Release Notes [1 Gardens Point Component Pascal
Version 1.2.0 for JVM (September 2002)

1. Introduction

Gardens Point Component Pascal (gpcp) is an implementation of the Component Pascal
Language, as defined in the Component Pascal Report from Oberon Microsystems. Itis
intended that this be a faithful implementation of the report, except for those changes
that are explicitly detailed here. Any other differencesin detail should be reported as
potential bugs.

The distribution consists of four programs, and a number of libraries. The programs
are the compiler gpcp, the make utility CPMake, a module interface browser tool
Browse, and atool for producing interfaces from class files written in java, J2CPS.
There will be other utilities added | ater.

The compiler produces either Microsoft.NET intermediate |language or Java Virtual
Machine (JVM) byte-codes as output. The compiler can be bootstrapped on either
platform. These release notes refer to the Java byte-code (JVM) platform.

There are a number of syntactic extensions to the Component Pascal language accepted
by the compiler which are introduced to allow interworking with the native libraries of
the underlying platform. The guiding philosophy in such casesis to not significantly
extend the semantics of the constructs that form part of Component Pascal, but rather to
provide syntax for accessing features of other languages, which have no direct
counterpart in Component Pascal.

2. Overall Structure

2.1 Input and Output files

In normal usage the compiler creates two or more output files for every source file. If
thefileHel | 0. cp contains the module “Hello”, and is compiled, then the output files
will beHel | 0. cps and Hel | 0. cl ass. The“*.cps’ fileisthe symbol file which
contains the meta-information that describes the facilities exported from the module.
The program executable will be “*.class’. If the program defines other classes (i.e. the
program defines record types) then there will be several other *.classfiles. The class
fileswill be placed in a subdirectory of the current directory named CP, so that the class
loading mechanism of the VM can find them. All other files are created in the current
directory. If alistingfileiscreated it will have extension “.Ist”.

Be aware that the stem name of the output files comes from the module name, not from
the source-file name. Thusif module “Foo” isin source file “Hello.cp” then all of the
output files will have stem name “Foo”.

Creating class files

From release 0.95, gpcp writes class files directly, by default. Previous rel eases wrote
Jasmin assembly *.j files, and invoked the Jasmin byte code assembler. The direct
writing of class filesis much faster, but it is possible to force the compiler to use
Jasmin. Of course, if you wish to do this, then you must install Jasmin on your system.

It is possible to invoke the compiler so as to produce just the intermediate language file,
and then invoke thej asm n assembler manually. This allows the options of j asmi n
to be invoked so asto place the class filesin other locations on the class path of your
Java Runtime Environment. The same effect may be gained by using the/ cl sdi r
option from version 1.2.0.

2.2 Invoking the compiler

The compiler isinvoked from the command line using the command
$>cprun gpcp [options] files

where options include

-copyri ght display the copyright notice
-dostats emit timing and other statistics
-hel p emit this usage prompt
“-hsi ze=NNN’ set hashtable size> NNN (0 .. 65000)
-jasmn do not create the class file directly, but use jasmin
-1ist create an output listing if there are errors (default)
-list+ always create an output listing
-list- never create an output listing
- nocode create .j output, but do not assemble
-noasm produce a symbol file, but no il
-nosym produce no output files, not even a symbol file
-strict disallow non-standard language constructs
- speci al used for creating symbol files for foreign interfaces
“-target =xxx" emit assembler output for platform “xxx”
-ver bose chatter on about progress during compilation
-version emit version information
-war n- suppress warning messages from the console
- nowar n same as—war n-

“-symdi r =XXX" place symbol filesin directory “xxx”
“-cl sdir=xXXX" placeclassfilesin hierarchy rooted at “xxx”"

Any number of files may be added in a white-space separated list. In the JVM version
the option prefix ‘-" form is the expected default. The .NET version accepts either “/” or
“-” as an option prefix.

2.3 The cprun script

cprun isabatch or shell file which invokes the Javaruntime. Thereis a corresponding
script cpint which invokes the runtime without using the just-in-time compiler. Both of
these scripts arein the/ gpcp/ bi n directory.

The compiler may be run without using the script by directly invoking the Java runtime.
A typical command would be —

$> java [java-options] CP. gpcp. gpcp [options] files
The java options set any needed properties, define the classpath, and choose the JI T
options. CP.gpcp.gpcp is the full name of the class that contains the compiler entry
point.

2.4 Target choice

The compiler may choose its output language at runtime. The default output when
running on the JVM platform is to produce class files for the Java virtual machine. The
recognized options are

-t ar get =net thisisthe default .NET virtual object system format
-target=jvm this causes Java byte codes to be emitted
-target =dcf this chooses the Gardens Point “d-code” form

The dcf format is not yet available, but isintended to access the Gardens Point native
code generators on all the platforms for which Gardens Point Modula-2 is implemented.

Qutput files
Running the compiler with the —nosymflag causes the input files to be parsed and type-
checked, but no output files are created except possibly alisting file.

If the compiler is run with the —noasmflag, the input files are parsed and type-checked,
and asymbol fileis produced for each input file. No assembly language or classfile
output is produced however.

If the compiler is run with the —nocode flag, the input files are parsed and type-
checked, and a symbol file and one or more Jasmin assembly language files are
produced for each input file. No class files are produced in this case.

If the compiler isrun without any flags, the input files are parsed and type-checked, and
asymbol file and one or more class files are produced for each input file.

If the compiler isrun with the —j asmi n flag, the input files are parsed and type-
checked, and a symbol file and one or more Jasmin assembly language files are
produced for each input file. Following this, the Jasmin assembler will be automatically
invoked to create the corresponding class files.

Qutput files with —target=net

If the compiler isrun with the - t ar get =net flag, a Microsoft Intermediate Language
(MSIL) filewill be produced for each input file. Because the current version cannot run
the MSIL assembler, evenif it isinstalled, the compiler must in this case also be
invoked with at least the—nocode flag.

2.5 Overflow checking

The JVM does not support overflow checking of arithmetic operations at atolerable
efficiency, so that no checks are done currently on this platform. Overflow checks are
the default on the .NET platform, but compiling with the/ nocheck option removes
these. Thereisavery small speed gain if checks are turned off. Checks may aso be
turned off on a per-procedure basis, as described below.

2.6 Listing output
The compiler, by default produces a listing file only if there are compile-time errors or
warnings. Itis possible to force the compiler to produce alisting, using the -l i st +

option. Equally, it is possible to prevent the creation of alisting file even if there are
errors, by using the—I i st- option.

The listing file contains the complete listing of the program, with four digit line
numbers prepended. Errors are reported in the following format —

1 MODULE Bar Mod;
2 | MPORT

3 FooMod
4 TYPE

5 Bar* = PO NTER TO ABSTRACT RECORD (FooMbd. Foo) END

* A Only ABSTRACT basetypes can have abstract extensions
6 i,j,k : I NTEGER

7 END;

8 END Bar Mod.

* k%

2.7 Statistics output

If the compiler isinvoked with option —dost at s then compile time statistics are
produced. Here is an example for the program Browse.

C.\gpcp\wor k> cprun gpcp -dostats Browse.cp
#gpcp: <Browse> No errors

#gpcp: jvmversion 1.1.4 of 25 Decenmber 2001
#gpcp: 2165 source lines

#gpcp: inport recursion depth 3

#gpcp: 795 entries in hashtable of size 4099

#gpcp: inport tine 130ntSec
#gpcp: source tine 170ntec
#gpcp: parse tine 371ntec

#gpcp: analysis tine 130ntSec
#gpcp: symWite tine 20ntec
#gpcp: asmiite tine 631nSec
#gpcp: assenble tine OnfSec
#gpcp: total tine 1452nBec
C. \ gpcp\ wor k>

The meaning of the values written to the console is as follows.

* The compiler imports symbol filesin dependency order, if necessary. The
maximum recursion depth for this example turned out to be 3.

* The compiler allows choice of hashtable size. The number of entriesused is
shown

* Import time is the time to read and process metainformation for all imports. In
the example Browse imports most of the compiler meta-information for gpcp.

» Sourcetimeisthe time to read the source file into the internal buffer.

* Parsetimeisthe time to parse the buffer, create the syntax tree and resolve all
identifiers.

* Anaysistimeisthetime to do type checking, and dataflow analysis.

* SymWritetimeis the time to write out metatdata to the symbol file.

* AsmWrite time is the time to write out the assembly language (.j) output if the —
jasmin option is used, or the byte codes (.class) file.

* Assembletimeis the time taken to spawn anew process and runj asni n if the
—j asm n option is used.

2.8 Setting the hash table size

The compiler uses closed hashing internally, with a default number of identifiers of
4099 in the current version. It is possible to increase the number of entries by means of
the - hsi ze=NUMBER option. Numbers up to 66000 are meaningful to the program.

If the hash table overflows, the compiler gives an error message, with a hint to increase
the size. There is an example program with the distribution that creates a program that
will break the compiler, so that users may test this feature. The compilation fails with
the default table, but succeeds with - hsi ze=5000.

2.9 Choosing the Output Directories
By default all output files are created in the current directory. This behavior may be
overridden with the new options/ cl sdi r and/ syndi r. The symbol fileis placedin
the directory specified by the option —

/ symdi r =target-directory
Note carefully that if atarget directory is chosen that is not on the “CPSYM” path then
gpcp will not be able to find the symbol files automatically.

Classfiles being created may be placed in a specified directory using the —

/ cl sdi r =target-directory
option. This specifies the root directory for the class hierarchy. If thisoption is chosen,
then the specified directory should be on the class path.

If the .NET target has been chosen then the “symdir” option still applies, but “clsdir”
option does not. Instead, asimilar option “bindir” specifies the output directory.

2.10 The M ake utility

The compilation process with Component Pascal guarantees type safety across
separately compiled module boundaries. Since interface meta-information resides in the
symbol files which gpcp creates, modules must be compiled in an order that respects the
partial order induced by the global importation graph. For complex programs, this may
be difficult to determine manually.

The utility CPMake reads symbol files, and if necessary source files, in order to
determine avalid order of compilation. The syntax for invocation is—

$> cprun CPMake [options] moduleName+
The module name may be given with or without a file-extension, but must be the name
of a module which imports CPMain, that is, it must be a base module.

When source files of a program have been modified in general only a subset of the
modules have to be recompiled. CPMake is able to work out which modules must be
recompiled by checking the date stamps on the files, and also checking the module
hash-keys (“magic numbers’) in the symbol files. If amodule has been edited, but the
public interface of the module has not changed a recompilation should compute a new
magic number which is the same as that expected by any previously compiled,
dependent modules. In this case CPMake detects that the dependent modules are still

consistent and do not require recompilation. This“domino-stopping” feature of the
program ensures that a conservative minimum of modules is recompiled.

The options accepted by the program are exactly the options accepted by gpcp, except
that the option —al | forces compilation of all modulesin the local directory irrespective
of date stamps and magic numbers.

2.11 Class I nter face Browser

The program Browse reads the symbol file of a module and displays the public
interface. This public interface is shown in aform similar to a Component Pascal
module. This“module” shows all the types, variables and procedures that are exported
from the specified module. Only the exported fields of record types are shown. Any
exported procedures are shown as procedure headers only. The output from Browse is
not a proper Component Pascal module and will not compile using gpcp. It simply
shows all of the identifiers that may be imported and used by a client module.

This program is invoked with the command

$> cprun Br ows e [options] moduleName+!
the symbol file extension .cps may, but need not, be included in the moduleName.
As with gpcp, any number of files may be added in awhite-space separated list. The
Browse program sends its output to the console by default, and has the following
options:

-all browse this and all imported modules

-full display full foreign names

-file write output to the file <moduleName>.bro

-ht m write html output to the file <moduleName>.html

The-al I option produces output for al of the modules on the global imports graph of
the specified module. The—f ul | option is only meaningful for FOREI GN modules
where the output from Browse will include the full external names for all procedures.
The default for Browse isto only display the internal (Component Pascal) names. See
Section 7 for more on Foreign Language Interfaces. The—f i | e option sends the output
to the file <moduleName>.bro instead of to the console. The—ht M option produces
hyperlinked html text in the file <moduleName>.html.

2.12 Symbol File Generator J2CPS

The J2CPS utility has been included with thisrelease. This utility is used to produce
gpcp symbol files for the java library packages. This allows Component Pascal
programs to interface with java library classes. One symbol fileis produced for each
javapackage. The utility needs only to be run once on all the packagesin your java
libraries. If you update your version of java, then the utility should be run with the new
library packages.

When supplied with a java package name, J2CPS reads the information about that
package from the java class files and produces a gpcp symbol file. A symbol file will
also be produced, where one does not already exist, for every package on the global
imports graph.

The J2CPS utility isinvoked as follows:

$> java J2CPS [options] <javaPackageName>+

the javaPackageName is afully qualified java package name (eg. java/lang). There are
two options—d di r wheredi r isthe directory that the symbol files will be written to
(the default is the current directory) and —v for verbose diagnostics.

To run J2CPS

(1) Unpack the classfiles. If thejavalibrary classfiles are already present in your
version of java then you do not need to do this step. If not you will need to
unpack the class filesfrom the jar file. Thefileiscaled rt.jar inthejre/lib
directory of your jdk.

(2) Put the directory containing the class files on your path. Y ou will need to edit
the j2cps shell file or j2cps.bat file. Add the classfile directory to the path under
—classpath in thisfile.

(3) You should now be able to run j2cps.

3. Lexical Issues

3.1 Non-standard Keywords

In order to provide facilities for foreign language interfaces there are atotal of six new
keywords defined. These are all upper case names and cannot be used as program
identifiers.

DIVO - an additional arithmetic operator (C integer division)
ENUM - used in dummy foreign modules in the .NET system
INTERFACE - used in dummy foreign modules for defining interfaces
REMO - an additional arithmetic operator (C integer remainder)
RESCUE - used to mark a procedure-level exception catch block
STATIC - used to declare static features in dummy foreign modules.

Only DI VO, REM) and RESCUE may be used in normal programs.
The following new predefined identifiers have been added. These can be redefined, but
not at the outer lexical level. The definitions for these procedures are given below.

MKSTR - function to convert a CP “string” to the native string type
BOX - make a dynamically allocated copy of record or array
THROW - procedure that (re)throws a native exception object
TYPEOF - fetch the runtime type descriptor, for reflection etc.

There are some other predefined identifiers used in the extended syntax, but these are
“context sensitive markers’” and do not prevent the same names being used for program
identifiers.

|Z[Remember, if you use any of these non-standard keywords or procedures, your
program source will not be portable to other implementations of Component
Pascal.

3.2 Fully qualified java package names
Fully qualified names in the Java Runtime Environment comprise three parts.

Package name - this defines the directory in which the class exists
Class name - the class hame
Featur e name - the field or method name.

An example might be

j ava. |l ang. Exception. ToStri ng
wherej ava. | ang isthe package name, Except i on isthe class name, and ToSt ri ng
is a method name.

In this version of gpcp, the compiler produces one package per module. The package
name is CP.modulename. Typically a module contains several classes. Fields and
methods of types defined in the module have JVM class names that are formed by
concatenating the module name and the type name. Thus a type-bound procedure called
i sString() bound to the type Unar yX in module Expr Desc would have the JVM
name

CP. Expr Desc. ExprDesc_UnaryX. i sString
Where CP.ExprDesc is the package name, and ExprDesc_UnaryX is the mangled class
name.

Procedures and variables at the module level are declared in the JVM as belonging to a
synthetic “class’ that contains only static data and code. This“implicit static class”
has the same name as the module. Thus variable “x” in module Foo will have the

somewhat boring JVM name
CP. Foo. Foo. x

Users of the compiler should amost never have to deal with explicit JVM names.

3.3 Identifier syntax

The identifier syntax for Component Pascal allows arbitrary use of the underscore (low-
line) character. Thereisafurther extension that is specific to the foreign language
interface of gpcp.

Occasionally, names that are imported from foreign modules will happen to clash with
CPreserved words. In this case, we may escape the reserve word detection by starting
the identifier with the “back-quote” character . Thus, if an imported module has (say) a
classwith field named “I F”, then the field may be referenced as '| F in the source of
your program. Y ou may not define identifiers using this escape mechanism, except in
foreign definition modules. Y ou may however refer to imported identifiers using this
mechanism.

It may be important to know that the back-quote is stripped at the time that the program
is scanned. The presence of the escape simply suppresses the usual check for reserved
identifiers that normally follows identifier scanning. Thus the back-quote is not used
during any name matching of identifiers. A curious result of this strategy isthat if a
program escapes an identifier that does not need it, the escaped and non-escaped
identifiers will refer to the same name.

4. Semantic | ssues

4.1 Classfilesand entry points

The compiler produces one or more class files from each module which it compiles.
Classes may be dynamically loaded, or may contain an entry point with the Java
language signature

public static void main(java.lang.string[] args)

If the source file contains the import of the special name CPmain, then a classfile
containing an entry point is produced. In this case the module body becomes main, and
begins with a hidden call that saves any command line arguments so that they may be
accessed by callsto the ProgArgs library.

If the source file does not import CPrrei n, then the module body becomes the “class
constructor” which is executed at the time that the classis dynamically loaded on
demand.

If the compiler isrun with the —nocode option, then only the assembler (. j) filesare
created. Inthis case the assembler jasmin may be explicitly invoked so as to create the
classfiles.

M I mportant note on parameter semantics.

The JVM version of gpcp takes liberties with the precise semantics of parameter
passing. Actual parameters of unboxed value type that are passed to reference
formals are passed by copying. (Unboxed value types are the built-in standard
types such as CHAR and INTEGER, together with the pointer types. Structures
and arrays are always boxed at runtime in the JVM, and are not affected by this
semantic modification.) I n the case of formal parameters of VAR mode, actual
values of unboxed value type are copied in and copied out. In the case of formal
parameters of OUT mode the value is copied out. This change is necessary in
order to obtain reasonable performance on the JVM. This change will not
affect the results of your program unless you access the actual of a reference
formal along two paths (either by having two reference formals sharing the
same actual, or accessing a static variable directly and through a parameter.
You should not write programs that do this! You might also care to know that
with this change, the performance of code is good if you have only one such
copied parameter, but becomes poor if you have more than onein any
frequently called procedure..

|Z[This caution does not apply to the .NET or D-Code versions of gpcp. Both of
these implement exact reference semantics.

4.2 Unimplemented constructs
There are a small number of constructs that are unimplemented in this release of the
compiler. These are —

* Procedure variables

* Non-local variable access

Both of these features were implemented in a prototype version of the compiler, but
have been removed from this release. Each is somewhat inefficient, particularly on the
jvm platform, and both are being considered for alternative implementation strategies.

As of this (1.2) version, non-local addressing is allowed, but procedure variables will
have to wait for version 1.3 on the VM platform. If compiling for the .NET platform
procedure variables are implemented.

4.3 Additional Arithmetic Operators
The usual arithmetic operators DI V and MOD in Pascal-family languages have well
defined semantics which are different from the division and remainder operators of
implementations of C-family languages. In Component Pascal the operators DI V and
MOD are defined as follows —

(i DI Vj)xj+ (i MDj) =i

i DI Vj=Lilj]; wherei,j areintegers, and i/j denotes real division.

Notice that DI V always rounds toward negative infinity unlike most C-language
implementations (which normally round towards zero). The Pascal operators are
mathematically preferred, but in case the alternative semantics are required for
compatibility reasons, gpcp introduces alternatives. DI VO denotes integer division with
rounding toward zero, while REMD denotes the corresponding remainder operation.

|Z[Remember, if you use these non-standard operators, your program source will
not be portable to other implementations of Component Pascal.

4.4 Semantics of the WITH statement
The semantics of the WITH statement have been slightly modified so as to strengthen
the guarantees on the properties of the selected variable. In the code

WTH x : TypeTi DO
... <guar ded region>
| x : TypeTj DO
... <guarded region>
END;

the variable x is asserted to have the specified type throughout the so-called guarded
region. The base language guarantees that the type of the selected variable cannot be
widened in the guarded region, but might possibly be narrowed. In gpcp the selected
variable is treated as a constant, and neither the type nor the value can be modified
either directly or indirectly. Any attempt to do so attracts a compile-time error message.

4.5 Implementing for eign interfaces
Component Pascal types may extend Java classes. Types which extend Java classes
may also declare that they implement interfaces. The syntax extension to access this
featureis-

RecordDecl ::- RECORD [BaseType] [Fields] END,

BaseType ::- “[* Qualifiedident { “+” Qualifiedident } “]”

10

Thefirst qualified identifier, asin the Report, is the class that is extended by the type
being defined. Any additional qualified identifiers are the names of interfaces that the
type promises to implement. The compiler checks that this contract is honored. In the
case that interfaces are implemented, the base type may be left blank, or may be
explicitly set to ANYREC.

The semantics of type casts are a so relaxed whenever areference is cast to an imported
interface type. For non-interface types many erroneous casts can be detected at compile
time, but for interfaces no cast of an object of aforeign type can be rejected at compile
time.

It is not possible to define interface types in Component Pascal.

4.6 Unsigned bytetypein .NET version

Inthe .NET version, as of 1.2.0, an unsigned byte type is supported, for compatibility
with libraries that support the Common Language Specification. This type is not
currently supported on the VM platform.

4.7 Runtime type descriptors

A new function in this release returns the runtime type descriptor. This allows easy
access to the facilities of the reflection libraries. The function is overloaded, and has the
following signatures —

PROCEDURE TYPEOF(typename) : RTS. Nati veType;
PROCEDURE TYPEOF(I N s: anytype) : RTS. NativeType;

If the target isthe VM, then NativeType will bej ava. | ang. Cl ass onthe
underlying runtime. If the target is .NET, the return type will be Syst em Type.

Thefirst version takes any type name as actual parameter. The second version takes an
actual parameter that is any variable designator. If the type of the designator is
statically known (perhaps because it denotes an object of an inextensible type) then the
compiler resolves the reference and no call is made to the runtime function
java.lang. Qbj ect::getC ass().

4.8 Additional built-in functions
There are three additional built-in functions added to the implementation. One allows
convenient access to the underlying native string object type. The signature is—

PROCEDURE MKSTR(IN s : ARRAY OF CHAR) : RTS. NativeString;

|Z[Note that it is never necessary to use MKSTR when passing a literal stringto a
formal parameter of native string type. In the literal case the compiler does the
conversion for the programmer automatically.

Another handy function takes arecord or array type, and makes a value copy onto the
heap, returning a pointer to the copy. The signatureis—

PROCEDURE BOX(s : T) : PO NTER TO T;

11

Where T isarecord, array or string type. The function copies the value so that
modification of the boxed value does not affect the original. The function is particularly
convenient for programs that manipulate character data implemented as dynamically
allocated arrays. Thus BOX(“ hel | 0”) returns a pointer to array of char of length 6,
while BOX(pt r 1~ + ptr2”) performsaconcatenation and allocates a destination
array of the required length. If the function is applied to an array of fixed length the
return value is an open array of the same length. In the case of character arrays the use
of the array stringifier mark “$” truncates the value at the first nul character, as usual.

Without this function, the construction of a value copy of an open array requires the
following tedious construction —

VAR a, b : PO NTER TO ARRAY OF CHAR

NEW b, LEN(a));
FORi := 0 TOLEN(a) DO b[i] := a[i] END;

Using the new function, this simply becomesb : = BOX(a");

The final new built-in function, THROW allows programs to throw exceptions, and is
described below.

4.9 Deprecated features and war nings

The use of procedure variables and super-calls are deprecated. Both attract compile-
time warning messages. Warnings are also issued in the case of procedures that are not
exported, and are not called within their defining module. This situation is usually an
error arising from failure to mark the procedure for export.

4.10 Program executable verification

Component Pascal is atype-safe language. Every correct program is type-safe in the
same sense that is guaranteed by the Java verifier. In principle therefore, all output of
gpcp should be verifiable.

Y ou may force the Java runtime to verify your classes on loading by invoking the
program from the command line withj ava —veri fy together with any other options.

Classes might fail to verify if amanually constructed interface to alibrary does not
correspond to the metainformation in the imported class files. This potential problem
has largely gone away with the use of J2CPS.

4.11 Unchecked arithmetic

The JVM version of the compiler does not encode overflow checking, but thisisthe
default for the .NET version. If you want to write code that is portable between the two
versions, then you should turn off overflow checking in those procedures that require
this, by using a custom attribute.

The syntax of the custom attribute is a context sensitive marker that appears
immediately after the keyword BEG Nin a procedure or module body. The syntax is—
Body - BEG N[“[* “UNCHECKED_ARI THVETI C’ “]”]
StatementSequence END identifier .

12

An example of the use of this construct, from the source of the compiler itself, isthe
identifier hash function —

PROCEDURE hashStr(IN str : ARRAY OF CHAR) : | NTEGER
VAR tot : | NTECER,
i dx : | NTEGER;
l en : | NTEGER;
BEG N [UNCHECKED ARI THVETI C]
len := LEN(str$);
tot := 0;
FOR idx := 0 TOlen-1 DO

INC(tot, tot);
IF tot < 0 THEN I NC(tot) END;

INC(tot, ORD(str[idx]));
END;
RETURN t ot MOD si ze;
END hashStr ;

This function performs a rotate-and-add computation, in which bits are carried out of
the sign bit back into the least significant bit of the variable tot. Overflow checking
must be turned off, in order to prevent very long identifiers from crashing the compiler.

5. Exception Handling

Component Pascal does not define exception handling, but it is necessary to deal with
foreign libraries that may throw exceptions. There is one new keyword and one new
builtin procedure introduced to facilitate this.

5.1 The RESCUE clause
Procedures, but not modules may include exactly one RESCUE clause, at the end of the
procedure body. This has syntax —

ProcBody — BEG N Statements [RESCUE ‘(' i dent ‘) Statements] END ident.

The identifier introduced in the parentheses is of type RTS. Nat i veExcept i on, and
must have a name that is distinct from every other identifier in the local scope.

If any exception isthrown in the body of the procedure, or if any exception is unhandled
in aprocedure called from this procedure, then the rescue clause is entered with the
exception object in the named local variable. This variable is read-only within the
rescue clause, and is not known in the rest of the procedure body.

If the program has imported or defined any extensions of the native exception type,
filtering may be performed by using the usual type-test syntaxes. The compiler will
check that the rescue clause fulfills any contracts implied by the procedure signature.
For example, in the case of function procedures the rescue clause must explicitly return
atype-correct value, or explicitly throw another exception.

5.2 The THROW procedure

Code may throw an exception by using the built-in procedure THROW. This procedure
has two signatures —

13

PROCEDURE THROW(x : RTS.NativeException);
PROCEDURE THROW(x : RTS.NativeString);

This may be used anywhere in the program, but is most useful for rethrowing an
exception from within a rescue clause.

|Z[Remember, if you use these non-standard facilities for exception handling your
program source will not be portable to other implementations of Component
Pascal. Of courseit will still be portable between different implementations of
Gardens Point Component Pascal.

If you want to create an exception object to abort program execution with a meaningful
string, the library function RTS. Throwm(msg : ARRAY OF CHAR) may be used.
Exceptions thrown by this library function can be caught by a RESCUE clause.

6. Facilities of the CP Runtime System
6.1 Supplied libraries
This release has a small number of libraries supplied. These are —

e Console thislibrary writes strings and numbersto the console

e Error thislibrary writes strings and number to the error stream

e ProgArgs thislibrary provides access to the command line arguments, if any
e GPFiles defines the supertype of GPBinfFiles.FILE and GPTextFiles.FILE
e GPText abasic library for handling text formatting

* GPBinFiles reading and writing binary files
e GPTextFiles reading and writing text files
e RTS access to the facilities of the runtime system

For the most part these libraries are the ones that were required to bootstrap the
compiler. More will come later ...

6.2 Theruntime system RTS.cp

The runtime system provides a variety of low-level accessfacilities. The source file for
thismodule, RTS. cp, isnot really the source. Thisfileisadummy, asis denoted by
the context-sensitive mark “ SYSTEM” appearing before the keyword MODULE. All
such “modules’ are actually implemented various Java files RTS.java, Console.java,
and so on. At runtime the corresponding classes are found as usual.

Here isthe “source” of RTS.
(** Thesearethe user accessible static methods of the CP runtime system.
* These ar e the environment-independent ones. Othersarein CP*.cp

* Note: the bodies of these procedures are dummies, thismoduleis
* compiled with -special. Thereal codeisin RTSjavaor other.

SYSTEM MODULE RTS;

VAR defaul t Target- : ARRAY 4 OF CHAR

14

TYPE

Char Open* = PO NTER TO ARRAY OF CHAR
TYPE
Nat i veType* PO NTER TO RECORD END,

Nat i veQbj ect * PO NTER TO RECORD END;
Nati veStri ng* PO NTER TO RECORD END;
Nat i veExcepti on* = PO NTER TO RECORD END;

PROCEDURE get Str(x : NativeException) : Char Open;
(** Get error nessage from Exception *)

PROCEDURE StrToReal *(IN s : ARRAY OF CHAR
QUT r : REAL;
QUT ok : BOOLEAN);

(** Parse array into an i eee double REAL *)

PROCEDURE StrTolnt*(IN s : ARRAY CF CHAR
QUT i : | NTECGER,
QUT ok : BOOLEAN);
(** Parse an array into a CP | NTECER *)

PROCEDURE StrToLong*(IN s : ARRAY OF CHAR
QUT i : LONG NT;
QUT ok : BOOLEAN);
(** Parse an array into a CP LONG NT *)

PROCEDURE Real ToStr*(r : REAL;
QUT s : ARRAY OF CHAR);
(** Decode a CP REAL into an array *)

PROCEDURE I ntToStr*(i : | NTEGER
QUT s : ARRAY OF CHAR);
(** Decode a CP INTEGER into an array *)

PROCEDURE LongToStr*(i : LONG NT;

QUT s : ARRAY OF CHAR);
(** Decode a CP INTEGER into an array *)

PROCEDURE r eal ToLongBits*(r : REAL) : LONG NT;
(** Convert ieee double to longint with sane bit pattern *)

PROCEDURE | ongBi t sToReal *(I : LONG NT) : REAL;
(** Convert ieee double to a longint with sane bit pattern *)

PROCEDURE hi I nt*(1 : LONG NT) : | NTEGER;
(** Get hi-significant word of long integer *)

PROCEDURE lolnt*(1 : LONGA NT) : | NTEGER;
(** Get lo-significant word of |ong integer *)

PROCEDURE Throw* (I N s : ARRAY OF CHAR);
(** Abort execution with an error *)

15

PROCEDURE GetM I 1is*() : LONG NT;
(** Get tinme in mlliseconds *)

PROCEDURE Cet Dat eString*(QOUT str : ARRAY OF CHAR);
(** Get a date string in sone native format *)

PROCEDURE C assMarker*(o : ANYPTR); (* wite class nane *)
END RTS.

The four character defaultTarget string will hold “net” when running on the .NET
platform, and “jvm” when running under the Java Runtime Environment.

The word SYSTEM in the first line of the definition is a context sensitive mark, rather
than a reserved word. This means that the word may be used as an identifier elsewhere
in the program. This mark has specia significance for the .NET platform. Users
should not attempt to write their own SYSTEM modules.

7. Foreign Language I nterface

7.1 Accessing the basic under lying types

The underlying types are accessible without any import other than RTS. At runtime the
compiler queries the target flag, or takes the platform default value if there is no target
command option.

If thetarget is“net” then NativeObject, NativeSiring and NativeException will be the
CLStypes Syst em Obj ect, System Stri ng and Syst em Except i on respectively.

If thetarget is“jvm” then NativeObject, NativeString and NativeException will be the
Javatypesj ava. | ang. Qbj ect,java.l ang. Stringandj ava. | ang. Excepti on
respectively.

In any case, literal strings may be implicitly coerced to either the native string type, or
to the native object type. Thissavesalot of clutter in code which interfaces to foreign
libraries. However, if a CP-style, non-literal string, i.e. anul-terminated array of CHAR
needs to be transformed to a native string, the non-standard built-in function —
PROCEDURE MKSTR(IN s : ARRAY OF CHAR) : RTS. NativeString;

may be used.

7.2 Importing dummy definition modules

As an interim measure, the compiler has been enhanced so as to allow the construction
of metainformation (.cps) files for foreign language libraries. Such modules must be
compiled with the —speci al option. However, they are imported into ordinary
modules in the same way as other modules.

Foreign language interfaces may be recognized by the context sensitive marks

FOREI GN or SYSTEM preceding the keyword MODULE at the start of the file. Such
“dummy” modules do not contain the code of the foreign language facilities, but smply
define the interface to those facilities. The system marker has special meaning in the
.NET platform, but has the same semantics as foreign in the JVM platform.

When a dummy definition module is compiled there are a small number of syntactic
extensions and changes.

16

* Modules can be given an explicit external package name
* Procedures can be given an explicit external name

» Features with protected scope may be defined

» Static members of classes may be defined

» Escaped identifiers may be defined

* Interface types may be defined

» Overloaded names may be given aliases

« Constructors may be given an alias

The syntax - FOREI GN MODULE Fool “ppre. psuf”]; declaresthat this module will
be found in package ppr e. psuf . (Forward slash character “/” may be used instead of
the dot here). It isnot necessary to use this mechanism if the package has the default
name as described in Section 3, subsection “Fully Qualified Java Package Names’ .

The syntax - PROCEDURE (x : T)Barll*[“Bar”](i,j : |INTEGER); declares
that this procedure has the external name “Bar” and the internal (CP) name “Barll”.
This mechanism allows overloaded names in the Java runtime to be given non-
overloaded aliasesin CP.

The mark “!” is used to declare that a foreign name has protected scope.
If a name clashes with a CP keyword, it must be defined using the back-quote escape.

Here is an example of the syntax that is required to define aforeign interface type.
TYPE Foo* = PO NTER TO | NTERFACE RECORD END;

The keyword INTERFACE is reserved, and such a type cannot declare any fieldsin the
record, nor can it define type-bound procedures that are not declared ABSTRACT.

Finally, constructors must be declared with the special name “<i ni t >”. Declaring a
constructor is not necessary if only the no-arg constructor is required, since NEWobj)
worksin this case as for other typesin CP (see section 8.4 for more detail). If accessto
constructors with arguments is required, then these are given a CP alias, and are marked
as constructors by using the magic explicit name. For thet ar get =net version, the
magic nameis*“. ct or”.

7.3 Accessing Static Features of Foreign Classes
If aclass has been imported from aforeign definition, and the class has static members,
these may be accessed by means of a semantic extension to the designator grammar.

Normally, the syntactic construct —
Qualifiedident { Selector}
isin error if the qualified identifier resolves to atype-identifier. However there are two
exceptional cases where thisislegal in gpcp. If adesignator begins —
Typeldentifier “.” Identifier
where
= thetypeidentifier resolvesto an imported, foreign type, and
» theidentifier isastatic field or constant of the type, or
» theidentifier is astatic method of the type

17

thenthisis alegal reference to the static feature of the type.

In order to define such constructs in the syntax of dummy definitions the following
syntax is added to the record syntax. Note that these extensions are only valid if the
module is compiled with the —speci al command line option.

Record - RECORD[“(* Typeld“)”] { FiedList} [STATI C{StatDecl}] END.
StatDecl - ProcHeading | StatConst | StatField .

StatConst - identifier “=" ConstExpression .

StatField - identifier “=" Typeld .

Procedure headings have the same syntax as elsewhere in the language.

8.0 Creating Foreign Definition Modules

This Section is only of relevance if you plan to write your own foreign definition
modules. For most users the information in the previous section on the usage of these
facilitieswill be sufficient.

8.1 Syntax of Foreign Definitions

The syntax of foreign definition is asfollows. Unless otherwise defined here, the
meanings of non-termina symbolsis the same as in the Component Pascal Report.

GPModule - Module | ForeignMod .
ForeignMod - (FORElI GN | SYSTEM) MODULE ident [string] “;”
ImportList DeclSeq END ident “.” .
Decl Seq — {CONST {ConstDecl “;"} | TYPE { TypeDecl “:"} | VAR{VarDecl “;"}}
{ProcHeading “;" | MethodHeading “;"}
ProcHeading — PROCEDURE IdentDef [“[* string “]"] [FormaPars] .
MethodHeading - PROCEDURE Receiver IdentDef [“[* string “]”] [Formal Parg]
[“)” NEW [“,” ABSTRACT | EMPTY | EXTENSI BLE] .
TypeDecl - ldentDef “=" Type.
Type [PO NTER TQ [Attributes] RECORD[“(“ Qualident “)"]
FieldList {“;” FieldList }
[STATI C StaticDecl { “;” StaticDecl}] END
| Other types as in the Report
StaticDecl - ldentList“;” Type | IdentDef “=" ConstExpr | ProcHeading .
Attributes - ABSTRACT | EXTENSI BLE | | NTERFACE.

!

The syntax begins with the context sensitive mark “FOREI GN’ or “SYSTEM'. On the
.NET platform the system marker indicates that the code will be found in the runtime
system assembly. In the JVM, where each class file contains a single class, the marker
has the same semantic effect as “FOREI GN’.

8.2 Explicit package or namespace names

The way in which runtime names are generated from module names was described in
Section 3.2. In the case of the JVM we have the following correspondence.

18

Component Pascal Name JVM Name

MODULE MbdNm CP. ModNm /I package name
TYPE C's = RECORD ... END; CP. ModNm ModNm O s // classname
VAR varNm : O s; CP. ModNm ModNm var Nm
PROCEDURE Pr ocNm() ; CP. ModNm ModNm Pr ocNm()
PROCEDURE (t : Cs)MhNm); CP. ModNm ModNm C s. M hNn()

END MbdNm

Notice that in the VM there are no features that are defined outside of classes, so that
the static entities varNm and ProcNm are considered at runtime to belong to an implicit
static class with the same name as the module name. However, so far as an importing
Component Pascal program is concerned, these features will be accessed by the familiar
ModuleName.member Name syntax.

Component Pascal Name .NET CLS Name
MODULE ModNm [ModNmM ModNm // namespace
TYPE C's = RECORD ... END; [ModNmM ModNm Cl s // class name
VAR varNm : ds; [ModNm ModNm ModNm : var Nm
PROCEDURE Pr ocNm() ; [ModNm ModNm ModNm : ProcNm()
PROCEDURE (t : Cs)MhNm); [ModNm ModNm d s: : M hNm()
END ModNm

In the virtual object system of .NET the situation is similar, with an implicit static class
being defined with the same name as the module.

If, as a user, you are writing a foreign definition and plan to implement the library
yourself in either Java or in C# (say), then you may define the foreign module in this
way and write the foreign code so as to match the default “name mangling” scheme. In
this case you may even use the same foreign definition for both versions of gpcp, and
implement a foreign module on each underlying platform. If on the other hand you are
planning to match aforeign definition to an existing library written in Java or C#, then
you must override this default naming scheme.

The syntax “FORElI GN MODULE i dent [string];” alowsan arbitrary package or
namespace name to be defined. For example, in order to access the facilities of the
packagej ava. | ang. Ref | ect aforeign module might begin
FOREI GN MODULE java_| ang_Refl ect[“java. |l ang. Refl ect”];
Similarly, in order to access the facilities of the namespace Syst em Ref | ect inthe
assembly nscor | i b aforeign module might begin
FORElI GN MODULE nscorlib_Reflect[“[nmscorlib]System Reflect”];

Note that the form of the literal string is different on the two platforms, and thus any
such foreign modules will be specific to a particular platform. Notice also that thereis
no mechanism to explicitly give a name to an implicit static class.

8.3 Dealing with overloaded names

Each of the underlying platforms allows name overloading for methods. Thisfeatureis
deliberately not permitted in Component Pascal. Nevertheless, it is hecessary to gain
access to library methods that have overloaded names. The option of using explicit
external method names facilitates this. Suppose we have two methods, both of which

19

are named Add(), one with a single integer parameter, and another with two. We might
define these as follows in aforeign definition.

PROCEDURE (this : O s)Addl*[“Add”] (I : |NTEGER), NEW
PROCEDURE (this : O s)Addll*[“Add”](l,J : |NTEGER), NEW

Within the importing CP program the two names are distinct, but the program
executable will correctly refer to the underlying overloaded methods. This name-
mangling is rather awkward, particularly in the case of parameters of object types.

Sincerelease (1.1) users are able to access the unmangled names of overloaded foreign
methods directly. The N2CPS and J2CPS tools create symbol files that have
overloaded names, and the compiler will match calls to the intended method. Because
thisis alanguage extension, the compiler is strict about matching calls to methods in the
presence of automatic coercions. If more than one method matches, when taking into
account all legal coercions, gpcp will reject the program and require the user to specify
the intended coercions of the actual parameters.

8.4 Interfacing to constructors

If aforeign classhasa*no-arg” constructor, then thiswill be implicitly called whenever
an object is created by the use of the standard procedure NEW However if itis
necessary to access constructors with arguments, then it is possible to define an alias for
the constructor in aforeign module. In every case the constructor will be accessed by
means of a static, value returning function that returns an object of the constructed class.
The fact that thisis a constructor must be made known to gpcp since the way in which
these methods are called differs from other methods. On each underlying platform
thereisa“magic” name which isused for calling a constructor. On JVM the nameis
“<i ni t>", while on .NET the nameis“. ct or . These two strings are used as the
explicit string which defines such a procedure in the foreign definition. An example of
an interface to a constructor with arguments might be —

PROCEDURE | ni t*(wi dth, hei ght : INTEGER) : Rect, CONSTRUCTOR,;

The identifier “CONSTRUCTOR” is not areserved word, but a context sensitive mark
that may be used as an ordinary identifier elsewhere in the program.

Note that this declaration would normally be declared in the static part of the record
defining the class “Rect”. Callsto this procedure in a Component Pascal program, such
aS —

recl := F. Rect. NewRect angl e(25, 17);
would trandlate into a call to the appropriate one of —

nanmespaceNane. Rect::.ctor(int32,int32)
packageNane. Rect.<init>(11)

Of course, if you extend aforeign class that does not have a public no-arg constructor,
then you will not be able to construct values of your own type using NEW since this
implicitly calls the no-arg constructor of its super type. In this case, it is necessary to
define a new constructor signature for your extended type. Inrelease 1.2 there are two
ways to do this. If the desired constructor has the same signature as the constructor of

20

the supertype, then the first method may be used. In the case of the example above, the
required syntax is shown in the following fragment —

TYPE MyRect* = PO NTER TO RECORD (A Rect) ...END;
PROCEDURE I nit*(w, h : | NTEGER): MyRect, CONSTRUCTCR

The constructor does not have a body, and simply passes its arguments to the super-type
constructor with matching signature.

The new syntax in version 1.2 is considerably more flexible. The Component Pascal
constructor does not require to have the same signature as the constructor of the super-
type. An example of the syntax is—

PROCEDURE McMyRect *(formals) : MyRect , BASE(actuals) ;
Local-declarations
BEG N

Constructor body
RETURN SELF;
END MkKMyRect ;

The identifier “BASE” is anot areserved word, but is a context sensitive mark. It
denotes the super-type constructor with the signature matching the types of the actual
parameter expressions. This super-type constructor will be called as the first action of
the constructor, before the new fields of the derived object are initialized. Within the
body of the constructor the object under construction is denoted by the identifier
“SELF”. The constructor must return this object along every terminating path of the
body. Itisan error if the actual parameter expression types in the super-call do not
choose a unique super-type constructor.

8.5 Declaring static features of classes

Classes in foreign modules may be declared either as records or as pointers to records.
However, it is recommended that on the JVM platform the pointer form be always used,
as a helpful reminder to the user that at runtime the objects will be dynamically
allocated. On the .NET platform value classes should be declared as plain records, with
no explicit base type. On both platforms array types should be declared as pointers to
arrays, again reminding the user that all arrays are dynamically (and explicitly)
allocated.

In order to access static features of foreign classes, the syntax extension of records
given in Section 8.1 must be used. In the optional static section of arecord declaration
we may define constants, static fields and static (i.e. non type-bound) procedures.

We may consider the following example —

21

Component Pascal Foreign Definition Component Pascal Usage
FOREI GN MODULE ModNm
TYPE s = ModNm O s Il class name
PO NTER TO RECORD
STATI C
statVar* : CHAR ModNm C s. st at Var
PROCEDURE St at Proc(); ModNm C s. St at Proc()
END;
END ModNm

In this example we select the static member by qualifying the designator by the type-
name of the class.

Type-bound methods will be defined lexically outside of the record declaration in the
normal CP way, remembering that only the heading isrequired. On the .NET platform
the distinction between virtual and instance methods is made automatically. Instance
methods are NEW but not EXTENSIBLE. On the JVM platform the possibility of
optimizing the calls to such methods are left to the JIT to determine.

|Z[Note that the foreign modules which arise from C# on the .NET platform or are
written in Java can never have static features outside of classes. If you are
writing the foreign module yourself you may use the default class naming
scheme described in Section 3. However if you are matching an existing
package, you will need to use the explicit name override described earlier in this
Section. Thisallows you to control the package name, but does not allow you to
name an implicit static class for static features. Therefore you will need to use
the mechanisms of this sub-section if the package contains any static features.

9. Installing and Trying the Compiler

9.1 Installation

If you are installing on the Microsoft Windows platform, then the simplest scheme isto
use theinstaller version. If this case you should not need to do anything other than make
responses to the installer’s queries.

The compiler also comes packaged in asingle zip file that is usually unzipped into a
directory with a name such asgpcp. There are seven sub-directories. These are —

e bin thebinary files of the compiler

e CP theroot of thejvm class tree

* docs the documentation, including thisfile

e examples some example programs

* libs containsthe simple library files

» source the source files (will have compiler source later)
« work aworking directory to play around with

The bin directory needs to be on your PATH, and the environment variable CPSY M
must point to the libs directory. The gpcp directory must be on the classpath passed to

thej ava command. On Unix, the variables might be —
CPSYME. : $CPROOT/ | i bs
PATH=$PATH: $CPROOCT/ bi n

and the compiler will be run starting with the command

22

j ava —DCPSYM=$CPSYM —cl asspat h .: $CPROOT CP. gpcp. gpcp \
other-options filenames

Alternatively, a shell script or function to construct the command makes good sense.
The supplied scripts cprun and cpint are simple examples of this.

On Windows systems, the variables might be set as follows
set CPSYM:. ; C.\gpcp\libs
set PATH=UPATHY% C. \ gpcp\ bi n
and the compiler will be run starting with the command
j ava —DCPSYM=Y%CPSYMW —cl asspath . ; C: \gpcp CP. gpcp. gpecp \
other-options filenames
The supplied scriptscpr un. bat and cpi nt . bat , found inthe\ gpcp\ bi n directory
may help here.

10. Future Releases

Release 1.1 still has avery limited range of libraries packaged with it, essentially only
those needed to bootstrap the compiler. The distribution is sufficient to try out the
compiler, and is being updated on a frequent basis. We expect new releases to contain
new tools and new libraries.

Updates are announced and available from www.plasr c.qut.edu.au/Component Pascal

Changesfrom 1.1.6

The following changes and corrections are included in the 1.2.0 release.

1. The semantics of “super-calls’ were incorrect in the case that the immediate
super-type did not define the method being overridden. Inversion 1.2 the
notation “Foo” () " denotes the overridden method no matter how distant it isin
the inheritance hierarchy.

New options have been implemented for output directories.

3. Onthe.NET platform the default behavior for the/ nodebug option isto use the
direct PE-file writer. Thisissignificantly faster than going through ilasm.
Unfortunately, this new file-writer does not produce debug symbols at this stage.
There is separate documentation for the PEAPI component included with this
release.

4. The permitted semantics for constructors with arguments is significantly
enhanced. Thisis of some importance when deriving from types that do not have
public no-arg constructors.

N

Changesfrom 1.1.4
The following changes and corrections are included in the 1.1.6 release —

1. Uplevel addressing of reference parametersis now permitted in the NET
release, although this has inexact semantics in some cases.
A number of corrections to the VM code-emitter have been added.
The new builtin function BOX has been added.
Trapping of types that attempt to indirectly include themselves isimproved.
An automatic renaming scheme is implemented for modules that attempt to
export types with the same name as the module on the .NET platform.

ko

23

Changesfrom 1.1.3

The following changes and corrections are included in this release —

1. The copyright notice has been revised. GPCP is still open source, but now has a
“FreeBSD-like’ licence agreement.

2. A correction to the Java class-file emitter now puts correct visibility markers on
package-public members. Appletviewer didn’t care, but browsers objected!

3. Itisnow permitted to export type-bound procedures of non-exported types,
provided the procedure overrides an exported method of a super-type.

4. Moreline-markers are emitted to IL. This makes it possible to place a breakpoint
on the predicate of a conditiona statement, and have the debugger stop on the
predicate rather than the next executabl e statement.

5. The type-resolution code of SymFileRW.cp has been radically revised. Itis
believed that the code is now immune to certain problems caused by importing
foreign libraries with circular dependencies.

24

