi r =target-directory
option.

If the VM target has been chosen then the “symdir” option still applies, but “bindir”
option does not. Instead, the root of the output class file hierarchy may be specified
using a syntactically similar “clsdir” option.

2.9 The Make utility

The compilation process with Component Pascal guarantees type safety across
separately compiled module boundaries. Since interface meta-information resides in
the symbol files which gpcp creates, modules must be compiled in an order that
respects the partial order induced by the global importation graph. For complex
programs, this may be difficult to determine manually.

The utility CPMake reads symbol files, and if necessary source files, in order to
determine avalid order of compilation. The syntax for invocation is —

$> CPMak e [options] moduleName+
The module name may be given with or without afile-extension, but must be the name
of a module which imports CPMain, that is, it must be a base module. The module
name given to CPMake is case sensitive.

When source files of a program have been modified in general only a subset of the
modules have to be recompiled. CPMake is able to work out which modules must be
recompiled by checking the date stamps on the files, and aso checking the module
hash-keys (“magic numbers’) in the symbol files. 1f amodule has been edited, but the
public interface of the module has not changed a recompilation should compute a new
magic number that is the same as that expected by any previously compiled, dependent
modules. In this case CPMake detects that the dependent modules are still consistent
and do not require recompilation. This “domino-stopping” feature of the program
ensures that a conservative minimum of modules are recompiled.

The options accepted by the program are exactly the options accepted by gpcp, except
that an additional option/ al | forces compilation of all modulesin the local directory
irrespective of date stamps and magic numbers. (If you use CPMake to bootstrap the
compiler, be aware that ilasm will fail if the output would overwrite the file of aloaded
assembly. This means that you cannot bootstrap the compiler using the compiler in the
same directory, unless you use/ nocode and then invoke ilasm manually.)

2.10 Module Interface Browser

The program Browse reads the symbol file of a module and displays the public
interface. This public interface is shown in aform similar to a Component Pascal
module. This“module’ shows all the types, variables and procedures that are exported
from the specified module. Only the exported fields of record types are shown. Any
exported procedures are shown as procedure headers only. The output from Browseis
not a proper Component Pascal module and will not compile using gpcp. It simply
shows all of the identifiers that may be imported and used by a client module.

This program is invoked with the command

$> Br ows e [options] moduleName+
The symbol file extension . cps may optionally be included in moduleName.
Aswith gpcp, any number of files may be added in a white-space separated list. The
Browse program sends its output to the console by default, and has the following
options:

/al | browse this and all imported modules

ffull display full foreign names

file write output to the file <moduleName>.bro

/ht m write html output to the file <moduleName>.html

The —all option produces output for all of the modules on the global imports graph of
the specified module. The/ f ul | option is only meaningful for FOREI GN modules
where the output from Browse will include the full external names for all procedures.
The default for Browse isto only display the internal (Component Pascal) names. See
Section 7 for more on Foreign Language Interfaces. The/ f i | e option sends the
output to the file <moduleName>.bro instead of to the console. The/ ht m option
produces hyperlinked html text in the file <moduleName>.html.

2.11 Symbol File Generator N2CPS
This program generates symbols files corresponding to .NET assemblies. Taken
together with the Browse tool, this makes the libraries of the .NET framework
accessible to Component Pascal users. Usageiis -

$> N2cps [options] { assemblyName} «
where current options are —v for “verbose” and —w for “warnings’. Each specified
assembly will produce one or more symbol *.cpsfiles. For example, the main system
library assembly nscor | i b will producenscorli b_System
nmscorlib_System Refl ecti on andsoon. Until thefinal release of .NET it
may be prudent to ensure that you have the NetSystem symbol files that exactly
correspond to the version of .NET that you have installed. Go to the
gpcp\ sour ce\ N2CPS directory and run first “NetClean” then “NetMake”.

3. Lexical Issues

3.1 Non-standard Keywords

In order to provide facilities for the foreign language interface there are a total of six
new keywords defined. These are all upper case names and cannot be used as program
identifiers.

DIVO - an additional arithmetic operator (C integer division)

ENUM - used in dummy foreign modulesin the .NET system
INTERFACE - used in dummy foreign modules for defining interfaces
REMO - an additional arithmetic operator (C integer remainder)
RESCUE - used to mark a procedure-level exception catch block
STATIC - used to declare static features in dummy foreign modules.
EVENT - used to declare multicast delegate type for .NET events.

Only DI VO, REM), EVENT and RESCUE may be used in normal programs, the
remainder are used in dummy foreign definition modules.

The following new predefined identifiers have been added. These can be redefined,
but not at the outer lexical level. Definitions for these procedures are given below.

MKSTR - function to convert a CP “string” to the native string type
BOX - make a dynamically allocated copy of record or array
THROW - procedure that (re)throws a native exception object
TYPEOF - fetch the runtime type descriptor, for reflection etc.
REGISTER - attaches a procedure to a (.NET) multicast delegate
DEREGISTER - detaches a procedure from a multicast delegate

There are some other predefined identifiers used in the extended syntax, but these are
“context sensitive markers’ and do not prevent the same names being used for program
identifiers.

|Z[Remember, if you use any of these non-standard keywords or procedures, your
program source will not be portable to other implementations of Component
Pascal.

3.2 Common L anguage Specification names
Fully qualified names in the Common Language Specification of .NET (CLS) comprise

four parts.
Assembly name - this specifies the dIl in which the class will be found
Namespace name - this specifies the namespace of the class
Class name - the class name
Feature name - the field or method name.

An example might be
[mecorlib] System Exception:: ToString

wherenscor | i b isthe assembly name, Syst emis the namespace, Except i on isthe
classname, and ToSt ri ng is a method name.

In this version of gpcp, the compiler produces one assembly per module, and one
namespace per module. Both the assembly and the namespace names are the same as
the module name. Thus atype-bound procedure calledi sSt ri ng() bound to the
type Unar y X in module Expr Desc would have the CLS nhame —

[Expr Desc] ExprDesc. UnaryX: :isString

Procedures and variables at the module level are declared in the CLS as belonging to a
synthetic “class’ that contains only static data and code. This“implicit static class”
has the same name as the module. Thus variable “x” in module Foo will have the

somewhat boring CLS name
[Foo] Foo. Foo: : x

Users of the compiler should almost never have to deal with explicit CLS names.

If you do browse the assembler output of the compiler, you will notice that almost all
names are escaped with single quotes like ‘this'. Thisisdoneto avoid clashes with the
many names that are reserved in the assembler.

All aspects of the default naming scheme may be overridden, if required. Such a
necessity might arise if the Component Pascal must interface with aframework that
has particular naming patterns hardwired in. The details of the mechanisms for
overriding are given in Appendix B.

3.3 Identifier syntax

The identifier syntax for Component Pascal allows arbitrary use of the underscore
(low-line) character. Thereisafurther extension that is specific to the foreign
language interface of gpcp.

Occasionally, names that are imported from foreign modules will happen to clash with
CP reserved words. In this case, we may escape the reserve word detection by starting
the identifier with the “back-quote” character *. Thus, if an imported module has (say)
aclasswith afield named “1 F”, then the field may be referenced as 'I F in the source
of your program. Y ou may not define identifiers using this escape mechanism, except
in foreign definition modules. Y ou may however refer to imported identifiers using
this mechanism.

It may be important to know that the back-quote is stripped at the time that the
program is scanned. The presence of the escape simply suppresses the usual check for
reserved identifiers that normally follows identifier scanning. Thus the back-quoteis
not used during any name matching of identifiers. A curious result of this strategy is
that if a program escapes an identifier that does not need it, the escaped and non-
escaped identifiers will refer to the same name.

4. Semantic | ssues

4.1DLLsand EXEs

The compiler can produce either stand-alone executables (. exe files) or dynamic
link libraries (. dl | files). Executable files must have an entry point known to the
runtime as *.CPmain’, optionally taking an array of strings as parameters.

If the source file contains the import of the special name CPmai n, then an executable
fileis produced as output. In this case the module body becomes .CPmain, and begins
with a hidden call which saves any command line arguments so that they may be
accessed by calls to the ProgArgs library.

If the source file does not import CPmei n, then the module body becomes the “class
constructor” which is executed at the time that the dynamic link library isloaded on
demand.

If the compiler isrun with the/ nocode option, then only the assembler (. i |) fileis

created. In this case the assembler ilasm may be invoked so asto create either a. dl |

or an. exe fileusing thecommandil asm /DLL ori | asm / EXE. Of course, itisan
error to try to create an executable file if the source does not contain an entry point.

4.2 Unimplemented constructs
There are a small number of constructs that are unimplemented or restricted in this
release of the compiler. These are —

* Procedure variables

* Modulefinalizers
Both of these features were implemented in a prototype version of the compiler.
Procedure variables have been implemented, but with some restriction in the current
release. Arbitrary procedures of matching type may be assigned to procedure
variables, and called in the usual way. However assignment of procedure variablesis
only permitted if the two sides of the assignment have the sametype. That is,
assignment of procedure values other than literal procedures requires name
compatibility, rather than the specified structural compatibility. This restriction will be
removed in the next major release.

Non-local variable access is permitted in an unrestricted way since release 1.1.6.
However, in the case of reference (VAR) parameters of unboxed type that are accessed
from within nested procedures the semantics of parameter passing is modified because
the actual parameters are passed by copying rather than by reference. The compiler
gives an explicit warning in these unusual circumstances. Component Pascal types
that are unboxed in the .NET implementation are scalar values and record types that
are not extensible, do not extend another type, and are not defined as the anonymous
bound type of a pointer type.

4.3 Additional Arithmetic Operators
The usual arithmetic operators DI V and MOD in Pascal-family languages have well
defined semantics that are different to the division and remainder operators of
implementations of C-family languages. In Component Pascal the operators DI V and
MOD are defined as follows —

(i D Vj)xj+ (i MODj) =i

i DI Vj=Lilj]; wherei,j areintegers, and i/j denotes real division.

Notice that DI V always rounds toward negative infinity unlike most C-language
implementations (which normally round towards zero). The Pascal operators are
mathematically preferred, but in case the alternative semantics are required for
compatibility reasons, gpcp introduces aternatives. DI VO denotes integer division
with rounding toward zero, while REMD denotes the corresponding remainder
operation.

|Z[Remember, if you use these non-standard operators, your program source will
not be portable to other implementations of Component Pascal.

4.4 Semantics of the WITH statement
The semantics of the WITH statement have been slightly modified so as to strengthen
the guarantees on the properties of the selected variable. Inthe code —

WTH x : TypeTi DO
... <guarded region>
| x : TypeTj DO
... <guarded region>
END;

the variable x is asserted to have the specified type throughout the so-called guarded
region. The base language guarantees that the type of the selected variable cannot be
widened in the guarded region, but might possibly be narrowed. 1n gpcp the selected
variable is treated as a constant, and neither the type nor the value can be modified
either directly or indirectly. Any attempt to do so attracts a compile-time error

message.

4.5 Implementing foreign inter faces
Component Pascal types may extend classes from the NET CLS. Types which extend
CLSclasses may also declare that they implement interfaces from the CLS. The syntax
extension to access this feature is—

RecordDecl ::- RECORD [BaseType] [Fields| END;

BaseType ::- “[* Qualifiedident { “+” Qualifiedident } “]”

Thefirst qualified identifier, asin the Report, is the class that is extended by the type
being defined. Any additional qualified identifiers are the names of interfaces that the
type promises to implement. The compiler checks that this contract is honored. In the
case that interfaces are implemented, the base type may be left blank, or may be
explicitly set to ANYREC.

The semantics of type casts are also relaxed whenever areference is cast to an
imported interface type. For non-interface types many erroneous casts can be detected
at compile time, but for interfaces no cast of an object of aforeign type can be rejected
at compiletime.

It is not possible to define interface types in Component Pascal.

4.6 EVENT types

Event types are declared in gpcp with the same syntax as procedure types, but with the
keyword PROCEDURE replaced by EVENT. Events are implemented as multicast
delegate type in the .NET framework. If variables are declared to be of some event
type, then it is possible to use the new builtin procedures REG STER and

DEREG STER to register or deregister callbacks on the multicast delegate.

The usage for registering a callback is

REG STER(target-location, callback-method) ;
The target location is the designator of the location of event type. The specification of
the callback method has two forms. If a proper procedure is to be added, then the
procedure name is used. If the callback isto invoke a particular method on a particular
object, then the syntax object.method is used. This works for any typebound procedure

10

in Component Pascal. The usage for deregistering acall is syntactically the same, but
uses the new builtin procedure DEREG STER.

A callback may be registered multiple times. The delegated calls are made in order of
registration.

4.7 Unsigned Byte Type

The 8-hit type used in the .NET Common Language Specification (CLS) is an
unsigned type. If Component Pascal isto be afull consumer of CLS libraries then it
must be possible to declare variables and fields of such types in Component Pascal
programs. In order to facilitate this a new built-in type UBYTE has been introduced in
version 1.2 of gpcp. Values of the type may be assigned to variables of larger integra
types asrequired. However, if values of this type are assigned to locations of the
signed 8-hit type BYTE aruntime check isrequired. Similarly if values of any signed
type are assigned to a location of unsigned byte type an explicit narrowing is required,
using the new built-in function USHORT() .

4.8 Runtime type descriptors

A new function in this rel ease returns the runtime type descriptor. This allows easy
access to the facilities of the reflection libraries. The function is overloaded, and has
the following signatures —

PROCEDURE TYPEOF(typename) : RTS. Nati veType;
PROCEDURE TYPEOF(I N s: anytype) : RTS. Nati veType,;

If the target is .NET, then NativeType will be Syst em Type on the underlying
runtime. If the target isthe JVM, then the return value will bej ava. | ang. O ass

Thefirst version takes any type name as actual parameter. The second version takes an
actual parameter that is any variable designator. If the type of the designator is
statically known (perhaps because it denotes an object of an inextensible type) then the
compiler resolves the reference and no call is made to the runtime function

System Cbj ect : : Get Type().

4.8 Additional built-in functions
There are four additional built-in functions added to the implementation. One allows
convenient access to the underlying native string object type. The signature is —

PROCEDURE MKSTR(IN s : ARRAY OF CHAR) : RTS. NativeString;

|Z[Note that it is never necessary to use MKSTR when passing a literal stringto a
formal parameter of native string type. In theliteral case the compiler doesthe
conversion for the programmer automatically.

Another handy function takes a record or array type, and makes a value copy onto the
heap, returning a pointer to the copy. The signature is—

PROCEDURE BOX(s : T) : PONTER TO T;

11

Where T isarecord, array or string type. The function copies the value so that
modification of the boxed value does not affect the original. The function is
particularly convenient for programs that manipulate character data implemented as
dynamically allocated arrays. Thus BOX(“ hel | 0”) returns a pointer to array of char
of length 6, while BOX(pt r 1* + ptr2”) performsaconcatenation and allocates a
destination array of the required length. If the function is applied to an array of fixed
length the return value is an open array of the same length. In the case of character
arrays the use of the array stringifier mark “$” truncates the value at the first nul
character, as usual.

Without this function, the construction of a value copy of an open array requires the
following tedious construction —

VAR a, b : PO NTER TO ARRAY OF CHAR

NEW b, LEN(a));
FORi := 0 TOLEN(a) DO b[i] := a[i] END;

Using the new function, this ssmply becomesb : = BOX(a");

Asof version 1.2 a new built-in unsigned byte type has been introduced, for
conformance with the NET CLS. In order to coerce values of signed type to the new
type a new function USHORT, analogous to the standard SHORT function is also
introduced. This function has the signature —

PROCEDURE USHORT(s : AnyNumericType) : UBYTE;

It isaruntime error if the value of the parameter is not within the unsigned byte range.

The final new built-in function, THROW allows programs to throw exceptions, and is
described bel ow.

4.8 Deprecated featur es and war nings

The use of procedure variables and of super-calls are deprecated. Both attract
compile-time warning messages. Warnings are also issued in the case of procedures
that are not exported, and are not called (or assigned as procedure variables) within
their defining module. This situation is usually an error arising from failure to mark
the procedure for export.

4.9 Program executable verification

Component Pascal is atype-safe language. Every correct program is type-safe in the
same sense that is guaranteed by the .NET virtual object system’s verifier. In principle
therefore, all output of gpcp should be verifiable.

Y ou may test-verify the output of compilation by running the stand-alone program
executable verifier peveri fy over thefile. Hereisan example —

C. \CPtree\ CPngws> peverify /1L ShowSymns. exe

M crosoft ® COW PE Verifier. Version 2000.14.1812.10
Copyright © Mcrosoft Corp. 1998-2000

12

Al'l O asses and Met hods in ShowSyns. exe verified

C. \ CPtree\ CPngws>

Output might fail to verify if amanually constructed interface to alibrary does not
correspond to the internal metadata of the imported assembly. This potential problem
has largely gone away with the use of N2cps.

4.10 Unchecked arithmetic

By default, all arithmetic is overflow-checked, and all narrowing assignments are
range checked. Sometimesit is necessary to turn off this behaviour. There are two
means to do this. One of these is a custom attribute that is applied on a per-procedure
basis. Checks may aso be turned off from the command line for all compilationsin
that invocation.

The syntax of the custom attribute is a context sensitive marker that appears
immediately after the keyword BEG Nin a procedure or module body. The syntax is—

Body — BEG N[“[* “UNCHECKED_ARI THVETI C’ “]”]
StatementSequence END identifier .

An example of the use of this construct, from the source of the compiler itself, isthe
identifier hash function —

PROCEDURE hashStr(IN str : ARRAY OF CHAR) : | NTECGER;
VAR tot : | NTEGER,
i dx : | NTEGER
len : | NTEGER
BEG N [UNCHECKED ARI THVETI C]
len := LEN(str$);
tot := 0;
FORidx := 0 TO len-1 DO
INC(tot, tot);
IF tot < 0 THEN INC(tot) END;
INC(tot, ORD(str[idx]));
END;
RETURN t ot MOD si ze;
END hashStr;

This function performs a rotate-and-add computation, in which bits are carried out of
the sign bit back into the least significant bit of the variable tot. Overflow checking
must be turned off, in order to prevent very long identifiers from crashing the
compiler.

|Z[Important note on parameter passing semanticsif you use/ t ar get =j vm

|Z[The semantics of parameter passing on the .NET version are precise. They are
also precise in the D-Code version.

The JVM version of gpcp takes liberties with the precise semantics of parameter
passing. Actual parameters of unboxed value type that are passed to reference
formals are passed by copying. (Unboxed value types are the built-in standard

13

types such as CHAR and INTEGER, together with the pointer types. Structures
and arrays are always boxed at runtime in the JVM, and are not affected by this
semantic modification.) In the case of formal parameters of VAR mode, actual
values of unboxed value type are copied in and copied out. In the case of formal
parameters of OUT mode the value is copied out. This changeis necessary in
order to obtain reasonable performance on the JVM. This change will not affect
the results of your program unless you access the actual of an a reference formal
along two paths (either by having two reference formal s sharing the same actual,
or accessing a static variable directly and through a parameter). You should not
write programs that do this! You might also care to know that with this change,
the performance of code is good if you have only one such copied parameter, but
becomes poor if you have more than one in any frequently called procedure.

5. Exception Handling

Component Pascal does not define exception handling, but it is necessary to deal with
foreign libraries that may throw exceptions. There is one new keyword and one new
builtin procedure introduced to facilitate this

5.1 The RESCUE clause
Procedures, but not modules may include exactly one RESCUE clause, at the end of
the procedure body. This has syntax —

ProcBody - BEG N Statements [RESCUE ‘(‘ i dent ‘)’ Statements] END ident.

Theidentifier introduced in the parentheses is of type RTS. Nat i veExcept i on, and
must have a name that is distinct from every other identifier in the local scope.

If any exception isthrown in the body of the procedure, or if any exception is
unhandled in a procedure called from this procedure, then the rescue clause is entered
with the exception object in the named local variable. Thisvariableis read-only
within the rescue clause, and is not known in the rest of the procedure body.

If the program has imported or defined any extensions of the native exception type,
filtering may be performed by using the usual type-test syntaxes. The compiler will
check that the rescue clause fulfills any contracts implied by the procedure signature.
For example, in the case of function procedures the rescue clause must explicitly
return atype-correct value, or explicitly throw another exception.

5.2 The THROW statement
Code may throw an exception by using the built-in procedure THROW. This
procedure has two signatures —

PROCEDURE THROW(x : RTS.NativeException);
PROCEDURE THROW(x : RTS.NativeString);

This may be used anywhere in the program, but is most useful for rethrowing an
exception from within a rescue clause.

14

|Z[Remember, if you use these non-standard facilities for exception handling
your program source will not be portable to other implementations of
Component Pascal. Of courseit will still be portable between different
implementations of Gardens Point Component Pascal.

If you want to create an exception object to abort program execution with a meaningful
string, the library function RTS. Throw(nsg : ARRAY OF CHAR) may be used.
Exceptions thrown by this library function can be caught by a RESCUE clause.

6. Facilities of the CP Runtime System
6.1 Supplied libraries
This release has a small number of libraries supplied. These are —

e Console thislibrary writes strings and numbers to the console

e Error thislibrary writes strings and number to the error stream

¢ ProgArgs thislibrary provides access to the command line arguments, if any
e GPText abasic library for handling text formatting

* GPFiles defines the supertype of GPBinfFiles.FILE and GPTextFiles.FILE

¢ GPBinFiles reading and writing binary files
* GPTextFiles reading and writing text files
e RTS access to the facilities of the runtime system

For the most part these libraries are the ones that were required to bootstrap the
compiler. More will come later ...

6.2 The runtime system RTS.cp

The runtime system provides a variety of low-level accessfacilities. The sourcefile
for this module, RTS. cp, isnot really the source. Thisfileisadummy, asis denoted
by the context-sensitive mark “ SYSTEM” appearing before the keyword MODULE.
All such “modules’ are actually implemented in the C# file named RTS.cs, and at
runtime are found in the assembly RTS.dlII.

ProgArgs, Console, and Error are also system modules, and have their real sourcein
the same C# file.

Hereisthe “source’ of RTS.

(** Thesearetheuser accessible static methods of the CP runtime system.
* These ar e the environment-independent ones. Othersarein CP*.cp
* Note: the bodies of these procedures are dummies, thismoduleis
* compiled with /special. Thereal codeisin RTS.csor other. *)

SYSTEM MODULE RTS;
VAR defaul t Target- : ARRAY 4 OF CHAR

TYPE

Char Open* = PA NTER TO ARRAY COF CHAR;
TYPE

Nat i veType* PO NTER TO RECCORD END;

Nat i veQbj ect * PA NTER TO RECCORD END;

15

NativeString* = PO NTER TO RECORD END;
Nat i veExcepti on* = PO NTER TO RECORD END;

PROCEDURE get Str(x : NativeException) : Char Qpen;
(** Get error nmessage from Exception *)

PROCEDURE StrToReal *(IN s : ARRAY OF CHAR
QUT r : REAL
QUT ok : BOOLEAN);

(** Parse array into an ieee double REAL *)

PROCEDURE StrTolnt*(IN s : ARRAY OF CHAR
QUT i : | NTEGER;
QUT ok : BOOLEAN);
(** Parse an array into a CP | NTEGER *)

PROCEDURE StrToLong*(IN s : ARRAY OF CHAR,
OQUT i : LONG NT;
QUT ok : BOOLEAN);
(** Parse an array into a CP LONG NT *)

PROCEDURE Real ToStr*(r : REAL;
QUT s : ARRAY OF CHAR);
(** Decode a CP REAL into an array *)

PROCEDURE IntToStr*(i : |NTECER,
QUT s : ARRAY OF CHAR);
(** Decode a CP INTEGER into an array *)

PROCEDURE LongToStr* (i : LONG NT;
QUT s : ARRAY OF CHAR);
(** Decode a CP INTEGER into an array *)

PROCEDURE real ToLongBits*(r : REAL) : LONG NT;
(** Convert ieee double to longint with sane bit pattern *)

PROCEDURE | ongBi t sToReal *(1 : LONG NT) : REAL;
(** Convert ieee double to a longint with sane bit pattern *)

PROCEDURE hiInt*(l : LONG NT) : | NTEGER,
(** Get hi-significant word of long integer *)

PROCEDURE | ol nt*(1 : LONG NT) : | NTEGER;
(** Get lo-significant word of long integer *)

PROCEDURE Throw* (I N s : ARRAY OF CHAR);
(** Abort execution with an error *)

PROCEDURE GetM I lis*() : LONG NT;
(** Get tinme in mlliseconds *)

PROCEDURE Get Dat eString*(OUT str : ARRAY OF CHAR);
(** Get a date string in sonme native format *)

PROCEDURE Cl assMarker*(o : ANYPTR); (* wite class nane *)

16

END RTS.

The four character defaultTarget string will hold “net” when running on the .NET
platform, and “jvm” when running under the Java Runtime Environment.

The word SYSTEM in the first line of the definition is a context sensitive mark, rather
than areserved word. This means that the word may be used as an identifier elsewhere
in the program. The mark simply indicates that the resources of this module are
actually found in the assembly RTS. dI | . Console, Error and ProgArgs are also
SYSTEM modules.

7. Foreign Language I nterface

7.1 Accessing the basic underlying types

The underlying types are accessible without any other import other than RTS. At
runtime the compiler queries the target flag, or takes the default value if thereis no
target command option.

If the target is“net” then NativeObject, NativeString and NativeException will be the
CLStypes Syst em Obj ect, System Stri ng and Syst em Excepti on
respectively.

If thetarget is“jvm” then NativeObject, NativeString and NativeException will be the
Javatypesj ava. | ang. Obj ect,java.lang. String andj ava. | ang. Excepti on
respectively.

In any case, literal strings may be implicitly coerced to either the native string type, or
to the native object type. This savesalot of clutter in code that interfaces to foreign
libraries. However, if a CP-style, non-literal string, i.e. a nul-terminated array of char

needs to be transformed to a native string, the non-standard built-in function —
PROCEDURE MKSTR(IN s : ARRAY OF CHAR) : RTS. NativeString;

may be used. See the appendix for an example of using these facilities for working
with native string types.

7.2 Compiling dummy definition modules

As an interim measure, the compiler has been enhanced so as to allow the construction
of metainformation files for foreign language libraries. Such modules must be
compiled with the/ speci al option.

Foreign language interfaces are denoted by the context sensitive marks FOREI GN or
SYSTEM preceding the keyword MODULE at the start of the file. Such “dummy”
modules do not contain the code of the foreign language facilities, but ssmply define
the interface to those facilities. Such modules must be compiled with the/ speci al
option. The system marker has special meaning in the .NET platform, but has the same
semantics as foreign in the JVM platform.

When a dummy definition module is compiled there are a small number of syntactic
extensions and changes.

* Modules can be given an explicit external name
* Procedures can be given an explicit external name

17

» Features with protected scope may be defined
« Static features of classes may be defined

« Escaped identifiers may be defined

* Interface types may be defined

» Overloaded names may be given aliases

» Constructors may be given an alias

The syntax - MODULE Foo[“[bl ah] space”]; declaresthat this module will be
found in assembly “blah” in namespace “space”. It is not necessary to use this
mechanism if you write the foreign module so that it has the default name as described
in Section 3, subsection “Common Language Specification Names’ .

The syntax - PROCEDURE (x : T)BarlI*[“Bar”](i,j : |NTEGER); declares
that this procedure has the external name “Bar” and the internal (CP) name “Barll”.
This mechanism allows overloaded names in the CLS to be given non-overloaded
aliasesin CP.

The mark “!” is used to declare that a foreign name has protected scope.

If aname clashes with a CP keyword, it should be defined using the back-quote
escape.

Hereis an example of the syntax that is required to define aforeign interface type.
TYPE Foo* = PO NTER TO | NTERFACE RECORD END;

The keyword INTERFACE is reserved, and such a type cannot declare any fieldsin the
record, nor can it define type-bound procedure which are not declared ABSTRACT.

Finally, constructors must be declared with the special name “.ct or ”. Declaring a
constructor is not necessary if only the no-arg constructor is required, since NEWo0bj)
worksin this case as for other typesin CP (see section 8.4 for more detail). If access
to constructors with arguments is required, then these are given a CP alias, and are
marked as constructors by using the magic explicit name. For the t ar get =j vmversion,
the magic nameis“<i ni t >”.

7.3 Accessing Static Features of Foreign Classes

If aclass has been imported from aforeign definition, and the class has static
members, these may be accessed by means of a semantic extension to the designator
grammar.

Normally, the syntactic construct —
Qualifiedident { Selector}

isin error if the qualified identifier resolves to a type-identifier. However there are

two exceptional cases where thisislegal in gpcp. If adesignator begins—
Typeldentifier “.” Identifier

where

= thetypeidentifier resolvesto an imported, foreign type, and

= theidentifier isastatic field or constant of the type, or

» theidentifier isa static method of the type

then thisis alegal reference to the static feature of the type.

18

In order to define such constructs in the syntax of dummy definitions the following
syntax is added to the record syntax. Note that these extensions are only valid if the
module is compiled with the/ speci al command line option.

Record - RECORD[“(* Typeld“)"] { FieldList} [STATI C{ StatFeature}] END.
StatFeature - ProcHeading | StatConst | StatField .

StatConst - identifier “=" ConstExpression .

StatField - identifier “:” Typeld .

Procedure headings have the same syntax as elsewhere in the language.

8.0 Creating Foreign Definition M odules

This Section isonly of relevance if you plan to write your own foreign definition
modules. For most users the information in the previous section on the usage of these
facilitieswill be sufficient.

8.1 Syntax of Foreign Definitions
The syntax of foreign definition is asfollows. Unless otherwise defined here, the
meanings of non-terminal symbolsis the same as in the Component Pascal Report.

GPModule — Module | ForeignMod .
ForeignMod - (FORElI GN | SYSTEM) MCDULE ident [string] “;”
ImportList DeclSeq END ident “.” .
DeclSeq — {CONST {ConstDecl “;"} | TYPE {TypeDecl “:"} |VAR{VarDecl “;"}}
{ProcHeading “;” | MethodHeading “;"}
ProcHeading - PROCEDURE IdentDef [“[* string “]"] [FormalPars] .
MethodHeading - PROCEDURE Receiver IdentDef [“[“ string “]”] [Formal Pars]
[“)” NEW [“,” ABSTRACT | EMPTY | EXTENSI BLE] .
TypeDecl - |dentDef “=" Type.
Type - [PO NTER TQ [Attributes] RECORD [“(“ Qualident “)"]
FieldList {“;” FieldList }
[STATI C StaticDecl { “;” StaticDecl}] END
| Gher types as in the Report
StaticDecl - ldentList“;” Type| IdentDef “=" ConstExpr | ProcHeading .
Attributes - ABSTRACT | EXTENSI BLE | | NTERFACE.

The syntax begins with the context sensitive mark “foreign” or “system”. On the .NET
platform the system marker indicates that the code will be found in the runtime system
assembly. Inthe JVM, where each class file contains a single class, the marker has the
same semantic effect as “FOREI GN'.

8.2 Explicit package or namespace names
The way in which runtime names are generated from module names was described in
Section 3.2. In the case of the JVM we have the following correspondence.

Component Pascal Name JVM Name
MODULE ModNm CP. ModNm /I package name
TYPE C's = RECORD ... END; CP. ModNm ModNm Cl' s // classhame
VAR varNm : d's; CP. ModNm ModNm var Nm
PROCEDURE Pr ocNm() ; CP. ModNm ModNm Pr ocNm{()

19

PROCEDURE (t : C's)M hNm(); CP. ModNm C's. M hN()
END MbdNm

Notice that in the JVM there are no features that are defined outside of classes, so that
the static entities varNm and ProcNm are considered at runtime to belong to an implicit
static class with the same name as the module name. However, so far as an importing
Component Pascal program is concerned, these features will be accessed by the
familiar ModuleName.member Name syntax.

Component Pascal Name .NET CLS Name
MODULE ModNm [ModNm ModNm /I namespace
TYPE C's = RECORD ... END; [ModNm ModNm d s // class name
VAR varNm : O s; [ModNmM ModNm ModNm : var Nm
PROCEDURE Pr ocNn() ; [ModNm ModNm ModNm : Pr ocNm()
PROCEDURE (t : d s)M hNm(); [ModNM ModNm O s:: M hNm()
END ModNm

In the virtual object system of .NET the situation is similar, with an implicit static class
being defined with the same name as the module.

If, as a user, you are writing a foreign definition and plan to implement the library
yourself in either Java or in C# (say), then you may define the foreign module in this
way and write the foreign code so as to match the default “name mangling” scheme. In
this case you may even use the same foreign definition for both versions of gpcp, and
implement a foreign module on each underlying platform. If on the other hand you are
planning to match a foreign definition to an existing library written in Java or C#, then
you must override this default naming scheme.

The syntax “FOREI GN MODULE i dent [string];” alowsan arbitrary package or
namespace name to be defined. For example, in order to access the facilities of the
packagej ava. | ang. Ref | ect aforeign module might begin —

FORElI GN MODULE j ava_l ang_Refl ect[“java. |l ang. Reflect”];
Similarly, in order to access the facilities of the namespace Syst em Ref | ect inthe
assembly nscor | i b aforeign module might begin

FOREI GN MODULE nscorlib_System Refl ect
[“[mscorlib] System Reflect”];

Note that the form of the literal string is different on the two platforms, and thus any
such foreign modules will be specific to a particular platform. Notice also that thereis
no mechanism to explicitly give a name to an implicit static class.

8.3 Dealing with overloaded names

Each of the underlying platforms allows name overloading for methods. This feature
is deliberately not permitted in Component Pascal. Nevertheless, it is necessary to
gain access to library methods that have overloaded names. The option of using
explicit external method names facilitates this. Suppose we have two methods, both of
which are named Add(), one with a single integer parameter, and another with two.
We might define these as follows in aforeign definition.

PROCEDURE (this : O s)Addl*[“Add”] (I : |NTEGER), NEW
PROCEDURE (this : O s)Addl1*[“Add”](l,J : |NTEGER), NEW

20

Within the importing CP program the two names are distinct, but the program
executable will correctly refer to the underlying overloaded methods. This name-
mangling is rather awkward, particularly in the case of parameters of object types.

Sincerelease (1.1) users are able to access the unmangled names of overloaded foreign
methods directly. The N2CPS and J2CPS tools create symbol files that have
overloaded names, and the compiler will match calls to the intended method. Because
thisis alanguage extension, the compiler is strict about matching calls to methodsin
the presence of automatic coercions. If more than one method matches, when taking
into account all legal coercions, gpcp will regject the program and require the user to
specify the intended coercions of the actual parameters.

8.4 Interfacing to constr uctors

If aforeign class has a“no-arg” constructor, then thiswill be implicitly called
whenever an object is created by the use of the standard procedure NEW However if it
is necessary to access constructors with arguments, then it is possible to define an alias
for the constructor in a foreign module. In every case the constructor will be accessed
by means of a static, value returning function that returns an object of the constructed
class. The fact that thisis a constructor must be made known to gpcp since the way in
which these methods are called differs from other methods. On each underlying
platform thereisa“magic” name that is used for calling a constructor. On JVM the
nameis“<i ni t >”, whileon .NET the nameis*. ct or ”. These two strings are used as
the explicit string that defines such a procedure in the foreign definition. An example
of an interface to a constructor with arguments, in the syntax used by the Browse tool,
might be —

PROCEDURE | ni t*(wi dth, hei ght : INTEGER) : Rect, CONSTRUCTOR,;

The identifier “CONSTRUCTOR” is not areserved word, but a context sensitive mark
that may be used as an ordinary identifier elsewhere in the program.

Note that this declaration would normally be declared in the static part of the record
defining the class “Rect”. Callsto this procedure in a Component Pascal program,
such as—

recl := F.Rect.Init(25,17);
would trandate into a call to the appropriate one of —

nanmespaceName. Rect::.ctor(int32,int32)

packageNane. Rect.<init>(I11)

Of course, if you extend aforeign class that does not have a public no-arg constructor,
then you will not be able to construct values of your own type using NEW since this
implicitly calls the no-arg constructor of its super-type. Inthis case, it is necessary to
define a new constructor signature for your extended type. Inrelease 1.2 there are two
ways to do this. If the desired constructor has the same signature as the constructor of
the supertype, then the first method may be used. In the case of the example above, the
required syntax is shown in the following fragment —

TYPE MyRect* = PO NTER TO RECORD (A. Rect) ...END,

PROCEDURE I nit*(w h : | NTEGER): MyRect, CONSTRUCTOR

21

The constructor does not have a body, and simply passes its arguments to the super-
type constructor with matching signature.

The new syntax in version 1.2 is considerably more flexible. The Component Pascal
definition does not require to have the same signature as the constructor of the super-
type. An example of the syntax is—

PROCEDURE MKMyRect * (formals) : MyRect , BASE(actuals) ;
Local-declarations
BEG N

Constructor body
RETURN SELF;
END MkKMyRect ;

The identifier “BASE” is a not areserved word, but is a context sensitive mark. It
denotes the super-type constructor with the signature matching the types of the actual
parameter expressions. This super-type constructor will be called as the first action of
the constructor, before the new fields of the derived object are initialized. Within the
body of the constructor the object under construction is denoted by the identifier
“SELF”. The constructor must return this object along every terminating path of the
body. Itisan error if the actual parameter expression types in the super-call do not
choose a unique super-type constructor.

8.5 Declaring static features of classes

Classes in foreign modules may be declared either as records or as pointers to records.
However, it is recommended that on the JVM platform the pointer form be always
used, as a helpful reminder to the user that at runtime the objects will be dynamically
alocated. On the .NET platform value classes should be declared as plain records,
with no explicit base type. On both platforms array types should be declared as
pointers to arrays, again reminding the user that all arrays are dynamically (and
explicitly) allocated.

In order to access static features of foreign classes, the syntax extension of records
givenin Section 8.1 must be used. In the optional static section of arecord
declaration we may define constants, static fields and static (i.e. non type-bound)
procedures.

We may consider the following example —

Component Pascal Foreign Definition Component Pascal Usage
FORElI GN MODULE MbdNm
TYPE s = ModNm d s /I class name
PO NTER TO RECCRD
STATI C
statVar* : CHAR MbdNm O s. st at Var
PROCEDURE St at Proc(); ModNm O s. St at Proc()
END;
END ModNm

In this example we select the static member by qualifying the designator by the type-
name of the class.

22

Type-bound methods will be defined lexically outside of the record declaration in the
normal CP way, remembering that only the heading is required. On the .NET platform
the distinction between virtual and instance methods is made automatically. Instance
methods are NEW but not EXTENSBLE. On the JVM platform the possibility of
optimizing the calls to such methods are left to the JIT to determine.

|Z[Note that the foreign modules which arise from C# on the .NET platform or
are written in Java can never have static features outside of classes. If you are
writing the foreign module yourself you may use the default class naming
scheme described in Section 3. However if you are matching an existing
package, you will need to use the explicit name override described earlier in
this Section. Thisallows you to control the package name, but does not allow
you to name an implicit static class for static features. Therefore you will need
to use the mechanisms of this sub-section if the package contains any static
features.

8.6 Automatic module renaming

Programs written in C# that contain a single class definition only are often created in
files that take their name from the name of the class. If you try to match this same
structure in Component Pascal, you run into asmall difficulty on the .NET platform.
Suppose you want to export a class “Rename” from a module named “Rename”. In
this case the external class namein .NET [Renane] Renane. Renane will clash with
the name of the synthetic static class. In this case gpcp will automatically rename the
static class, by appending two underscores. If the module with the renamed classis
imported, gpcp will find the renamed symbol file. I1n both contexts gpcp will issue a
warning that the renaming is taking place —

C. \ gpcp\wor k> gpcp Renane.cp UseRenane. cp
1 MODULE Renane;
REEE oo N Warning: Default static class has name cl ash
**** Renaming static class to <__Renane>
#gpcp: <Renane> No errors, and one warning
2 | MPORT Renane, CPnain;
R A Warning: Looking for an autonatically renaned nodul e
M AN Looking for nodule "Renanme" in file <__Renane.cps>
#gpcp: <UseRenane> No errors, and one warni ng

8. Installing and Trying the Compiler

8.1 Installation

The compiler is packaged in asingle zip file which is usually unzipped into a directory
with aname such as\gpcp. There are six sub-directories. These are —

e bin thebinary files of the compiler

* docs thedocumentation, including thisfile

e examples some example programs

e libs containsthe simplelibrary files

* source the sourcefiles

« work aworking directory to play around with

23

The bin directory needs to be on your PATH, and the environment variable CPSY M

must point to the libs directory. Typical commands are —
set CPSYM:.; C.\gpcp\libs
set PATH=UPATHY% C. \ gpcp\ bi n

If you use the installer version (from version 1.1.4) you should not need to do anything
other than make responses to the installer’s queries.

9. Future Releases

Release 1.1 still has avery limited range of libraries packaged with it, essentialy only
those needed to bootstrap the compiler. The distribution is sufficient to try out the
compiler, and is being updated on a frequent basis. We expect new releases to contain
new tools and new libraries.

Updates are announced and available from www.plasr c.qut.edu.au/Component Pascal

Changesfrom 1.1.6

The following changes and corrections are included in the 1.2.0 release.

The semantics of “super-calls’ were incorrect in the case that the immediate super-type
did not define the method being overridden. In version 1.2 the notation “Foo” () ”
denotes the overridden method no matter how distant it isin the inheritance hierarchy.

New options have been implemented for output directories, and the default behavior
for the /nodebug option isto use the direct PE-file writer. Thisis significantly faster
than going through ilasm. Unfortunately, this new file-writer does not produce debug
symbols at this stage. There is separate documentation for the PEAPI component
included with this release.

The permitted semantics for constructors with arguments is significantly enhanced.
Thisis of some importance when deriving from types that do not have public no-arg
constructors.

Changesfrom 1.1.4

The following changes and corrections are included in the 1.1.6 release —

Uplevel addressing of reference parametersis now permitted in the .NET
release, although this has inexact semantics in some cases.

A number of correctionsto the VM code-emitter have been added.

The new builtin function BOX has been added.

Trapping of types that attempt to indirectly include themselves is improved.
An automatic renaming scheme is implemented for modules that attempt to
export types with the same name as the module on the .NET platform.

=

ko

Changesfrom 1.1.3
The following changes and corrections are included in the 1.1.4 release —
1. The copyright notice has been revised. GPCP is still open source, but now has a
“FreeBSD-like” licence agreement.
2. A correction to the Java class-file emitter now puts correct visibility markers on
package-public members. Appletviewer didn’'t care, but browsers objected!
3. Itisnow permitted to export type-bound procedures of non-exported types,
provided the procedure overrides an exported method of a super-type.

24

4. More line-markers are emitted to IL. This makes it possible to place a
breakpoint on the predicate of a conditional statement, and have the debugger
stop on the predicate rather than the next executable statement.

5. Thetype-resolution code of SymFileRW.cp has been radically revised. Itis
believed that the code is now immune to certain problems caused by importing
foreign libraries with circular dependencies.

25

Appendix A —Working with Native Strings

There are some subtleties in converting to native strings. The following example
demonstrates several strategies. The example triesto call the Equals() method of
System.String to compare with a Component Pascal literal string.

MODULE St ri ngConpar e;
| MPORT
Sys := mscorlib_System
CPmai n;

VAR type : Sys. Type;
name : Sys. String;
[tNm: Sys. String;
obj S : Sys. bj ect;

BEG N
name : = type.get_Nane();
(*
* This attempt does not work, since litera strings may have several automatic coercions
* that match different overloads of the Equals() method.
*
I F nane. Equal s("Bl ah") THEN END;
(*
* Type assertions only apply to variables. This attempt caused a compiler exceptionin 1.1.4!
*
I F nane. Equal s((Sys. String)"Bl ah") THEN END;
(*
* thisnext try isinvalid syntax, the "cast" construct is a type-assertion, not a conversion
*

I F name. Equal s(" Bl ah" (Sys. String)) THEN END;
(*

* Conversions use built-in functions. Hereisa non-standard one that

* converts char-arrays to native strings. Thisworks ...

*)
| F nanme. Equal s(MKSTR(" Bl ah")) THEN END;

(*
* In the case of assigments (or non-overloaded method calls), the compiler can work it out
* by itself without the MKSTR(). Literal char arrays can be assigned to objects or strings.
* Thisworks.

*)
I[tNm: = "Blah"; (* gpcpautomatically convertsthe string to System.String *)
| F nane. Equal s(| t Nm) THEN END;

(*

* In the case of reference variables the type-assertion / cast syntax does work --
* the following two calls bind to different overloads.
*
)
obj S := "Blah"; (* gpcpautomatically convertsthe string to System.Object *)
| F nane. Equal s(obj S) THEN END;
I F nane. Equal s(obj S(Sys. String)) THEN END;
END St ri ngConpar e.

Hereisthe listing output from running gpcp version 1.1.6 on this example-

26

1 MODULE StringConpare;

2 I MPORT

3 Sys := nscorlib_System
4 CPmai n;

5

6 VAR type : Sys. Type;

7 nane : Sys.String;

8 ItNm: Sys.String;
9 obj S : Sys. vj ect;
10

11 BEG N

12 name : = type.get_Nane();
13 (*

14 * This one does not work, since literal strings
15 * may have several automatic coercions that natch
16 * different overloads of the Equal s() nethod.

18 | F name. Equal s(" Bl ah") THEN END;
__________________ N
***x Miltiple overloaded procedure signatures match this call
***% NMatches with - Equal s(nscorlib_System String)
***x Matches with - Equal s(nmscorlib_System Object)
19 (*
20 * Type assertions only apply to variabl es.
21 * This attenpt caused a conpiler exception in 1.1.4!

22 %)

23 I F nane. Equal s((Sys. String)"Blah") THEN END;
i N Not dynamically typed, so you cannot have type-guard
M N ldentifier is not a fieldnane of the current type
¥xxx ') expected---------mmaaann A

24 (*

25 * this next try is invalid syntax, the "cast"

26 * construct is a type-assertion, not a conversion
27 %)

28 I F nane. Equal s(" Bl ah" (Sys. String)) THEN END;

* ok ok ok N

***xx Miltiple overloaded procedure signatures match this call
*xxx ' THEN expected-------------mcmmmonn n
**xx NMatches with - Equal s(mscorlib_System Object)
**xx NMatches with - Equal s(mscorlib_System String)
29 (*
30 * Conversions use built-in functions. Here is a
31 * non-standard one that converts char-arrays to
32 * pative strings. This works ...
33 *)
34 | F nare. Equal s(MKSTR(" Bl ah")) THEN END;
_____________________________ N
***xx WArning: Miltiple overloaded procedure signatures match this call
***% Bound to - Equal s(nscorlib_System String)
***% Matches with - Equal s(nscorlib_System Object)
35 (*
36 * In the case of assignments (or non-overl oaded

37 * nethod calls), the conpiler can work it out
38 * by itself without the MKSTR(). Literal char
39 * arrays can be assigned to objects or strings.
40 * This works.

41 *)

42 |tNm:= "Bl ah";

***%% \WArning: Multiple overloaded procedure signatures natch this call
**xx Bound to - Equal s(nscorlib_System String)
***% NMatches with - Equal s(nscorlib_System Object)
a4 (*
45 * |In the case of reference variables, the
46 * type-assertion / cast syntax does work --
the following two calls bind to different
48 * overl oads.

»
~
*

50 obj S := "Bl ah";
51 | F nane. Equal s(obj S) THEN END;
52 | F nare. Equal s(obj S(Sys. String)) THEN END,
* k k% N
***xx WArning: Miltiple overloaded procedure signatures match this call
**xx Bound to - Equal s(nscorlib_System String)
**xx NMatches with - Equal s(mscorlib_System Object)
53 END StringCompare.

27

Appendix B — Overriding the Default Naming

The default naming scheme for the .NET version of gpcp uses the module name as the
stem name for the output files, the CLR assembly name, the namespace name and the
dummy static class name. All of these defaults may be overridden as described here.
This may be necessary if another component expects a particular naming pattern.

Consider the following short program —

MODULE Modl d; (* default naming will be used *)
TYPE C sl d* = RECORD ... END;
END Modl d.

In this case the name of the output file will be ModlI d. dI | , the name of the dummy
static class will be [Mbdl d] Modl d. Modl d, and the name of the class that
represents the record type will be [Modl d] Modl d. O sl d.

It is allowed to follow the module name with a bracketed string that specifies either or
both of the assembly name and the namespace name. A typical string would be —

MODULE Mbdld [“[AsnNnj SpcNmi]; (* both *)
TYPE O sl d* = RECORD ... END;
END Modl d.

In this case the name of the output file will be AsmNm dI | , the name of the dummy
static class will be [AsmNm SpcNm Modl d, and the name of the class that
represents the record type will be [AsmNm] SpcNm d sl d.

In the case that only the assembly name is specified, there is no namespace defined.

MODULE Modld [“[AsnNm "] ; (* assembly nameonly *)
TYPE O sld* = RECORD ... END;
END Modl d.

In this case the name of the output file will be AsnmNm dl | , the name of the dummy
static class will be [AsmNm] Modl d, and the name of the class that represents the
record type will be[AsmNmj Cl sl d.

Conversely, if the namespace name is specified, but no assembly name, then the
assembly name is taken from the module identifier, asin the default case.

MODULE Modld [“SpcNmi']; (* namespaceonly*)
TYPE O sld* = RECORD ... END;
END Modl d.

In this case the name of the output file will be ModlI d. dl | , the name of the dummy
static classwill be [Modl d] SpcNm Modl d, and the name of the class that
represents the record type will be [Modl d] SpcNm d sl d.

28

Thereisjust one special caseremaining. In all of the previous cases the name of the
dummy static classis taken from the module identifier, with the symbol (metadata) file
using the same stem name. If the default name of the static dummy class clashes with
the name of an explicit class then the dummy static class will be renamed.

MODULE d sl d; (* module name clasheswith classid *)
TYPE O sld* = RECORD ... END;
END d sl d.

In this case the name of the output file will be Cl sl d. dI | , the name of the dummy
static classwill be[C sl d] d sl d. __d sl d, and the name of the class that
represents the record type will be[Cl sl d] C sl d. C sl d. The symbol file will
havethename“ __ O sl d. cps” and, asnoted earlier, will be automatically found by
the compiler if the module name appearsin an import list.

29

