Har bour Gui de

ARRAY()

Create an uninitialized array of specified |ength

Synt ax

ARRAY(<nEl enents> [, <nElenments>...]) --> aArray
Argunent s

<nEl ements> is the nunber of elenents in the specified dimension.
Ret ur ns

<aArray> an array of specified dinmensions.
Descri ption

This function returns an uninitialized array with the I ength of <nEl enents>.

Nested arrays are uninitialized within the same array pointer reference if

addi tional parameters are specified. Establishing a nenory variable with the same
nane as the array may destroy the original array and rel ease the entire contents of
the array. This depends, of course, on the data storage type of either the array
or the variable with the sane nane as the array.

Exanpl es
FUNCTI ON Mai n()
LOCAL aArray: =Array(10)
LOCAL x: =1
FOR x:=1 to LEN(aArray)
aArray[x]: =Array(x)
EXT
Return Nil
St at us
Ready
Conpl i ance
This function is CA-CLIPPER Conpliant in all Cases, except that arrays in
Har bour can have an unlimted nunber of dinensions, while Cdipper has a limt of
4096 array el enents.
Files
Library is vm

See Al so:

AADD() ADEL() AFILLL() Al NS()

AA

Dynami cally add an elenment to an array
Synt ax
AADD(<aArray>[, <xValue>]) --> Value
Argunent s
<aArray> The name of an array
<xVal ue> Elenent to add to array <aArray>
Ret ur ns

<Value> if specified <xVal ue>, <xValue> will return , otherwi se this function
returns a NI L val ue.

Descri ption

This function dynamically increases the |length of the array named <aArray> by
one el ement and stores the value of <xValue> to that newly created el enent.

<xVal ue> may be an array reference pointer, which in turn nmay be stored to an
array's subscript position.

Exanpl es

LOCAL aArray: ={}

AADD(aArray, 10)

FOR x:=1 to 10
AADD(aArr ay, X)

NEXT
St at us

Ready
Files

Library is vm
See Al so:

Al NS ASI ZE()

ASI ZE()

Adj ust the size of an array

Synt ax

ASI| ZE(<aArray>,

Argunent s

<nLen>) --> aTarget

<aArray> Nane of array to be dynamically altered

<nLen> Nuneric value representing the new size of <aArray>

Ret ur ns
<aTarget> an
Descri ption

This function
adj usting the

If the length
positions are

array pointer reference to .

will dynam cally increase or decrease the size of <aArray> by
|l ength of the array to <nLen> subscript positions.

of the array <aArray> is shortened, those former subscript
lost. If the length of the array is lengthened a NIL value is

assigned to the new subscript position.

Exanpl es
aArray :={ 1} /]l Result: aArray is { 1}
ASI ZE(aArray, 3) /1l Result: aArray is { 1, NIL, NL}
AS| ZE(aArray, 1) /1l Result: aArray is { 1}
St at us
Ready
Conpl i ance

If HB COWPAT _C53 is defined, the function generates an Error, else it wll
return the array itself.

Files
Library is vm
See Al so:

AADD() ADEL() AFILLL() Al NS()

ATAI L(

Ret ur ns tze ri ghtnost el ement of an array
Synt ax
ATAI L(<aArray>) --> El enent
Argunent s
<aArray> is the array.
Ret ur ns
<El enent> the expression of the last elenent in the array.
Descri ption
This function return the value of the last elenment in the array nanmed

<aArray>. This function does not alter the size of the array or any of the
subscri pt val ues.

Exanpl es
LOCAL array:= {"Harbour", "is", "Suprene", "Power"}
? ATAI L(aArray)
St at us
Ready
Conpl i ance
This function is CA Cipper conpliant
Files

Library is vm

See Al so:

LEN() ARRAY() ASI ZE() AADD)

Al NS()

Insert a NIL value at an array subscript position.
Synt ax
Al NS(<aArray>, <nPos>) --> aTarget
Argunent s
<aArray> Array nane.

<nPos> Subscript position in <aArray>

Ret ur ns
<aTarget> an array pointer reference.

Descri ption
Thi;tfunction inserts a NIL value in the array named <aArray> at the <nPos>th
posi tion.

Al'l array elenents starting with the <nPos>th position will be shifted down
one subscript position in the array list and the last itemin the array wll

renoved conpletely. In other words, if an array element were to be inserted at the
fifth subscript position, the elenent previously in the fifth position would now
be located at the sixth position. The length of the array <aArray> wll remain

unchanged.
Exanpl es
LOCAL aArray: ={"Harbour”,"is","Power!", "111"}
Al NS(aArray, 4)
St at us
Ready
Conpl i ance
This function is CA Cipper conpliant
Fil es
Library is vm
See Al so:

AADD() ACOPY() ADEL() AEVAL() AFI LL() ASI ZE()

ADEL()

Del ete an el enent form an array.

Synt ax
ADEL (<aArray>, <nPos>) --> aTarget

Argunent s
<aArray> Name of array fromwhich an elenment is to be renpved.
<nPos> Subscript of the el enent to be renoved.

Ret ur ns
<aTarget> an array pointer reference.

Descri ption
This function deletes the el ement found at <nPos> subscript position in the
array <aArray>. Al elenents in the array <aArray> bel ow the given subscript
position <nPos> will nove up one position in the array. In other words, what was
formerly the sixth subscript position wll become the fifth subscript position. The
Il ength of the array <aArray> will renmain unchanged,as the |last elenent in the array
will become a NIL data type.

Exanpl es

LOCAL aArray
aArray := { "Harbour","is","Power" } /1l Result: aArray is

ADEL(aArray, 2) /]l Result: aArray is
St at us
Ready
Conpl i ance
This function is CA Cipper conpliant
Files
Library is vm
See Al so:
ACOPY() Al NS() AFI LL()

AFI LL()

Fill an array with a specified val ue
Synt ax
AFlI LL(<aArray>, <xValue> [<nStart>], [<nCount>]) --> aTarget
Argunent s
<aArray> Nane of array to be filled.
<xVal ue> Expression to be globally filled in <aArray>
<nStart> Subscript starting position

<nCount > Nunber of subscript to be filled

Ret ur ns
<aTarget> an array pointer.
Descri ption
This function will fill each elenent of an array naned <aArray> with the

val ue <xValue>. If specified, <nStart> denotes the beginning elenent to be filled
and the array elenents will continue to be filled for <nCount> positions. |If Not

specified, the value of <nStart> will be 1, and the value of <nCount> will be the
value of LEN(<aArray>); thus, all subscript positions in the array <aArray> wll
be filled with the val ue of <xVal ue>.

This function will work on only a single dinmension of <aArray>. If there are

array pointer references within a subscript <aArray>, those values wll be |ost,
since this function will overwite those values wth new val ues.

Exanpl es

LOCAL aTest:={Nil, 0,1, 2}
Afill (aTest, 5)

St at us
Ready
Conpl i ance
This function is CA Cipper conpliant
Files
Library is vm
See Al so:

AADD() AEVAL () DBSTRUCT() ARRAY()

ASCAN()

Scan array elenments for a specified condition

Synt ax

ASCAN(<aTarget>, <xSearch>, [<nStart>], [<nCount>]) --> nStoppedAt

Argunent s
<aTar get > Nanme of array to be scanned.
<xSear ch> Expression to search for in <aTarget>
<nStart > Begi nni ng subscript position at which to start the search
<nCount > Nunber of elements to scan with <aTarget>.
Ret ur ns

<nSt oppedAt > A numeric val ue of subscript position where <xSearch> was
f ound.

Descri ption
This function scan the content of array named <aTarget> for the value of
<xSearch>. The return value is the position in the array <aTarget> in which
<xSearch> was found. If it was not found, the return value will be O.

If specified, the beginning subscript position at which to start scanning may
be set with the value passed as <nStart>. The default is 1.

If specified, the nunber of array elements to scan may be set with the value
passed as <nCount>. The default is the nunber of elements in the array <aTarget>.

If <xSearch> is a code bl ock, the operation of the function is slightly

different. Each array subscript pointer reference is passed to the code block to
be eval uated. The scanning routine wll continue until the value obtained fromthe
code block is a logical true (.T.) or until the end of the array has been reached.

Exanpl es

aDir:=Directory("*.prg")
AScan(abir,,,{|x,y| x[1]="Test.prg"})

St at us
Ready
Conpl i ance

This function is not CA-Cipper conpatible. Oipper ASCAN() is affected by the
SET EXACT OV OFF Condition

Fil es
Library is vm
See Al so:
AEVAL

AEVAL()

Eval uated the subscript element of an array
Synt ax
AEVAL(<aArray>, <bBlock>, [<nStart>], [<nCount>]) --> aArray
Argunent s
<aArray> 1|s the array to be eval uated.
<bBl ock> 1s a code bl ock to evaluate for each el enent processed
<nStart> The beginning array elenment to eval uate.
<nCount > The numnber of elenments to process.
Ret ur ns
<aArray> an array pointer reference.

Descri ption

This function will evaluate and process the subscript elenments in <aArray>. A
code bl ock passed as <bBl ock> defines the operation to be executed on each el enent
of the array. Al elenments in <aArray> wll be evaluated unless specified by a
begi nni ng subscript position in <nStart> for <nCount> el enents.

Two paraneters are passed to the code bl ock <bBl ock>. The individual elenments
in an array are the first paraneter and the subscript position is the second.

AEVAL() does not replace a FOR ..NEXT | oop for processing arrays. If an array
is an autononous unit, AEVAL() is appropriate. If the array is to be altered or if
elements are to be reevaluated, a FOR .. NEXT loop is nore appropriate.

St at us

Ready
Conpl i ance

This function is CA Cipper conpliant
Fil es

Library is vm

See Al so:

EVAL() DBEVAL

ACOPY()

Copy el ements fromone array to anot her

Synt ax

ACOPY(<aSource>, <aTarget>, [<nStart>], [<nCount>], [<nTargetPos>])
--> aTarget

Argunent s
<aSource> is the array to copy elenments from
<aTarget> is the array to copy elenents to.
<nStart > i s the beginning subscript position to copy from <aSource>
<nCount> the nunber of subscript elenents to copy from <aSource>

<nTarget Pos> the starting subscript position in <aTarget> to copy el enents

to.
Ret ur ns

<aTarget> an array pointer reference
Descri ption

This function copies array el enents from <aSource> to <aTarget>. <nStart> is
the beginning element to be copied from <aSource>; the default is 1.

<nCount> is the nunber of elements to be copied from <aSource>; the default
is the entire array.

<nTarget Pos> is the subscript nunber in the target array,<aTarget>, to which
array elenents are to be copied; the default is 1

This function will copy all data types in <aSource> to <aTarget >.

If an array elenent in <aSource> is a pointer reference to another array,

that array pointer will be copied to <aTarget>; not all subdinmensions will be
copied fromone array to the next. This nust be acconplished via the ACLONE()
functi on.

Note |If array <aSource> is |larger then <aTarget>, array elenments will start

copyi ng at <nTarget Pos> and continue copying until the end of array <aTarget> is
reached. The ACOPY() function doesn't append subscript positions to the target
array, the size of the target array <aTarget> remmins constant.

Exanpl es
LOCAL nCount := 2, nStart := 1, aOne, aTwo
aOne := {"HABOUR'," is ","PONER'}

aTwo := {"CLIPPER'," was ", " POAER'}
ACOPY(alne, aTwo, nStart, nCount)

St at us
Ready
Conpl i ance
This function is CA Cipper conpliant
Files
Library is vm
See Al so:

ACLONE() ADEL () AEVAL() AFI LL() Al NS() ASORT()

ACLONE()

Duplicate a nultidimensional array
Synt ax
ACLONE(<aSour ce>) --> abuplicate
Argunent s
<aSource> Name of the array to be cloned.
Ret ur ns

<abDuplicate> A new array pointer reference conplete with nested array
val ues.

Descri ption

This function nakes a conplete copy of the array expressed as <aSource> and
return a cloned set of array values. This provides a conmplete set of arrays val ues
for all dinmensions within the original array <aSource>

Exanpl es
LCOCAL aOne, aTwo
aOne := {"Harbour"," is ","PONER'}
aTwo : = ACLONE(aOne) /1l Result: aTwo is {1, 2, 3}
aOne[1] := "The Harbour Conpiler" /1l Result: aOne is {99, 2, 3}
/[l aTwo is still {1, 2, 3}
St at us
Ready
Conpl i ance
Clipper will return NIL if the parameter is not an array.
Files

Library is vm
See Al so:

ACOPY() ADEL() Al NS() ASI ZE()

ASORT()

Sort an array
Synt ax
ASORT(<aArray>, [<nStart>], [<nCount>], [<bSort>]) --> aArray
Argunent s
<aArray> Array to be sorted.
<nStart> The first elenent to start the sort from default is 1.

<nCount > Nunber of elenments starting from<nStart> to sort, default is all
el ement s.

<bSort> Code block for sorting order, default is ascending order {| x, y | X
<y }. The code block should accept two paraneters and nust return .T. If the sort
is in order, .F. if not.

Ret ur ns
<aArray> reference to the now sorted or NL if the passed <aArray> i s not
an array.

Descri ption

ASCRT() sort all or part of a given array. If <bSort> is omtted, the

function expect <aArray> to be one dinensional array containing single data type
(one of: Character, Date, Logical, Nuneric) and sort this array in ascendi ng order
Character are sorted by their ASCII value, Dates are sorted chronol ogically,

Logi cal put .F. values before .T., Nunmeric are sorted by their val ue.

If <bSort> is specified, it is used to handle the sorting order. Wth each

time the block is evaluate, two array el enents are passed to the code bl ock, and
<bSort> nust return a logical value that state if those elenments are in order (.T.)
or not (.F.). Using this block you can sort multidinmensional array, descending
orders or even (but why would you want to do that) sort array that contain
different data type

Exanpl es
/1 sort numeric values in ascending order
ASORT({ 3, 1, 4, 42, 5, 9}) [/l result: { 1, 3, 4, 5, 9, 42}
/1 sort character strings in descending |exical order
aKeys := { "Ctrl", "At", "Delete" }
bSort :={] x, y | UPPER(x) > UPPER(vy)
ASCRT(aKeys,,, bSort) /] result: { "Delete", "Ctrl", "At" }

/1 sort two-dimensional array according to 2nd el enent of each pair
aPair := { {"Sun",8}, {"Mon",1}, {"Tue",57}, {"Wed",-6} }
ASORT(aPair,,, {| x, y | x[2] <vy[2] })
[l result: { {"wed",-6}, {"Mn",1}, {"Sun", 8}, {"Tue",57} }
St at us
Ready
Conpl i ance

Codebl ock calling frequency and order differs from dipper, since Harbour
uses a different (faster) sorting algorithm (quicksort).

Fil es
Library is vm

See Al so:

ASCAN EVAL () ARRAY()

Bl N2W()

Convert unsigned short encoded bytes into Harbour nuneric

Synt ax
Bl N2W <cBuffer>) --> nNunber
Argunent s
<cBuffer> is a character string that contain 16 bit encoded unsi gned short

integer (least significant byte first). The first two bytes are taken into
account, the rest if any are ignored.

Ret ur ns
BIN2W) return nuneric integer (or O if <cBuffer>is not a string).
Descri ption

BIN2W) is one of the low |l evel binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.

BI N2W) take two bytes of encoded 16 bit unsigned short integer and convert it into
standard Harbour nuneric val ue.

You night ask what is the need for such functions, well, first of all it

allow you to read/wite information fromto a binary file (like extracting
informati on from DBF header), it is also a useful way to share information from
source ot her than Harbour (C for instance).

BI N2W) is the opposite of V2BI N()
Exanpl es

/1 Show header |ength of a DBF
FUNCTI ON nai n()
LOCAL nHandl e, cBuffer := space(2)
nHandl e : = fopen("test.dbf")
I F nHandle > 0O
fseek(nHandle, 8)
fread(nHandl e, @Buffer, 2)
? "Length of DBF header in bytes:", BIN2W cBuffer)
fclose(nHandl e)
ELSE
? "Can not open file"
ENDI F
RETURN NI L

St at us
Ready
Conpl i ance
Bl N2W) works exactly like CA-Cipper's BIN2W)
Files
Library is rtl
See Al so:

BI N2| BILN2L () BI N2U() | 2BI N() L2BI N() WeBI N() WORD() U2BI N() FREAD()

Bl N21 ()

Convert signed short encoded bytes into Harbour numeric

Synt ax
Bl N2l (<cBuffer>) --> nNunber

Argunent s
<cBuffer> is a character string that contain 16 bit encoded signhed short
integer (least significant byte first). The first two bytes are taken into
account, the rest if any are ignored.

Ret ur ns

BIN2I () return nunmeric integer (or O if <cBuffer>is not a string).

Descri ption

BIN2I () is one of the low |l evel binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.

BI N2l () take two bytes of encoded 16 bit signed short integer and convert
standard Harbour nuneric val ue.

You night ask what is the need for such functions, well, first of all it
allow you to read/wite information fromto a binary file (like extracting

informati on from DBF header), it is also a useful way to share information from

source other than Harbour (C for instance).
BIN2I () is the opposite of |2BIN()
Exanpl es

/1 Show DBF | ast update date

FUNCTI ON nai n()

LOCAL nHandl e, cYear, cMnth, cDay

nHandl e : = fopen("test.dbf")

I F nHandle > 0O
fseek(nHandle, 1)
cYear := cMonth := cDay : =
fread(nHandle, @Year , 1
fread(nHandl e, @Month, 1
fread(nHandle, @Day , 1
? "Last update:", BIN2I(c
fclose(nHandl e)

ELSE
? "Can not open file"

ENDI F

RETURN NI L

)
)
Year), BIN2I(chMonth), BIN2I(cDay)

St at us
Ready
Conpl i ance
BI N2l () works exactly like CA-Cipper's BIN2I()
Files
Library is rtl
See Al so:

BI N2L Bl N2U() BI N2W() | 2BI N() L2BI N() W2BI N() WORD() U2BI N() FREAD()

Bl N2L()

Convert signed | ong encoded bytes into Harbour nuneric

Synt ax
Bl N2L(<cBuffer>) --> nNunber
Argunent s
<cBuffer> is a character string that contain 32 bit encoded signed | ong

integer (least significant byte first). The first four bytes are taken into
account, the rest if any are ignored.

Ret ur ns
BIN2L() return nuneric integer (or O if <cBuffer>is not a string).
Descri ption

BIN2L() is one of the low | evel binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.
BI N2L() take four bytes of encoded 32 bit signed long integer and convert it into
standard Harbour nuneric val ue.

You night ask what is the need for such functions, well, first of all it

allow you to read/wite information fromto a binary file (like extracting
informati on from DBF header), it is also a useful way to share information from
source ot her than Harbour (C for instance).

BIN2L() is the opposite of L2BIN()
Exanpl es

/1 Show nunber of records in DBF
FUNCTI ON nai n()
LOCAL nHandl e, cBuffer := space(4)
nHandl e : = fopen("test.dbf")
I F nHandle > 0O
fseek(nHandle, 4)
fread(nHandl e, @Buffer, 4
? "Nunber of records in file:", BIN2L(cBuffer)
fclose(nHandl e)
ELSE
? "Can not open file"
ENDI F
RETURN NI L

St at us
Ready
Conpl i ance
Bl N2L() works exactly like CA-Cipper's BIN2L()
Files
Library is rtl
See Al so:

BI N2| Bl N2U() BI N2W() | 2BI N() L2BI N() W2BI N() WORD() U2BI N() FREAD()

BI N2U()

Convert unsigned | ong encoded bytes into Harbour nuneric

Synt ax
Bl N2U(<cBuffer>) --> nNunber
Argunent s
<cBuffer> 1is a character string that contain 32 bit encoded unsigned | ong

integer (least significant byte first). The first four bytes are taken into
account, the rest if any are ignored.

Ret ur ns
BIN2U() return nuneric integer (or O if <cBuffer>is not a string).
Descri ption

BIN2U() is one of the low | evel binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.

BI N2U() take four bytes of encoded 32 bit unsigned long integer and convert it into
standard Harbour nuneric val ue.

You night ask what is the need for such functions, well, first of all it

allow you to read/wite information fromto a binary file (like extracting
informati on from DBF header), it is also a useful way to share information from
source ot her than Harbour (C for instance).

BIN2U() is the opposite of U2BI N()
Exanpl es

/1 Show nunber of records in DBF
FUNCTI ON nai n()
LOCAL nHandl e, cBuffer := space(4)
nHandl e : = fopen("test.dbf")
I F nHandle > 0O
fseek(nHandle, 4)
fread(nHandl e, @Buffer, 4
? "Nunber of records in file:", BIN2U(cBuffer)
fclose(nHandl e)

ELSE
? "Can not open file"
ENDI F
RETURN NI L
St at us
Ready
Conpl i ance
BIN2U() is an XBase++ compatibility function and does not exist as a standard
CA-dipper 5.x function. This function is only visible if source/rtl/binnumc was
conpiled with the HB_COWAT_XPP fl ag.
Files
Library is rtl
See Al so:

BI N2| BI N2L () BI N2W() | 2Bl N() L2BI N() W2BI N() WORD() U2BI N() FREAD()

| 2BI' N

Convert rbour numeric into signed short encoded bytes
Synt ax
I 2BI N(<nNunber>) --> cBuffer
Argunent s
<nNunber> is a nuneric value to convert (decinmal digits are ignored).
Ret ur ns

I12BIN() return two bytes character string that contain 16 bit encoded signed

short integer (least significant byte first).

Descri ption

I2BIN() is one of the low |level binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.
I 2BIN() take a nuneric integer value and convert it into two bytes of encoded 16

bit signed short integer.

You night ask what is the need for such functions, well, first of all it
allow you to read/wite information fromto a binary file (like extracting

informati on from DBF header), it is also a useful way to share information from

source ot her than Harbour (C for instance).
I 2BIN() is the opposite of BIN2I()

Exanpl es

/1 Update DBF "l ast update" date
#i ncl ude "fileio.ch"
FUNCTI ON nai n()
LOCAL nHandl e, cYear, cMnth, cDay
use test
? "Original update date is:", |update()
cl ose
nHandl e : = fopen("test.dbf", FO READWRI TE)
I F nHandle > 0O
fseek(nHandle, 1,)

cYear = 12BIN(68)
cMonth := 12BIN(8)
cDay = 12BIN(C 1)

fwite(nHandle, cYear , 1) /1l wite only the first byte
fwite(nHandle, cMonth, 1)
fwite(nHandle, cDay , 1)
fcl ose(nHandl e)
use test
? "New update date is:", lupdate()
cl ose

ELSE
? "Can not open file"

ENDI F

RETURN NI L

St at us
Ready
Conpl i ance
1 2BIN() works exactly like CA-dipper's |2BIN)
Files
Library is rtl
See Al so:

BI N2I Bl N2L() Bl N2U() Bl N2W() L2BI N() W2BI N() WORD() U2BI N() FWRI TE()

W2BI N

Convert rbour numeric into unsigned short encoded bytes

Synt ax

VW2BI N(<nNunber>) --> cBuffer
Argunent s

<nNunber> is a nuneric value to convert (decinmal digits are ignored).
Ret ur ns

W2BIN() return two bytes character string that contain 16 bit encoded
unsi gned short integer (least significant byte first).

Descri ption

VWBIN() is one of the low |level binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.
VW2BI N() take a numeric integer value and convert it into two bytes of encoded 16
bit unsigned short integer

You night ask what is the need for such functions, well, first of all it

allow you to read/wite information fromto a binary file (like extracting
informati on from DBF header), it is also a useful way to share information from
source ot her than Harbour (C for instance).

W2BI N() is the opposite of Bl N2W)

St at us
Ready

Conpl i ance
WBI N() is an XBase++ conpatibility function and does not exist as a standard
CA-Cipper 5.x function. This function is only visible if source/rtl/binnumc was
conpiled wth the HB_COWAT_XPP fl ag.

Fil es

Library is rtl
See Al so:

BI N2I BIN2L () BI N2U() BI N2W() | 2BI N() L2BI N() WORD() U2BI N() FWRI TE()

L2BI N

Convert rbour numeric into signed | ong encoded bytes

Synt ax

L2BI N(<nNunmber>) --> cBuffer
Argunent s

<nNunber> is a nuneric value to convert (decinmal digits are ignored).
Ret ur ns

L2BIN() return four bytes character string that contain 32 bit encoded
signed long integer (least significant byte first).

Descri ption

L2BIN() is one of the low |level binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.
L2BIN() take a nuneric integer value and convert it into four bytes of encoded 32
bit signed long integer

You night ask what is the need for such functions, well, first of all it

allow you to read/wite information fromto a binary file (like extracting
informati on from DBF header), it is also a useful way to share information from
source ot her than Harbour (C for instance).

L2BIN() is the opposite of BIN2L()

St at us
Ready
Conpl i ance
L2BI N() works exactly like CA-dipper's L2BIN()
Files
Library is rtl
See Al so:

BI N2| BI N2L() BI N2U() BI N2W() | 2BI N() W2BI N() WORD() U2BI N() FWRI TE()

U2BI N

Convert rbour numeric into unsigned | ong encoded bytes

Synt ax

U2BI N(<nNunber>) --> cBuffer
Argunent s

<nNunber> is a nuneric value to convert (decinmal digits are ignored).

Ret ur ns

U2BIN() return four bytes character string that contain 32 bit encoded
unsi gned long integer (least significant byte first).

Descri ption

U2BIN() is one of the low |level binary conversion functions, those functions
convert between Harbour nuneric and a character representation of nuneric val ue.
U2BIN() take a nuneric integer value and convert it into four bytes of encoded 32
bit unsigned long integer

You night ask what is the need for such functions, well, first of all it

allow you to read/wite information fromto a binary file (like extracting
informati on from DBF header), it is also a useful way to share information from
source ot her than Harbour (C for instance).

U2BIN() is the opposite of BIN2U()

St at us
Ready

Conpl i ance
U2BIN() is an XBase++ conpatibility function and does not exist as a standard
CA-Cipper 5.x function. This function is only visible if source/rtl/binnumc was
conpiled wth the HB_COWAT_XPP fl ag.

Fil es
Library is rtl

See Al so:

BI N2I BILN2L () BI N2U() BI N2W() | 2BI N() L2BI N() W2BI N() WORD() FWRI TE()

Converts double to integer val ues.

Synt ax

WORD(<nDoubl e>) --> <nlnteger>

Argunent s
<nDoubl e> is a nuneric double val ue.
Ret ur ns
WORD() return an integer in the range +-32767
Descri ption
This function converts double values to integers to use wthin the CALL
comrand
St at us
Ready
Conpl i ance

The Clipper NG states that WORD() will only work when used in CALL conmmands
parameter list, otherwise it will return NIL, in Harbour it wll work anywhere.

Fil es
Library is rtl
See Al so:
ARRAY

DBEDI T() *

Browse records in a table

Synt ax

DBEDI T([<nTop>], [<nLeft>], [<nBotton®], [<nRight>], [<acColums>], [<xUserFunc>],
[<xCol umSayPi ct ures>], [<xCol umHeaders>], [<xHeadi ngSeparators>],
[<xCol umSepar at ors>], [<xFootingSeparators>], [<xColumFootings>]) --> |

Argunent s

<nTop> coordinate for top row display. could range fromO to MAXROWN),
default is O.

<nLeft> coordinate for left colum display. could range fromO to MAXCOL(),
default is O.

<nBottont coordinate for bottomrow display. could range fromO to

MAXROWN(), default is MAXROW).

<nRi ght> coordinate for right colum display. could range fromO to
MAXCOL(), default is MAXCOL().

<acColumms> is an array of character expressions that contai n database
fields names or expressions to display in each colum. |f not specified, the
default is to display all fields fromthe database in the current work area

<xUser Func> is a name of a user defined function or a code block that woul d

be called every time unrecogni zed key is been pressed or when there are no keys
waiting to be processed and DBEDI T() goes into idle node. If <xUserFunc> is a
character string, it nmust contain root nane of a valid user define function without
par ent heses. Both the user define function or the code bl ock should accept two
paraneters: nMde, nCurrent Colum. Both should return a nuneric value that
correspond to one of the expected return codes (see table below for a list of nMde
and return codes).

<xCol umSayPi ctures> is an optional picture. If is a character string, al
colums woul d used this value as a picture string. If <xColumSayPi ctures> is an
array, each elenment should be a character string that correspond to a picture
string for the colum with the same index. Look at the help for @..SAY to get
nmore i nformati on about picture val ues.

<xCol umHeaders> contain the header titles for each colum, if this is a

character string, all colums would have that sane header, if this is an array,
each elenment is a character string that contain the header title for one col um.
Header may be split to nore than one line by placing semicolon (;) in places where
you want to break line. If omtted, the default value for each colum header is
taken from <acColumms> or field name if <acCol ums> was not specified.

<xHeadi ngSeparators> is an array that contain characters that draw the |ines
separating the headers and the fields data. Instead of an array you can use a
character string that would be used to display the same line for all fields
Default value is a double Iine.

<xCol umSeparators> is an array that contain characters that draw the |ines
separating displayed colums. Instead of an array you can use a character string
that would be used to display the sanme line for all fields. Default value is a
single Iine.

<xFootingSeparators> is an array that contain characters that draw the |lines
separating the fields data area and the footing area. |Instead of an array you can
use a character string that would be wused to display the same line for all footers.
Default is to have to no footing separators.

<xCol utmmFootings> contain the footing to be displayed at the bottom of each
columm, if this is a character string, all colums would have that sanme footer, if
this is an array, each element is a character string that contain the footer for
one colum. Footer may be split to nore than one line by placing semicolon (;) in
pl aces where you want to break line. If onmitted, no footer are displayed.

Ret ur ns

DBEDI T() return .F. if there is no database in use or if the nunber of
colums to display is zero, else DBEDIT() return .T.

Descri ption

DBEDI T() display and edit records fromone or nore work areas in a grid on
screen. Each columm is defined by el enent from<acColums> and is the equival ent
of one field. Each row is equival ent of one database record.

Fol | owi ng are active keys that handl ed by DBEDI T():

Key Meani ng

Left Move one columm to the left (previous field)
Ri ght Move one columm to the right (next field)
Up [Move up one row (previous record)

Down Move down one row (next record)

Page- Up Move to the previous screen

Page- Down Move to the next screen

Ctr| Page- Up IMove to the top of the file

Ct r| Page- Down IMove to the end of the file

Hore Move to the | eftnmost visible colum

End Move to the rightnost visible colum

Ctrl Left Pan one columm to the left

Ctrl Right Pan one columm to the right

Ctrl Hone Move to the |eftnost col um

Ctrl End Move to the rightnost colum

When <xUserFunc> is omtted, two nore keys are active:

Key Meani ng
Esc [Ter m nat e BROWSE()
Ent er [Ter m nat e BROWSE()

When DBEDI T() execute <xUserFunc> it pass the follow ng argunents: nMde and
the index of current record in <acColumms>. |f <acColumms> is omtted, the index
nunber is the FIELD() nunber of the open database structure.

DBEDI T() nMbde coul d be one of the follow ng:

Dbedit.ch Meani ng
DE | DLE DBEDI T() is idle, all novenent keys have been handl ed.
DE_HI TTOP Attenpt to cursor past top of file.
DE_H TBOTTOM At tenpt to cursor past bottomof file.
DE_EMPTY No records in work area, database is enpty.
DE_EXCEPT Key exception.
The user define function or code block nmust return a value that tell DBEDI T()

what to do next.

User function return codes:

The user function is called once in each of the followi ng cases: - The

dat abase is enpty. - The user try to nove past top of file or past bottomfi
Key exception, the uses had pressed a key that is not handled by DBED T(). -
keyboard buffer is enpty or a screen refresh had just occurred DBEDIT() is a
conpatibility function, it is superseded by the TBrowse class and there for not
recommended for new applications.

Exanpl es

le. -
The

/1l Browse a file using default val ues
USE Test
DBEDI T()
St at us
Started
Conpl i ance
<xUser Func> can take a code bl ock value, this is a Harbour extension.

CA-Clipper will throw an error if there's no database open, Harbour would
return . F.

CA-dipper is buggy and will throw an error if the nunber of columms zero,
Har bour woul d return .F.

The CA-Clipper 5.2 NG state that the return value is NIL, this is wong and
shoul d be read | ogical.

There is an undocunented result code (3) fromthe user defined function in

Clipper (both 87 and 5.x). This is an Append Mdde which: "split the screen to
all ow data to be appended in wi ndowed area". This node is not supported by Harbour.

Fil es

Header files are dbedit.ch, inkey.ch Library is rtl

See Al so:

@..SAY BROWSE() ARRAY() TRANSFORM)

BROWSE

Browse a Sat abase file

Synt ax

BROMBE([<nTop>, <nLeft>, <nBottomp, <nRi ght>]

Argunent s

<nTop> coordinate for top row di splay.
<nLeft> coordinate for left colum display.

<nBottonr coordinate for bottom row display.

) --> 1Ok

<nRi ght> coordinate for right colum display.

Ret ur ns

BROABE() return .F. if there is no database
return . T.

Descri ption

BROWSE()

is a general purpose database browse
browse a fi

open in this work area, else it

r, without any thinking you can

| e using the foll owi ng keys:
Key IMeani ng
Left Move one columm to the left (previous field)
Ri ght Move one colum to the right (next field)
Up Move up one row (previous record)
Down Move down one row (next record)
Page- Up Move to the previous screen
Page- Down Move to the next screen
Ctr|1 Page- Up IMove to the top of the file
Ctr1 Page- Down Move to the end of the file
Hone Move to the | eftnost visible colum
End Move to the rightnost visible colum
Ctrl Left Pan one colum to the left
Ctrl Ri ght Pan one columm to the right
Ctrl Hone Move to the |eftnmost col um
Ctrl End Move to the rightnost col um
Esc [Ter m nat e BROWSE()

On top of the screen you see a status line with the following indication:
Recor d #i#t#/ ### Current record nunber / Total nunber of records.
knone> [There are no records, the file is enpty.
Knew> ou are in append node at the bottom of file.
KDel et ed> Current record is deleted.
kbof > You are at the top of file.

You shoul d pass whol e four valid coordinate,
passed to BROABE() the coordinate are default

Exanpl es

if less than four paraneters are
to: 1, 0, MAXROW), MAXCOL().

/1 this one shows you how to browse around

USE Ar ound
BROWSBE()
St at us
Started
Files

Library is rtl
See Al so:

DBEDI T()* ARRAY

TBr owseDB()

Create a new TBrowse object to be used with database file
Synt ax
TBrowseDB([<nTop>], [<nLeft>], [<nBotton®t], [<nRight>]) --> oBrowse
Argunent s
<nTop> coordinate for top row di splay.
<nLeft> coordinate for left colum display.
<nBottonr coordinate for bottom row display.
<nRi ght> coordinate for right colum display.
Ret ur ns

TBrowseDB() return new TBrowse object with the specified coordinate and a
default : SkipBl ock, :GoTopBl ock and : GoBottonBl ock to browse a database file.

Descri ption
TBrowseDB() is a quick way to create a TBrowse object along with the mninal

support needed to browse a database. Note that the returned TBrowse object contain
no TBCol um objects and you need to add colum for each field by your self.

Exanpl es

for a good exanple, |ook at the source code for BROASE() function
at source/rtl/browse. prg

St at us
Started
Conpl i ance
TBrowseDB() works exactly like CA-Cipper's TBrowseDB().
Files
Library is rtl
See Al so:

BROWBE() ARRAY() ARRAY() TBROASENew)

dbSki pper ()

Hel per function to skip a database

Synt ax

dbSki pper (<nRecs>) --> nSki pped
Argunent s

<nRecs> is the nunber of records to skip relative to current record
Positive nunmber would try to nove the record pointer forward, while a negative
nunber would try to nove the record pointer back <nRecs> records.

Ret ur ns

dbSki pper() return the nunber of actual record skipped.
Descri ption

dbSki pper() is a hel per function used in browse nechanismto skip a nunmber of
records while giving the caller indication about the actual records skipped.

Exanpl es

/1 open a file and find if we've got enough records in it
USE Mont hSal es
| F dbSki pper(100) == 100
? "CGood work! You can party now'
ELSE
? "Too bad, you should really work harder"
ENDI F
CLCSE

St at us
Ready
Conpl i ance

dbSki pper() is an XBase++ conpatibility function and does not exist as a
standard CA-Clipper 5.x function

This function is only visible if source/rtl/browdb.prg was conpiled wth the
HB_COWMPAT_XPP f1 ag.

Files
Library is rtl

See Al so:
DBSKI P() ARRAY

CLASS

Define a Cass for hject Oiented Progranm ng

Synt ax

[CREATE] CLASS <C assNane> [<FROM | NHERI T> <Super C ass1> [, <Super d assN>]]

[STATI C]
Argunent s

<C assName> Nanme of the class to define. By tradition, Harbour classes
start with "T" to avoid collisions with user- created cl asses.

<Super d assl...n> The Parent class(es) to use for inheritance. Harbour
supports Miltiple Inheritance.

function. It will therefore not be avail able outside the current nodul e.

Descri ption

CLASS creates a class fromwhich you can create objects. The CLASS conmand

begins the class specification, in which the DATA elenents (also known as instance
vari abl es) and METHODS of the «class are naned. The followi ng scopi ng comands may

al so appear. They control the default scope of DATA and METHOD comrands that foll ow

t hem

EXPORTED:
VI S| BLE
HI DDEN:
PROTECTED:

The cl ass specification ends with the END CLASS comand.

Classes can inherit fromnultiple <Superd asses>, and the chain of
i nheritance can extend to many | evels.

A programuses a Class by calling the dass Constructor, usually the New()
met hod, to create an object. That object is usually assigned to a variable, which
is used to access the DATA el enents and nethods.

Har bour's OOP syntax and inplenmentation supports Scoping (Protect, Hi dden and
Readonly) and Delegating, and is largely conpatible with Cass(y)(tm,
Topd ass(tm and Visual Objects(tm.

Exanpl es

CLASS TBCol umm

DATA Bl ock
DATA Car go
DATA Col or Bl ock
DATA Col Sep
DATA Def Col or
DATA Footi ng
DATA Foot Sep
DATA Headi ng
DATA HeadSep
DATA W dth
DATA Col Pos

B e e L
B e e L

METHOD New()

~
~

ENDCLASS

St at us
Ready
Conpl i ance

Code block to retrieve data for the columm
User - defi nabl e vari abl e

Code bl ock that determines color of data itens
Col um separator character

Array of nuneric indexes into the color table
Col um footing

Footing separator character

Col um headi ng

Headi ng separator character

Col um di splay width

Tenporary col um position on screen

Const ruct or

CLASS i s a Harbour extension

Pl at f or ns
Al l
See Al so:

HBA ass() ARRAY() DATAVETHOD

DATA

Alternate syntax for VAR instance variable for the objects.

Synt ax

DATA <Dat aNanmel> [, <DataNaneN>] [AS <type>] [INT <uVal ue>]
[[EXPORTED | VISIBLE] | [PROTECTED] | [H DDEN]] [READONLY | RO

Argunent s
<Dat aNanel> Nanme of the DATA

<type> Optional data type specification fromthe follow ng: Character,
Nuneric, Date, Logical, Codeblock, NI.

<uVal ue> Optional initial value when creating a new object.
outside of the class. WVISIBLE is a synonym for EXPORTED.
within this class and its subcl asses.
defined, and is not inherited by the subclasses.
clause, assignnent is only permitted fromthe current class and its subcl asses.
If specified with the PROTECTED cl ause, assignnent is only pernitted fromthe
current class. RO is a synonymfor READONLY.

Descri ption
DATA el enents can al so be thought of as the "properties" of an object. They
can be of any data type, including codeblock. Once an object has been created, the
DATA el enents are referenced with the colon (:) as in Mject: Heading : = "Last
name". Usually a class also defines nmethods to manipul ate the DATA.
You can use the "AS <type>" clause to enforce that the DATA is naintained as
a certain type. herwise it will take on the type of whatever value is first
assigned to it.

Use the "INIT <uVal ue>" clause to initialize that DATA to <uVal ue> whenever a
new object is created.

VAR can be a synonym for DATA, or it can use a slightly different syntax for
compatibility with other dialects.

CLASS TBCol umm

DATA Bl ock Code block to retrieve data for the colum
DATA Cargo User - defi nabl e vari abl e

DATA Col or Bl ock Code bl ock that determ nes color of data itens
DATA Col Sep Col um separator character

DATA Def Col or
DATA Footi ng
DATA Foot Sep

Array of nuneric indexes into the color table
Col um footing
Footing separator character

B e e L
B e e L

DATA Headi ng Col um headi ng
DATA HeadSep Headi ng separator character
DATA Wdth Col um di splay width
DATA Col Pos Tenporary col um position on screen
METHOD New() /1 Constructor
ENDCLASS
St at us
Ready
Conpl i ance
DATA i s a Harbour extension.
Pl at f or ns

All

See Al so:

ARRAY() | ASSMETHODCL ASSDATAARRAY()

CLASSDATA

Defi ne a CLASSDATA variable for a class (NOT for an Object!)

Synt ax

CLASSDATA <Dat aNanel> [, <Dat aNameN>] [AS <type>] [INT <uVal ue>]
Argunent s
<Dat aNanel> Nane of the DATA

<type> Optional data type specification fromthe follow ng: Character,
Nuneric, Date, Logical, Codeblock, Nl
<uVal ue> Optional initial value at program startup

Descri ption

CLASSDATA vari abl es can al so be thought of as the "properties" of an entire

cl ass. Each CLASSDATA exists only once, no matter how many objects are created. A
common usage is for a counter that is increnented whenever an object is created and
decrenment ed when one is destroyed, thus monitoring the nunber of objects in

exi stance for this class.

You can use the "AS <type>" clause to enforce that the CLASSDATA is

mai ntained as a certain type. OGherwise it will take on the type of whatever val ue
is first assigned to it. Use the "INIT <uValue>" clause to initialize that DATA to
<uVal ue> whenever the class is first used.

Exanpl es

CLASS TW ndow
DATA hwhd, nd dProc
CLASSDATA | Regi stered AS LOGQ CAL

ENDCLASS
St at us
Ready
Conpl i ance
CLASSDATA is a Harbour extension.
Pl at f or ns
Al |
See Al so:

ARRAY CLASSMETHODDATA

METHCOD

Declare a METHOD for a class in the class header

Synt ax

METHOD <Met hodName>([<parans,...>]) [CONSTRUCTOR]

METHOD <Met hodNane>([<parans,...>]) INLINE <Code,...>

METHOD <Met hodName>([<params,...>]) BLOCK <CodeBl ock>

METHOD <Met hodName>([<parans,...>]) EXTERN <FuncNane>([<args,...>])
METHOD <Met hodNane>([<params,...>]) SETGET

METHOD <Met hodNanme>([<params,...>]) VIRTUAL

METHOD <Met hodName>([<paran®»]) OPERATOR <op>

METHOD <Met hodName>([<parans,...>]) CLASS <C assNane>

Argunent s
<Met hodNane> Nane of the nmethod to define

<parans, ...> Optional parameter list
Descri ption

Met hods are "class functions" which do the work of the class. Al nethods
must be defined in the class header between the CLASS and ENDCLASS conmands.

the body of a nethod is not fully defined here, the full body is witten bel ow the

ENDCLASS command using this syntax:
METHOD <Met hodName>([<parans,...>]) CLASS <C assNane>

Met hods can reference the current object with the keyword "Self:" or its
short hand version "::"

CLAUSES:
CONSTRUCTOR Defines a special nmethod O ass Constructor nmethod, wused to

create objects. This is usually the New() nethod. Constructors always return the

new object.

I NLI NE Fast and easy to code, INLINE lets you define the code for the

met hod i medi ately within the definition of the O ass. Any methods not decl ared
I NLI NE or BLOCK rnust be fully defined after the ENDCLASS conmand. The <Code, ...>

following INLINE receives a paraneter of Self. If you need to receive nore
paraneters, use the BLOCK cl ause instead.

BLOCK Use this clause when you want to declare fast '"inline' nethods
that need paraneters. The first paranmeter to <CodeBl ock> nust be Self, as in:

METHOD <Met hodName> BLOCK {| Sel f, <argl>, <arg2>, ...,<argN>|...}

EXTERN If an external function does what the nethod needs, use this
clause to nake an optinized call to that function directly.

SETCGET For cal cul ated Data. The name of the nethod can be nmani pul at ed
like a Data elenent to Set or Get a val ue.

VI RTUAL Met hods that do nothing. Useful for Base classes where the child
class will define the nethod's behavior, or when you are first creating and
testing a d ass.

OPERATOR Qperator Overloading for classes. See exanple Tests/ TestOp.prg
for details.

CLASS <C assNanme> Use this syntax only for defining a full nmethod after the
ENDCLASS command.

Exanpl es
CLASS TW ndow

DATA hwhd, nd dProc
METHOD New() CONSTRUCTCR

METHOD Capture() INLINE SetCapture(::hwd)
METHOD End() BLOCK { | Self, IEnd | If(IEnd := ::1Valid(),;
. Post Msg(WM CLCSE),), |End }

VMETHOD Er aseBkGnd(hDC)
METHOD cTitle(cNewTitle) SETCGET

METHOD Cl ose() VI RTUAL
ENDCLASS

METHOD New() CLASS TW ndow
| ocal nVar, cStr

<code> ...
... <code> ...
RETURN Sel f
Tests
Test Op. prg
St at us
Ready
Conpl i ance
METHOD i s a Harbour extension.
Pl at f or ns
Al |
See Al so:

HBA ass() ARRAY() DATACLASS

MESSAGE

Route a nethod call to another Mthod

Synt ax

MVESSAGE <MessageNane> METHOD <Met hodName>([<parans,...>])
MESSAGE <MessageNane>() METHOD <Met hodName>([<parans,...>])

Argunent s

<MessageNane> The pseudo-net hod name to define

<Met hodNanme> The nethod to create and call when <MessageNane> is invoked.
<parans, ...> Optional parameter list for the nethod
Descri ption

The MESSAGE command is a sel domused feature that lets you re-route a call to
a method with a different name. This can be necessary if a method nane conflicts
with a public function that needs to be called fromw thin the class nethods.

For exanple, your app may have a public function called BeginPaint() that is

used in painting windows. It would also be natural to have a W ndow cl ass net hod
call ed :BeginPaint() that the application can call. But within the class nethod you
woul d not be able to call the public function because internally nethods are based
on static functions (which hide public functions of the same nane).

The MESSAGE conmmand | ets you create the true nmethod with a different nane
(::xBeginPaint()), yet still allow the ::BeginPaint() syntax to call
c:xBeginPaint(). This is then free to call the public function BeginPaint().

Exanpl es

CLASS TW ndow
DATA hWhd, nd dProc
METHOD New() CONSTRUCTCR
MESSAGE Begi nPai nt METHOD xBegi nPai nt ()

ENDCLASS

St at us
Ready

Conpl i ance
MESSAGE i s a Harbour extension.

Pl at f or ns
All

See Al so:

METHOD pATACLASSARRAY()

ERROR HANDLER

Designate a nmethod as an error handler for the class
Synt ax
ERROR HANDLER <Met hodNane>([<parans,...>])
Argunent s
<Met hodNane> Name of the method to define
<parans, ...> Optional parameter |ist
Descri ption

ERROR HANDLER nanes the nethod that should handle errors for the class being
def i ned.

Exanpl es

CLASS TW ndow
ERROR HANDLER MErr Handl er ()

ENDCLASS

St at us
Ready

Conpl i ance
ERROR HANDLER i s a Harbour extension.

Pl at f or ns
Al |

See Al so:

ARRAY ON_ERRORCLASSMVETHODDATA

ON ERROR

Designate a nmethod as an error handler for the class

Synt ax

ON ERROR <Met hodName>([<parans,...>])
Argunent s

<Met hodName> Nanme of the nethod to define

<parans, ...> Optional parameter |ist
Descri ption

ON ERRCR is a synonym for ERROR HANDLER. It nanes the nethod that should
handl e errors for the class being defined.

Exanpl es

CLASS TW ndow
ON ERROR MErrHandl er ()

ENDCLASS
St at us
Ready
Conpl i ance
ON ERRCR i s a Harbour extension.
Pl at f or ns
Al |
See Al so:

ARRAY ERROR HANDL ERCL ASSVETHODDATA

ENDCLASS

End the declaration of a class.
Synt ax
ENDCLASS
Descri ption

ENDCLASS mar ks the end of a cl ass decl arati on.
class nethods that are not | NLINE

Exanpl es

CLASS TW ndow
DATA hwhd, nd dProc

ENDCLASS
St at us

Ready
Conpl i ance

ON ERRCOR i s a Harbour extension.
Pl at f or ns

All

See Al so:

ARRAY CLASSNMETHODDATA

is usually followed by the

Converts a date to the day of week

Synt ax
CDOWN <dDat e>) --> cDay
Argunent s
<dDate> Any date expression.
Ret ur ns
<cDay> The current day of week.
Descri ption
This function returns a character string of the day of the week, froma date
expressi on <dDate> passed to it. |If a NULL date is passed to the function, the
val ue of the function wll be a NULL byte.
Exanpl es
? CDOW DATE())

i f CDOW DATE() +10) =="SUNDAY"
? "This is a sunny day."

Endi f
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant.
Pl at f or ns
Al l
Files

Library is rtl
See Al so:

DAY() DO) DATE() CMONTH()

CMONTH()

Return the nane of the nonth.

Synt ax
CMONTH(<dDate>) --> cMnth

Argunent s
<dDate> Any date expression.

Ret ur ns
<chMont h> The current nonth nane

Descri ption
This function returns the name of the nonth (January, February,etc.) froma
dat e expression <dDate> passed to it. |If a NULL date is passed to the function,
the value of the function wll be a NULL byte.

Exanpl es

? CMONTH(DATE())
i f CMONTH(DATE() +10) =="March"
? "Have you done your system BACKUP?"

Endi f
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ns
Al l
Files

Library is rtl
See Al so:

CDOW) pDATE() MONTH() YEAR() DOW) DTOC()

DATE()

Return the Current OS Date
Synt ax

DATE() --> dCurbDate
Argunent s

Ret ur ns
<dCur Dat e> Current system date.
Descri ption
This function returns the current system date.
Exanpl es
? Date()
Tests
? "Today is ", Day(date())," of ",cMonth(date())," of ", Year(date())
St at us
Ready
Conpl i ance
This function is Ca-Cipper Conpliant
Pl at f or ns
Al'l
Files
Library is rtl
See Al so:

CTOD() Dros() DTOC() DAY() MONTH() CMONTH()

CTOX()

Converts a character string to a date expression

Synt ax
CTOD(<cDateString>) --> dDate
Argunent s
<cDateString> A character date in format 'nmi dd/yy'
Ret ur ns
<dDate> A date expression
Descri ption
This function converts a date that has been entered as a character expression
to a date expression. The character expression will be in the form"MJ DI YY"
(based on the default value in SET DATE) or in the appropriate format specified by

the SET DATE TO command. |If an inproper character string is passed to the
function,an enpty date value will be returned.

Exanpl es

? CTOD(' 12/ 21/00")
St at us

Ready
Conpl i ance

This function is Ca-Cipper conpliant
Pl at f or s

Al |
Files

Library is rtl

See Al so:

SET DATE DATE() DTOS()

DAY()

Return the nuneric day of the nonth.
Synt ax
DAY(<cDate>) --> nMnth
Argunent s
<cDate> Any valid date expression.
Ret ur ns
<nMont h> Nuneric value of the day of nonth.
Descri ption
This function returns the numeric value of the day of nonth froma date.
Exanpl es

? Day(DATE())
2 Day(DATE() +6325)

St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ns
All
Fil es
Library is rtl
See Al so:

CTOX(). pros() DTOC() DATE() MONTH() CMONTH()

DAYS()

Convert el apsed seconds into days

Synt ax

DAYS(<nSecs>) --> nDay
Argunent s

<nSecs> The nunber of seconds
Ret ur ns

<nDay> The nunber of days
Descri ption

This function converts <nSecs> seconds to the equival ent nunber of days;
86399 seconds represents one day, O seconds being m dnight.

Exanpl es

? DAYS(2434234)
? "Has been passed ", DAYS(63251),' since m dni ght'

St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ns
Al l
Files
Library is rtl
See Al so:

SECONDS SECS() ELAPTI ME()

Val ue ?or the day of week.

Synt ax

DOV <dDat e>) --> nDay
Argunent s

<dDate> Any valid date expression
Ret ur ns

<nDay> The current day number
Descri ption

This function returns the nunber representing the day of the week for the
dat e expressed as <dDat e>.

Exanpl es

? DOW DATE())

2 DOW DATE() - 6584)
St at us

Ready
Conpl i ance

This function is Ca-Cipper conpliant
Pl at f or ns

Al l
Files

Library is rtl

See Al so:

DTOC() cDOw) DATE() DTOS() DAY()

DTOC()

Date to character conversion

Synt ax
DTOC(<dDateString>) --> cDate

Argunent s
<dDateString> Any date

Ret ur ns
<dDat e> Character represention of date

Descri ption
This function converts any date expression (a field or variable) expressed as
<dDateString> to a character expression in the default format "MM DD YY'. The date
format expressed by this function is controled in part by the date format specified
in the SET DATE conmmand

Exanpl es
? DTOC(Date())

St at us
Ready

Conpl i ance
This function is Ca-Cipper conpliant

Pl at f or ns
Al l

Files
Library is rtl

See Al so:

SET DATE DATE() DTOS()

DTOS()

Date to string conversion
Synt ax
DTOS(<dDateString>) --> cDate
Argunent s
<dDateString> Any date
Ret ur ns
<dDate> String notation of the date
Descri ption
This function returns the value of <dDateString> as a character string in the

format of YYYYMVDD. If the value of <dDateString> is an enpty date, this function
will return eight blank spaces.

Exanpl es

? DTOS(Dat e())
St at us

Ready
Conpl i ance

This function is Ca-Cipper conpliant
Pl at f or ns

Al l
Files

Library is rtl

See Al so:

DTOC() pATE() DTOS()

ELAPTI ME()

Cal cul ates el apted tine.
Synt ax
ELAPTI ME(<cSt art Ti ne>, <cEndTi me>) --> cDiference
Argunent s

<cStartTinme> Start in tine as a string format <cEndTi ne> End time as a
string format

Ret ur ns
<cDi f erence> Di fference between the tines
Descri ption

This function returns a string that shows the difference between the starting
time represented as <cStartTine> and the ending tine as <cEndTime>. If the stating
time is greater then the ending time, the function will assume that the date
changed once.

Exanpl es
Static cStartTi ne
Init Proc Startup
cStartTi me: =Ti ne()

Exit Proc StartExit
? "You used this program by", ELAPTI ME(cStart Tine, Ti me())

St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ns
Al'l
Files
Library is rtl
See Al so:

SECS(). sECONDS() TI ME() DAY()

MONTH()

Converts a date expression to a nonth val ue
Synt ax
MONTH(<dDat e>) --> nMonth
Argunent s
<dDate> Any valid date expression
Ret ur ns
<nMont h> Correspondi ng nunber of the nonth in the year, ranging fromO to 12
Descri ption
This function returns a nunber that represents the nonth of a given date

expression <dbate>. If a NULL date (CTOD('')) is passed to the function, the value
of the function will be O.

Exanpl es

? Mont h(DATE())
St at us

Ready
Conpl i ance

This function is Ca-Cipper conpliant
Pl at f or ns

Al l
Files

Library is rtl

See Al so:

CDON). DOW) YEAR() CMONTH()

SECONDS()

Returns the nunmber of el apsed seconds past m dnight.
Synt ax
SECONDS() --> nSeconds
Argunent s

Ret ur ns
<nSeconds> Number of seconds since nidni ght

Descri ption
This function returns a nunmeric val ue representing the nunber of el apsed
seconds based on the current systemtinme. The systemtine is considered to start

at 0 (mdnight);it continues up to 86399 seconds. The value of the return expression
is displayed in both seconds and hundredths of seconds.

Exanpl es
? Seconds()
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ns
Al l
Files
Library is rtl
See Al so:
T VE

SECS()

Return the nunber of seconds fromthe system date.
Synt ax
SECS(<cTine>) --> nSeconds
Argunent s
<cTinme> Character expression in a time string format
Ret ur ns
<nSeconds> Nunber of seconds
Descri ption

This function returns a nuneric value that is a nunber of elapsed seconds
from m dni ght based on a tine string given as <cTi ne>.

Exanpl es
? Secs(Tine())
? Secs(tinme()-10)
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ms
All
Fil es

Library is rtl
See Al so:

SECONDS() L APTI ME() TI ME()

TI ME()

Returns the systemtine as a string

Synt ax
TIME() --> cTine
Argunent s
Ret ur ns
<cTinme> Character string representing tine
Descri ption

This function returns the systemtine represented as a character expression
in the format of HH MM SS

Exanpl es
? Time()
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ns
Al'l
Files
Library is rtl
See Al so:

DATE SECONDS

YEAR()

Converts the year portion of a date into a numeric val ue

Synt ax
YEAR(<cDat e>) --> nYear

Argunent s
<dDate> Any valid date expression

Ret ur ns
<nYear > The year portion of the date.

Descri ption
This function returns the nuneric value for the year in <dDate>. This val ue
will always be a four-digit nunber and is not affected by the setting of the SET
CENTURY and SET DATE commands. Addition ally, an enpty date expression passed to

this function will yield a zero val ue.

? Year(date())
? year (CTOD("01/ 25/ 3251"))

St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ns
Al l
Files
Library is rtl
See Al so:

DAY() MONTH()

dbDel i m()

Copi es the contents of a database to a delinmited text file or

Synt ax

__dbDel i n{ <l Export>, <xcFile> [<xcDelinp], [<aFields>],
[<bFor>], [<bWhile>], [<nNext>], [<nRecord>], <IRest>) --> NL

Argunent s

<| Export> |If set to .T., copies records to a delimted file. If set to .F.

append records froma delimted file. <xcFile> The nanme of the text file to copy
to or append from If a file extension is not specified, ".txt" is used by default.
<xcDelinr> Either the character to use as the character field delimter (only the
first character is used). or "BLANK' (not case sensitive), which elimnates the
character field delimters and sets the field separator to a single space instead
of a comm. <aFields> An aray of field names to limt the processint to. If not
specified, or if enpty, then all fields are processed. <bFor> An optional code

bl ock containing a FOR expression that wll reduce the nunber of records to be
processed. <bWhile> An optional code bl ock containing a WH LE expression that wll
reduce the nunmber of records to be processed. <nNext> |If present, but nRecord is
not present, specifies to process this nunmber of records, starting with the current
record. A value of 0 nmeans to process no records. <nRecord> If present, specifies
the only record to process. A value of 0 neans to process no records. Overrides
nNext and | Rest. <lIRest> If |Export is .T., then if set to .T. and there are no
nRecord, nNext, or bWhile argunents, processes all records from current to |ast.

Ret ur ns

Descri ption

__dbDelin() copies all or selected contents of a database table to an SDF
text file or appends all or selected contents of an SDF text file to a database
tabl e.

Exanpl es

/1 Copy delinquent accounts into a delimted text file.
USE ACCOUNTS NEW

COPY TO overdue DELI M TED FOR ! EMPTY(accounts->duedate)
. AND. DATE() - accounts->duedate > 30

/1 1mport new custoner records.

USE CUSTOVER NEW

APPEND FROM cust omer DELI M TED

Test s

3

St at us

Started

__dbDelin() is intended to be fully conpliant with CA-Clipper's function of

the sane nane and is the underlying inplenmentation of the APPEND FROM DELI M TED
and COPY TO DELIM TED comrands

Pl at f or ns
Al |
Fil es
See Al so:

—dbSDF() ARRAY() ARRAY()

dbSDF()

Copi es the contents of a database to an SDF text file or

Synt ax

__dbSDF(<l Export>, <xcFile>, [<aFields>],
[<bFor>], [<bWhile>], [<nNext>], [<nRecord>], <IRest>) --> NL

Argunent s

<| Export> |If set to .T., copies records to an SDF file. If set to .F.

append records froman SDF file. <xcFile> The name of the text file to copy to or
append from If a file extension is not specified, ".txt" is used by default.
<aFi el ds> An aray of field names to limt the processint to. If not specified, or
if enpty, then all fields are processed. <bFor> An optional code block containing a
FOR expression that wll reduce the nunber of records to be processed. <bWile> An
optional code bl ock containing a WHI LE expression that will reduce the nunber of
records to be processed. <nNext> If present, but nRecord is not present, specifies
to process this nunber of records, starting with the current record. A value of O
means to process no records. <nRecord> If present, specifies the only record to
process. A value of 0 neans to process no records. Overrides nNext and | Rest.
<|Rest> If | Export is .T., then if set to .T. and there are no nRecord, nNext, or
bWhi | e argunments, processes all records from current to |ast.

Ret ur ns

Descri ption

__dbSDF() copies all or selected contents of a database table to an SDF text
file or appends all or selected contents of an SDF text file to a database table.

Exanpl es

/1 Copy delinquent accounts into an SDF text file.
USE ACCOUNTS NEW

COPY TO overdue SDF FOR ! EMPTY(accounts->duedate) ;
. AND. DATE() - accounts->duedate > 30

/1 1nport new custoner records.

USE CUSTOVER NEW

APPEND FROM cust onmer SDF

Tests

St at us

Started

__dbSDF() is intended to be fully conpliant with CA-Cipper's function of the
same nanme and is the underlying inplenmentation of the APPEND FROM SDF and COPY TO
SDF commands

Pl at f or ns
Al l
Fil es
See Al so:

—dbDelinm) ARRAY() ARRAY()

dbCopySt ruct ()

Create a new dat abase based on current database structure
Synt ax
__dbCopyStruct (<cFileName>, [<aFieldList>]) --> NL
Argunent s

<cFil eName> is the nanme of the new database file to create. (.dbf) is the
default extension if none is given

<aFieldList> is an array where each elenent is a field nane. Nanes could be
speci fied as uppercase or | owercase.

Ret ur ns
__dbCopyStruct () always return NL
Descri ption

__dbCopyStruct () create a new enpty database file with a structure that is

based on the currently open database in this work-area. If <aFieldList> is enpty,
the newly created file would have the sane structure as the currently open

dat abase. Else, the newfile would contain only fields that exactly match
<aFi el dLi st >

__dbCopyStruct () can be use to create a sub-set of the currently open
dat abase, based on a given field |ist.

COPY STRUCTURE command is preprocessed into _ dbCopyStruct () function during
compile tinme.

Exanpl es

/!l Create a new file that contain the same structure
USE TEST
__dbCopyStruct ("M/ Copy. DBF")

/]l Create a new file that contain part of the original structure
LOCAL alLi st

USE TEST

aList :={ "NAME" }

__dbCopyStruct ("Onl yNane. DBF*, aList)

St at us

Ready
Conpl i ance

__dbCopyStruct () works exactly like CA-Cipper's _ _dbCopyStruct ()
Pl at f or ns

All
Fil es
Library is rdd
See Al so:

COPY STRUCTURE copY STRUCTURE EXTENDEDDBCREATE() DBSTRUCT() __dbCopyXSt r uct ()
—dbCreate() _ dbStructFilter()

COPY STRUCTURE

Create a new dat abase based on current database structure

Synt ax

COPY STRUCTURE TO <xcFi | eNane> [FI ELDS <field,...>]
Argunent s

TO <xcFil eName> is the nane of the new database file to create.
(.dbf) is the default extension if none is given. It can be specified as a literal
file name or as a character expression enclosed in parentheses.

FIELDS <field,...>is an optional list of field names to copy from
the currently open database in the specified order, the default 1s all fields.
Nanes coul d be specified as uppercase or | owercase.

Descri ption

COPY STRUCTURE create a new enpty database file with a structure that is
based on the currently open database in this work-area.

COPY STRUCTURE can be use to create a sub-set of the currently open database,
based on a given field Iist.

COPY STRUCTURE command is preprocessed into _ dbCopyStruct() function during
conpile tine.

Exanpl es
/Il Create a new file that contains the sane structure
USE TEST
COPY STRUCTURE TO MyCopy

/]l Create a new file that contains part of the original structure

USE TEST

COPY STRUCTURE TO SonePart FI ELDS nane, address
St at us

Ready
Conpl i ance

COPY STRUCTURE wor ks exactly as in CA-dipper
Pl at f or ns

Al'l

See Al so:

COPY STRUCTURE EXTENDED pBCREATE() DBSTRUCT() __dbCopySt ruct () __dbCopyXSt r uct ()
—dbCreate() _ dbsStructFilter()

dbCopy XSt ruct ()

Copy current database structure into a definition file

Synt ax

__dbCopyXStruct(<cFileNanme>) --> | Success
Argunent s

<cFileName> is the nanme of target definition file to create. (.dbf) is the
default extension if none is given

Ret ur ns

__dbCopyXStruct() return (.F.) if no database is USED in the current
work-area, (.T.) on success, or a run-time error if the file create operation had
fail ed.

Descri ption

__dbCopyXStruct() create a new database named <cFil eNane> with a pre-defined
structure (also called "structure extended file"):

Fi el d name Type Lengt h Deci mal s
FI ELD_NAMVE C [10 0
FI ELD_TYPE C 1 0
FI ELD_LEN N 3 0
FI ELD DEC N B 0

Each record in the new file contains information about one field in the

original file. CREATE FROM could be used to create a database fromthe structure
extended file

For prehistoric conpatibility reasons, Character fields which are |onger than
255 characters are treated in a special way by witing part of the length in the

FI ELD DEC according to the followng fornula (this is done internally):

FI ELD- >FI ELD_DEC :

) int(nLength / 256)
FI ELD- >FI ELD_LEN :

(nLength % 256)

Later if you want to calculate the length of a field you can use the
foll owi ng fornmul a:

nLength := 11 F(FIELD >FI ELD TYPE == "C", ;
FI ELD- >FI ELD_DEC * 256 + FIELD—>FIELD LEN,
Fl ELD- >FI ELD_LEN)

COPY STRUCTURE EXTENDED command is preprocessed into _ dbCopyXStruct ()
function during conpile tine.

Exanpl es
/1 Open a database, then copy its structure to a new file,
/1l Open the newfile and list all its records
USE Test

___dbCopyXStruct("TestStru")
USE Test Stru
LI ST
St at us
Ready

Conpl i ance

__dbCopyXStruct () works exactly like CA-Cipper's _ dbCopyXStruct()
Pl at f or ns

All
Files

Library is rdd
See Al so:

COPY STRUCTURE copY STRUCTURE EXTENDEDCREATECREATE FROVDBCREATE() DBSTRUCT
dbCopy St ruct () dbCreat e()

COPY STRUCTURE EXTENDED

Copy current database structure into a definition file
Synt ax
COPY STRUCTURE EXTENDED TO <xcFi | eName>
Argunent s
TO <xcFileNanme> The name of the target definition file to create.
(.dbf) is the default extension if none is given. It can be specified as a litera
file name or as a character expression enclosed in parentheses.

Descri ption

COPY STRUCTURE EXTENDED create a new dat abase nanmed <cFileNanme> with a
pre-defined structure (also called "structure extended file"):

Fi el d nane Type Lengt h Deci mal s
FI ELD_NAME C 10 0
FI ELD_TYPE C 1 0
FI ELD_LEN N 3 0
Fl ELD_DEC g D

in the newfile contains informati on about one field in the
original file. CREATE FROM coul d be used to create a database fromthe structure
e.

Each record
i
ext ended fi

|
I
For prehistoric conpatibility reasons, Character fields which are |onger than

255 characters are treated in a special way by witing part of the length in the
FI ELD DEC according to the following formula (this is done internally):

FI ELD- >FI ELD _DEC
FI ELD- >FI ELD_LEN

int(nLength / 256)
(nLength % 256)

Later if you want to calculate the length of a field you can use the
foll owi ng fornul a:

nLength := I I F(FIELD->FI ELD TYPE == "C',
FI ELD->FI ELD DEC * 256 + FlI ELD->FI ELD LEN, ;
FI ELD- >FI ELD_LEN)

COPY STRUCTURE EXTENDED command is preprocessed into _ dbCopyXStruct ()
function during conpile tine.

Exanpl es
/1l Open a database, then copy its structure to a new file,
/1l Open the newfile and list all its records
USE Test

COPY STRUCTURE EXTENDED TO Test Stru

USE Test Stru

LI ST
St at us

Ready

Conpl i ance

COPY STRUCTURE EXTENDED wor ks exactly as in CA-Clipper
Pl at f or ms

All

See Al so:

COPY STRUCTURE CREATECREATE FROVDBCREATE() DBSTRUCT dbCopySt r uct dbCopy XSt r uct
dbCr eat e()

dbCreat e()

“eate structure extended file or use one to create new file

Synt ax

__dbCreate(<cFileNanme>, [<cFileFronp], [<cRDDNanme>], [<I| New>],
[<cAlias>]) --> | Used

Argunent s

<cFileName> 1is the target file name to create and then open. (.dbf) is the
default extension if none is given

<cFileFronm> is an optional structure extended file nane from which the

target file <cFileNane> is going to be built. If omtted, a new enpty structure
extended file with the nane <cFileName> is created and opened in the current
wor k- ar ea

<cRDDNane> is RDD name to create target with. If omtted, the default RDD is
used.

<I New> is an optional |ogical expression, (.T.) opens the target file name
<cFil eNane> in the next avail abl e unused work-area and makes it the current

work-area. (.F.) opens the target file in the current work-area. Default value is

(.F.). The value of <INew> is ignored if <cFileFronr is not specified.

<cAlias> 1is an optional alias to USE the target file with. If not specifi ed,
alias is based on the root nane of <cFil eNane>.

Ret ur ns

__dbCreate() returns (.T.) if there is database USED in the current
work-area (this mght be the newy selected work-area), or (.F.) if there is no

dat abase USED. Note that on success a (.T.) would be returned, but on failure you

probably end up with a run-tine error and not a (.F.) val ue.
Descri ption
__dbCreate() works in two nodes dependi ng on the val ue of <cFil eFronw:

1) If <cFileFronr is enpty or not specified a new enpty structure

extended file with the name <cFileNanme> is created and then opened in the current

work-area (<INew> is ignored). The new file has the follow ng structure:

Fi el d name Type Length Deci mal s
FI ELD_NAMVE C [10 0
FI ELD_TYPE C 1 0
FI ELD_LEN N 3 0
FI ELD DEC N B 0

The CREATE command is preprocessed into the _ dbCopyStruct() function during
conmpile time and uses this node.

2) If <cFileFronr is specified, it is opened and assuned to be a
structure extended file where each record contains at least the following fields
(in no particular order): FIELD NAME, FIELD TYPE, FIELD LEN and FI ELD DEC. Any

other field is ignored. Fromthis information the file <cFileNanme> is then created
and opened in the current or new work-area (according to <INew>), if this is a new

work-area it becones the current.

For prehistoric conpatibility reasons, structure extended file Character

fields which are | onger than 255 characters should be treated in a special way by

witing part of the length in the FIELD DEC according to the follow ng fornul a:

FI ELD- >FI ELD_DEC :

) int(nLength / 256)
FI ELD- >FI ELD_LEN :

(nLength % 256)

CREATE FROM comand is preprocessed into _ dbCopyStruct () function during
compile time and use this node.

Exanpl es

/1 CREATE a new structure extended file, append sone records and
/1 then CREATE FROM this file a new database file

__dbCreate("tenplate")
DBAPPEND()

FI ELD- >FI ELD_NAME :
FI ELD- >FI ELD _TYPE :
FI ELD- >FI ELD_LEN

FI ELD- >FI ELD_DEC
DBAPPEND()

FI ELD- >FI ELD_NAME :
FI ELD- >FI ELD TYPE :
FI ELD- >FI ELD_LEN

FI ELD- >FI ELD_DEC
DBAPPEND()

FI ELD- >FI ELD_NAME :
FI ELD- >FI ELD_TYPE :
FI ELD- >FI ELD_LEN

FI ELD- >FI ELD_DEC
DBCLOSEAREA()
__dbCreate("TV_Guide", "tenplate")

St at us

" CHANNEL"
"N

2

0

" PROGRAM'
"

20

0

" REVI EW
"C /1 this field is 1000 char |ong
232 /1 1000 % 256 = 232

3 /1 1000 / 256 = 3

Ready
Conpl i ance
__dbCreate() works exactly as in CA-dipper
Pl at f or ns
All
Fil es
Library is rdd
See Al so:

COPY STRUCTURE copY STRUCTURE EXTENDEDCREATECREATE FROVDBCREATE() DBSTRUCT()

__dbCODVSt ruct () dbCODVXSt ruct ()

CREATE

Create enpty structure extended file

Synt ax

CREATE <xcFi | eNanme> [VI A <xcRDDNane>] [ALI AS <xcAlias>]

Argunent s

<xcFil eName> is the target file nane to create and then open. (.dbf
default extension if none is given. It can be specified as

a character expression enclosed in

VIA <xcRDDNane> is RDD name to create target wth.
default RDD is used.

par ent heses.

It can be specified as literal nanme or

expression enclosed in parentheses.

ALI AS <xcAlias> is an optional
not specified, alias is based on the root nane of

Descri ption

CREATE a new enpty structure extended file with the nane <cFil eNane>
open it in the current work-area. The new file has the

literal

If omtted,

) is the
file name or as

t he

as a character

<xcFi | eNane>.

alias to USE the target file with. If

and then

foll owi ng structure:

Fi el d nane

Type

Lengt h

Deci mal s

FI ELD_NAME

10

FI ELD_TYPE

FI ELD_LEN

FI ELD DEC

CREATE command i s preprocessed into

time and use this

Exanpl es

/| CREATE a new structure extended file,

node.

// then CREATE FROM this file a new database file

CREATE tenpl ate
APPEND BLANK

FI ELD- >FI ELD_NAME :
FI ELD- >FI ELD TYPE :
Fl ELD- >FI ELD _LEN

FI ELD- >FI ELD_DEC
APPEND BLANK

FI ELD- >FI ELD_NAME :
FI ELD- >FI ELD_TYPE :
Fl ELD- >FI ELD LEN

FI ELD- >FI ELD_DEC
APPEND BLANK

FI ELD- >FI ELD_NAME :
FI ELD- >FI ELD_TYPE :
FI ELD- >FI ELD _LEN

FI ELD- >FI ELD DEC
CLCSE

" CHANNEL"
n NI

2

0

" PROGRAM'
n cl

20

0

" REVI EW
"

232

3

CREATE TV_Gui de FROM tenpl ate

St at us
Ready
Conpl i ance

Il th
/1 10
/1 10

is field is 1000 char |ong
00 % 256 = 232
00 / 256 =3

CREATE wor ks exactly as in CA-dipper

Pl at f or ns
Al l

__dbCopyStruct () function during

append sone records and

compil e

See Al so:

COPY STRUCTURE copy STRUCTURE EXTENDEDCREATE FROVDBCREATE() DBSTRUCT dbCopy St r uct
dbCopy XSt r uct () dbCr eat e()

CREATE FROM

Create new database file froma structure extended file

Synt ax

CREATE <xcFi | eNanme> FROM <xcFi | eFrom> [VI A <xcRDDNane>] [NEW
[ALI AS <xcAl i as>]

Argunent s
<xcFileName> is the target file name to create and then open. (.dbf) is the
default extension if none is given. It can be specified as literal file name or as

a character expression enclosed in parentheses.

FROM <xcFil eFronp is a structure extended file name from which the
target file <xcFileNane> is going to be built. It can be specified as literal file
nanme or as a character expression enclosed in parentheses.

VIA <xcRDDNane> is RDD name to create target with. If omtted, the
default RDD is used. It can be specified as literal name or as a character
expressi on encl osed i n parentheses.

NEW:/ b> open the target file name <xcFil eNane> in the next avail able
unused work-area and making it the current work-area. If omtted open the target
file in current work-area

ALI AS <xcAlias> is an optional alias to USE the target file with. If
not specified, alias is based on the root nane of <xcFil eNane>.

Descri ption

CREATE FROM open a structure extended file <xcFil eFrom> where each record

contain at least the following fields (in no particular order): FIELD NAME,

FI ELD TYPE, FIELD LEN and FIELD DEC. Any other field is ignored. Fromthis
information the file <xcFileName> is then created and opened in the current or new
wor k-area (according to the NEWclause), if this is a new work-area it becones the
current.

For prehistoric conpatibility reasons, structure extended file Character
fields which are | onger than 255 characters should be treated in a special way by
witing part of the length in the FIELD DEC according to the follow ng formul a:

FI ELD- >FI ELD_DEC :
FI ELD- >FI ELD_LEN

int(nLength / 256)
(nLength % 256)

CREATE FROM comand is preprocessed into _ dbCopyStruct () function during
conmpile time and uses this node.

Exanpl es
See exanple in the CREATE conmand
St at us
Ready
Conpl i ance
CREATE FROM wor ks exactly as in CA-dipper
Pl at f or ns
All
See Al so:

COPY STRUCTURE coPY STRUCTURE EXTENDEDCREATEDBCREATE() DBSTRUCT() dbCopySt r uct ()
__dbCODVXSt ruct () dbCr eat e()

FLEDI T() *

FiTter a database structure array

Synt ax

__FLEDI T(<aStruct>, [<aFieldList>]) --> aStructFiltered
Argunent s

<aStruct> is a multidinensional array with database fields structure, which
is usually the output from DBSTRUCT(), where each array element has the foll ow ng
structure:

<aFieldList> is an array where each elenent is a field name. Nanes could be
speci fied as uppercase or | owercase.

Ret ur ns

__FLEDIT() return a new multidimnmensional array where each elenent is in the

same structure as the original <aStruct>, but the array is built according to the
list of fields in <aFieldList> |If <aFieldList>is enpty, _ FLED T() return
reference to the original <aStruct> array.

Descri ption

__FLEDIT() can be use to create a sub-set of a database structure, based on a
given field Iist.

Note that field nanes in <aStruct> MJST be specified in uppercase or else no
mat ch woul d f ound.

SET EXACT has no effect on the return val ue.

__FLEDIT() is a conpatibility function and it is synonym for
__dbStructFilter() which does exactly the sane.

Exanpl es

LOCAL aStruct, aList, aRet
aStruct :={ { "CODE', "N', 4, 01}, ;

{ "NAME", "C', 10, O}, ;

{ "PHONE', "C', 13, 0}, ;

{ "1Q, N, 3, 01} }
aList :={ "1Q", "NAME" }
aRet := FLEDI T(aStruct, aList)

M "rQ, "N, 3, 013}, { "NAw', "C', 10, 0} }

aRet := FLEDIT(aStruct, {})

? aRet == aStruct // .T.

aList :={ "iq", "NOTEX ST" }
aRet := _FLEDIT(aStruct, aList
{4 {trQ, "N, 3, 0})
aList :={ "NOTEXI ST" }
aRet := __FLEDIT(aStruct, alList) I {3

I/l Create a newfile that contain part of the original structure
LOCAL aStruct, aList, aRet

USE TEST
aStruct := DBSTRUCT()
aList := { "NAME" }
DBCREATE("Onl yNane. DBF', __ FLEDIT(aStruct, aList))
St at us
Ready
Conpl i ance
CA-d i pper has internal undocunented function named _ FLEDI T(), in Harbour we

nane it _ dbStructFilter(). The new nane gives a better description of what this

function does. In Harbour _ FLEDI T() sinply <calls _ dbStructFilter() and therefor
the later is the recomended function to use.

This function is only visible if source/rdd/dbstrux. prg was conpiled wth the
HB_C52_UNDCC fl ag.

Pl at f or ns
Al l
Fil es

Header file is dbstruct.ch Library is rdd
See Al so:

DBCREATE DBSTRUCT() __dbCopyStruct () __dbStructFilter()

dbStructFilter()

FiTter a database structure array

Synt ax

__dbStructFilter(<aStruct>, [<aFieldList>) --> aStructFiltered
Argunent s

<aStruct> is a multidinensional array with database fields structure, which
is usually the output from DBSTRUCT(), where each array element has the foll ow ng
structure:

<aFieldList> is an array where each elenent is a field name. Nanes could be
speci fied as uppercase or | owercase.

Ret ur ns

__dbStructFilter() return a new nultidinmensional array where each elenent is

in the same structure as the original <aStruct>, but the array is built according
tothe list of fields in <aFieldList> |If <aFieldList>is enpty, _ dbStructFilter()
return reference to the original <aStruct> array.

Descri ption

__dbStructFilter() can be use to create a sub-set of a database structure,
based on a given field Iist.

Note that field nanes in <aStruct> MJST be specified in uppercase or else no
mat ch woul d be found.

SET EXACT has no effect on the return val ue.

Exanpl es

LOCAL aStruct, aList, aRet
aStruct :={ { "CODE', "N', 4, 01}, ;

{ "NAME', "C', 10, O}, ;

{ "PHONE', "C', 13, 0}, ;

{"1Q, "N, 3 0}}
aList :={ "1Q", "NAME" }
aRet := dbStructFilter(aStruct, aList)

// { { HIQ., "N'., 31 0 }1 { "NAI\E"., IICI, 101 0 } }

aRet := dbStructFilter(aStruct, {})

? aRet == aStruct // .T.

aList :={ "iqg", "NOTEX ST" }
aRet := _dbStructFilter(aStruct, aList)
M {trQ, "N, 3, 0})
aList :={ "NOTEXI ST" }
aRet := _ dbStructFilter(aStruct, aList) I {3

I/l Create a newfile that contain part of the original structure
LOCAL aStruct, aList, aRet

USE TEST
aStruct := DBSTRUCT()
aList := { "NAME" }
DBCREATE("Onl yNane. DBF', _ dbStructFilter(aStruct, aList))
St at us
Ready
Conpl i ance

__dbStructFilter() is a Harbour extension. CA-Cipper has an interna
undocurent ed function named _ FLEDI T() that does exactly the same thing. The new
nane gives a better description of what this function does.

Pl at f or ns

All
Fil es

Header file is dbstruct.ch Library is rdd
See Al so:

DBCREATE() DBSTRUCT() _dbCopyStruct () FLEDI T()*

DI SKSPACE()

Get the ampunt of space avail able on a disk
Synt ax
DI SKSPACE([<nDrive>]) --> nDiskbytes
Argunent s

<nDrive> The nunber of the drive you are requesting info on where 1 = A 2 =
B, etc. For 0 or no paraneter, DiskSpace will operate on the current drive.
default is O

Ret ur ns

<nDi skByt es> The nunber of bytes on the requested disk that match the
requested type.

Descri ption

By default, this function will return the nunber of bytes of free space on
the current drive that is available to the user requesting the information.

If information is requested on a disk that is not available, a runtine error
2018 will be rai sed.

Exanpl es
? "You can use : " +Str(DiskSpace()) + " bytes " +;
Not e: See tests\tstdspac.prg for another exanple
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ms
Dos, W n32, Cs/ 2
Fil es

Library is rtl Header is fileio.ch

The

HB DI SKSPACE()

CGet "the anount of space avail able on a disk
Synt ax
HB_ DI SKSPACE([<cDrive>] [, <nType>]) --> nDi skbytes
Argunent s
<cDrive> The drive letter you are requesting info on. The default is A
<nType> The type of space being requested. The default is HB DI SK AVAI L.
Ret ur ns

<nDi skByt es> The nunber of bytes on the requested disk that match the
requested type.

Descri ption

By default, this function will return the nunber of bytes of free space on
the current drive that is available to the user requesting the information.

There are 4 types of information avail abl e:

HB_FS_AVAI L The anount of space available to the user making the request.
This value could be less than HB FS FREE if disk quotas are supported by the O S
in use at runtine, and disk quotas are in effect. Qherwise, the value wll be
equal to that returned for HB _FS FREE

HB_FS_FREE The actual anmpount of free di skspace on the drive

HB_FS USED The nunber of bytes in use on the disk

HB FS TOTAL The total anmpunt of space allocated for the user if disk
quotas are in effect, otherwi se, the actual size of the drive.

If information is requested on a disk that is not available, a runtine error
2018 will be rai sed.

Exanpl es

? "You can use : " +Str(HB_Di skSpace()) + " bytes " +;
"Qut of atotal of " + Str(HB_Di skSpace('C.',HB_FS TOTAL))

Note: See tests\tstdspac.prg for another exanple
St at us
Ready
Conpl i ance
CA-Cipper will return an integer value which limts it's usefulness to
drives less than 2 gigabytes. The Harbour version will return a floating point
value with O decimals if the disk is > 2 gigabytes. <nType> is a Harbour extension
Pl at f or ms
Dos, W n32, CS/ 2, Uni x
Fil es

Library is rtl Header is fileio.ch

Drg)r |
Display listings of files
Synt ax
__Dir([<cFileMask>]) --> NL
Argunent s
<cFil eMask> File mask to include in the function return. It could contain

path and standard wi | dcard characters as supported by your OS (like * and ?). If
<cFi | eMask> contains no path, then SET DEFAULT path is used to display files in the

mask.
Ret ur ns

_Dir() always returns NI L.
Descri ption

If no <cFileMask> is given, _ Dir() displays information about all *.dbf in
the SET DEFAULT path. This information contains: file nane, nunber of records,
| ast update date and the size of each file.

If <cFileMask> is given, _ Dir() list all files that match the nmask wth the
followi ng details: Nane, Extension, Size, Date.

DR command is preprocessed into _ Dir() function during conpile tine.

__Dir() is a conpatibility function, it is superseded by D RECTORY() which
return all the information in a nultidinensional array.
Exanpl es
_Dir() /1 information for all DBF files in current directory
_Dir("*.dbf") /1 list all DBF file in current directory
/1 list all PRGfiles in Harbour Run-Tine library
/1 for DOS conpatible operating systens
Dir("c:\harbour\source\rtl*.prg")
/1 list all files in the public section on a Unix |ike machine
__Dbir("/pub")
St at us
Ready
Conpl i ance

DBF information: CA-Cipper displays 8.3 file nanes, Harbour displays the
first 15 characters of a long file nane if avail abl e.

File listing: To format file nanes displayed we use sonething |ike: PadR(

Nanme, 8) + " " + PadR(Ext, 3) CA-Clipper use 8.3 file nane, with Harbour it
woul d probably cut 1long file nanes to feet this tenpl ate.
Fil es
Library is rtl
See Al so:

ADI R ARRAY() SET DEFAULTDI R

Dl R

Display listings of files

Synt ax

DI R [<cFi | eMask>]
Argunent s

<cFileMask> File mask to include in the function return. It could contain

path and standard wi | dcard characters as supported by your OS (like * and ?). If
<cFi | eMask> contains no path, then SET DEFAULT path is used to display files in the
mask.

Descri ption
If no <cFil evask> is given, Dir(

_)
the SET DEFAULT path, this informat
update date and the size of each fi

di splay information about all *.dbf in
on contain: file name, nunber of records, |ast
e

i
|
If <cFileMask> is given, __Dir() list all files that match the nask wth the
foll owi ng details: Nane, Extension, Size, Date.

DIR command is preprocessed into _Dir() function during conpile tine.

_Dir() is a conpatibility function, it is superseded by D RECTORY() which
returns all the information in a nultidinmensional array.

Exanpl es
D R [l information for all DBF files in current directory
dir "*_ dbf" /1 list all DBF file in current directory
/1 list all PRGfiles in Harbour Run-Tine |ibrary
/1 for DOS conpatible operating systens
Dir "c:\harbour\source\rtl*.prg"
/1 list all files in the public section on a Unix |ike machine
Dir "/pub”
St at us
Ready
Conpl i ance

DBF information: CA-Cdipper displays 8.3 file names, Harbour displays the
first 15 characters of a long file nane if avail able.

File listing: To format file nanes displ ayed we use sonething like: PadR(

Nane, 8) + " " + PadR(Ext, 3) CA-Clipper use 8.3 file nane, with Harbour it
woul d probably cut long file nanes to feet this tenplate.
See Al so:

ADIR() ARRAY() SET DEFAULT__Dir()*

ADI R()

Fill pre-defined arrays with file/directory informtion

Synt ax

ADI R([<cFil eMask>], [<aNane>], [<aSize>], [<aDate>],
[<aTime>], [<aAttr>]) --> nDirEnries

Argunent s

<cFil eMask> File mask to include in the function return. It could contain

path and standard wi | dcard characters as supported by your OS (like * and ?). If
you omt <cFileMask> or if <cFileMask> contains no path, then the path from SET
DEFAULT i s used.

<aNane> Array to fill with file name of files that meet <cFil eMask>. Each

element is a Character string and include the file nane and extension w thout the
path. The nane is the long file nanme as reported by the OS and not necessarily the
8. 3 uppercase nane.

<aSize> Array to fill with file size of files that nmeet <cFil eMask>. Each
element is a Numeric integer for the file size in Bytes. Directories are always
zero in size.

<aDate> Array to fill with file last nodification date of files that neet
<cFi | eMask>. Each element is of type Date.

<aTinme> Array to fill with file last nodification time of files that neet
<cFi | eMask>. Each element is a Character string in the format HH mm ss.

<aAttr> Array to fill with attribute of files that meet <cFil eMask>. Each
element is a Character string, see DI RECTORY() for information about attribute
values. If you pass array to <aAttr>, the function is going to return files with
normal , hidden, systemand directory attributes. If <aAttr> is not specified or
with type other than Array, only files with normal attribute would return.

Ret ur ns
ADIR() return the nunber of file entries that neet <cFil eMask>

Descri ption

ADI R() return the number of files and/or directories that match a specified
skeleton, it also fill a series of given arrays with the nanme, size, date, tine
and attribute of those files. The passed arrays should pre-initialized to the
proper size, see exanple below. In order to include hidden, systemor directories
<aAttr> must be specified.

ADIR() is a conpatibility function, it is superseded by DI RECTORY() which
returns all the information in a nultidinmensional array.

Exanpl es
LOCAL aName, aSize, aDate, aTinme, aAttr, nLen, i
nLen := ADIR("*.JPG') /1 Number of JPG files in this directory
IF nLen > 0
aName := Array(nLen) /1 make roomto store the information
aSi ze := Array(nLen)
aDate := Array(nLen)
aTime := Array(nLen)
aAttr := Array(nLen)
FORi =1 TO nLen
? aName[i], aSize[i], aDate[i], aTinme[i], aAttr[i]
NEXT
ELSE
? "This directory is clean fromsnut"
ENDI F
St at us
Ready

Conpl i ance

<aName> is going to be fil
upper case nane.

Files
Library is rtl
See Al so:

ARRAY ARRAY() SET DEFAULT

with long file nane and not necessarily

the 8.3

ERRORSYS()

Install default error handl er
Synt ax
ERRORSYS() --> NIL
Argunent s

Ret ur ns
ERRORSYS() always return NIL.

Descri ption
ERRORSYS() is called upon startup by Harbour and install the default error
handl er. Normally you should not call this function directly, instead use
ERRORBLOCK() to install your own error handler.

St at us
Ready

Conpl i ance
ERRORSYS() works exactly like CA-dipper's ERRORSYS().

Fil es
Library is rtl

See Al so:

ARRAY ARRAY

FOPEN()
Open a file.

Synt ax

FOPEN(<cFile> [<nModde>]) --> nHandl e
Argunent s

<cFile> Nane of file to open.

<nMbde> Dos file open node.

Ret ur ns
<nHandl e> A file handl e.
Descri ption

This function opens a file expressed as <cFile> and returns a file handle to

be used with other lowlevel file functions. The value of <nMde> represents the
status of the file to be opened; the default value is 0. The file open npdes are as

f ol | ows:

If there is an error in opening a file, a -1 will be returned by the

function. Files handles nay be in the range of 0 to 65535. The status of the SET
DEFAULT TO and SET PATH TO comrands has no effect on this function. Directory nanes

and paths nust be specified along with the file that is to be opened.

If an error has occured, see the returns values from FERROR() for possible
reasons for the error.

Exanpl es

| F (nH =FOPEN(' X. TXT',66) < 0
? '"File can't be opened'
ENDI F
St at us

Ready
This function is CA-Cipper conpliant

Files
Library is rtl Header 1is fileio.ch

See Al so:

ECREATE() FERROR() FCLOSE()

FCREATE(?e

Creates a fi

Synt ax
FCREATE(<cFile>, [<nAttribute>]) --> nHandle

Argunent s
<cFile> is the nane of the file to create.
<nAttribute> Nuneric code for the file attributes.

Ret ur ns
<nHandl| e> Nuneric file handle to be used in other operations.

Descri ption
This function creates a newfile with a filenane of <cFile> The default
val ue of <nAttribute>is 0 and is used to set the attribute byte for the file
being created by this function. The return value will be a file handle that is
associated with the new file. This nunber will be between zero to 65, 535,
inclusive. If an error occurs, the return value of this function wll be -1.

If the file <cFile> already exists, the existing file will be truncated to a
file length of 0 bytes.

If specified, the followi ng table shows the value for <nAttribute> and their
related neaning to the file <cFile> being created by this function

Exanpl es

| F (nh: =FCREATE(" TEST. TXT") <0

? "Cannot create file"

ENDI F
St at us

Ready
Conpl i ance

This function is CA-Clipper conpliant.
Fil es

Library is rtl Header is fileio.ch

See Al so:

FCLOSE() FQPEN() FWRI TE() FREAD() FERROR()

FREAD()

Reads a specified nunber of bytes froma file.
Synt ax

FREAD(<nHandl e>, @xcBuffer>, <nBytes>) --> nBytes
Argunent s

<nHandl| e> Dos file handl e

<cBuf f er Var > Char acter expression passed by reference.

<nByt es> Nunber of bytes to read.
Ret ur ns

<nBytes> the nunber of bytes successfully read fromthe file. <nHandl e>
Descri ption

This function reads the characters froma file whose file handle is <nHandl e>
into a character nenory variabl e expressed as <cBuffer>. The function returns the
nunber of bytes successfully read into <cBuffer>.

The val ue of <nHandle> is obtained fromeither a call to the FOPEN() or the
FCREATE() function.

The <cBuffer> expression is passed by reference and nmust be defined before
this function is called. It also nust be at |least the same |ength as <nBytes>.

<nBytes> is the nunber of bytes to read, starting at the current file pointer
position. If this function is successful in reading the characters fromthe file,
the length of <cBuffer> or the nunmber of bytes specified in <nBytes> will be the
val ue returned. The current file pointer advances the nunber of bytes read with
each successive read. The return value is the nunber of bytes successfully read
fromthe file. If a O is returned, or if the nunber of bytes read matches neither
the length of <cBuffer> nor the specified value in <nBytes> an end-of-file

condi tion has been reached.

Exanpl es

cBuf f er : =SPACE(500)

I F (nH =FOPEN(' X. TXT)) >0
FREAD(Hh, @Buf f er, 500)
? chuffer

ENDI F

FCLOSE(nH)

St at us
Ready
Conpl i ance

This function is CA-Clipper conpliant, but also extends the possible buffer
size to strings greater than 65K (depending on platfornj.

Files
Library is rtl
See Al so:

BI N2| Bl N2L () Bl N2W) FERROR() FWRI TE()

FWRI TE()

Wites characters to a file.

Synt ax

FWRI TE(<nHandl e>, <cBuffer>, [<nBytes>]) --> nBytesWitten
Argunent s
<nHandl| e> DCS fil e handl e nunber.

<cBuf f er > Character expression to be witten.

<nByt es> The nunber of bytes to wite.
Ret ur ns

<nBytesWitten> the nunber of bytes successfully witten.
Descri ption

This function wites the contents of <cBuffer> to the file designated by its
file handl e <nHandl e>. If used, <nBytes> is the nunber of bytes in <cBuffer> to
wite.

The returned value is the nunber of bytes successfully witten to the DGS

file. If the returned value is 0, an error has occurred (unless this is intended).
A successful wite occurs when the nunber returned by FWRITE() is equal to either
LEN(<cBuffer>) or <nBytes>.

The val ue of <cBuffer> is the string or variable to be witten to the open
DOS fil e <nHandl e>.

The val ue of <nBytes> is the nunmber of bytes to wite out to the file. The
disk wite begins with the current file position in <nHandle>. If this variable is
not used, the entire contents of <cBuffer>is witten to the file. To truncate a
file. a call of FWRITE(nHandle, "", 0) is needed.
Exanpl es
nHandl e: =FCREATE(' x. t xt")
FOR X:=1 to 10
FWRI TE(nHandl e, STR(x))
NEXT
FCLOSE(nHandl e)
St at us
Ready
Conpl i ance

This function is not CA-Cipper conpatile since it can wites strings
great her the 64K

Files
Library is rtl
See Al so:

FCLOSE() FCREATE() FERROR() FOPEN() | 2BI N() L2BI N()

FERROR()

Reports the error status of lowlevel file functions
Synt ax
FERROR() --> <nError Code>
Ret ur ns
<nError Code> Value of the DCS error |last encountered by a lowlevel file
functi on.
FERROR() Return Val ues
Er r or Meani ng
0 Successf ul
D File not found
B Pat h not found
i [Too many files open
3 IAccess deni ed
3 nval i d handl e
B nsufficient menory
15 nvalid drive specified
19 Attenpted to wite to a wite-protected disk
D1 Drive not ready
P23 Dat a CRC error
P9 Wite fault
30 Read fault
32 Sharing violation
33 Lock Violation
Descri ption

After every | owl evel
provi des additional
functions's performance.|f the FERROR()
detected.Below is a table

file function,this function w !l
i nformati onon the status of

return
the last | owl
function returns a O,

of possibles values returned by the

Exanpl es
#i nclude "Fileio.ch"
11
nHandl e : = FCREATE(" Tenp. txt", FC_NORMAL)
| F FERROR() '= 0
? "Cannot create file, DOS error ", FERROR()
ENDI F
St at us
Ready
Conpl i ance

This function is CA-Clipper conpatible
Fil es
Library is rtl
See Al so:

a val ue that

evel file

no error was
FERROR() functi on.

FCLOSE() FERASE() FOPEN() FWRI TE()

FCLOSE()

Cl oses an open file
Synt ax
FCLOSE(<nHandle>) --> <l Success>
Argunent s
<nHandl e> DOS file handl e
Ret ur ns
<l Success> Logical TRUE (.T.) or FALSE (.F.)
Descri ption
This function closes an open file with a dos file handle of <nHandl e> and
wites the associated DOS buffer to the disk. The <nHandl e> value is derived from
the FCREATE() or FOPEN() function.
Exanpl es
nHandl e: =FOPEN(' x. t xt")

? FSEEK(nHandl €0, 2)
FCLOSE(nHandl e)

St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files
Library is rtl
See Al so:

FOPEN() ECREATE() FREAD() FWRI TE() FERROR()

FERASE()

Erase a file from di sk

Synt ax

FERASE(<cFile>) --> nSuccess

Argunent s

<cFile> Nanme of file to erase
Ret ur ns

<nSuccess> 0 if successful, -1 if not
Descri ption

This function deletes the file specified in <cFile> fromthe disk. No

ext ensi ons are assuned. The drive and path ny be included in <cFile>;, neither the
SET DEFAULT not the SET PATH command controls the performance of this function.If
the drive or path is not used, the function will look for the file only on the
currently selected direcytory on the |ogged drive.

If the function is able to successfully delete the file fromthe disk, the

val ue of the function will be 0; otherwise a -1 will be returned.|f not successfu,
aditional information may be obtained by calling the FERROR() function.

Note: Any file to be renoved by FERASE() nust still be closed.

| F (FERASE(" TEST. TXT") ==0)
? "File successfully erased”

ELSE
? "File can not be del et ed"

ENDI F
St at us

Ready
Conpl i ance

This function is CA-Cipper Conpatible
Files

Library is rtl
See Al so:

FERROR FRENANE

FRENANE()

Renames a fi

Synt ax

FRENAME(<cO dFile>, <cNewFile>) --> nSuccess
Argunent s
<cAO dFile> dd filenarne to he changed
<cNewFi | e> New fil ename
Ret ur ns

<nSuccess> |f sucessful, a O will he returned otherwise, a -1 will be
r et ur ned.

Descri ption

This function renanes the specified file <cOdFile> to <cNewFile> A filenane
and/ or directory nane nay be specified for either para- nmeter. However, if a path
is supplied as part of <cNewFile> and this path is different fromeither the path
specified in <cOdFile> or (if none is used) the current drive and directory, the
function wll not execute successfully.

Nei t her paranmeter is subject to the control of the SET PATH TO or SET DEFAULT

TO commands. |In attenpting to locate the file to be renaned, this function will
search the default drive and directory or the drive and path specified in
<cAdFile> It will not search directories naned by the SET PATH TO and SET DEFAULT
TO commands or by the DOS PATH st at enent.

If the file specified in <cNewFile> exists or the file is open, the function
will be unable to rename the file.If the function is unable to conplete its
operation,it will return a value of -1. |If it is able to rename the file, the
return value for the function wll be 0.A call to FERROR() function will give
addi tional infor- mation about any error found.

Exanpl es

nResul t: =FRENAME(" x. t xt ", "x1.txt")
IF nResult <O
? "File could not be renaned."”

ENDI F
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files
Library is rtl
See Al so:

ERASE FERASE() FERROR() FI LE() RENAVE

FSEEK()

Positions the file pointer in a file.
Synt ax
FSEEK(<nHandl e>, <nCffset>, [<nOrigin>]) --> nPosition
Argunent s
<nHandl e> DOS file handl e.
<nO fset> The nunber of bytes to nove.
<nOrigin> The relative position in the file.
Ret ur ns
<nPosition> the current position relative to begin-of-file
Descri ption
This function sets the file pointer in the file whose DOS file handle is
<nHandl e> and noves the file pointer by <expN2> bytes fromthe file position
designated by <nOrigin> The returned value is the relative position of the file

pointer to the beginning-of-file marker once the operation has been conpl et ed.

<nHandl e> is the file handle nunber. It is obtained fromthe FOPEN() or
FCREATE() functi on.

The val ue of <nOfSet> is the nunber of bytes to nove the file pointer from
the position determ ned by <nOrigin> The value of <nOffset> nay be a negative
nunber, suggesting backward novenent.

The val ue of <nOrigi n> designates the starting point fromwhich the file
poi nter should he noved, as shown in the follow ng tabl e:

If a value is not provided for <nOrigin> it defaults to 0 and noves the file
poi nter fromthe begi nning of the file.

Exanpl es

/1l here is a function that read one text line froman open file

/1 nH = file handl e obtained from FOPEN()
/1l cB = a string buffer passed-by-reference to hold the result
/1 nMaxLi ne = maxi mum nunber of bytes to read

#defi ne ECL HB_OSNEW.I NE()
FUNCTI ON FREADI n(nH, c¢B, nMaxLine)
LOCAL cLi ne, nSavePos, nEol, nNumRead

cLine : = space(nMaxLine)

cB ="'

nSavePos := FSEEK(nH, 0, FS RELATIVE)

nNunmRead : = FREAD(nH, @Line, nMaxLine)

IF (neol := AT(EQOL, substr(cLine, 1, nNunRead))) ==
cB := cLine

ELSE

cB := SUBSTR(cLine, 1, nkEol - 1)
FSEEK(nH, nSavePos + nEol + 1, FS SET)
ENDI F
RETURN nNunRead !'= 0
St at us
Ready
Conpl i ance
This function is CA-Clipper conpliant.
Files

Library is rtl Header is fileio.ch

See Al so:

FCREATE FERROR() FOPEN() FREAD() FREADSTR() FVRI TE

FI LE()

Tests for the existence of file(s)

Synt ax

FI LE(<cFileSpec>) --> | Exists
Argunent s

<cFi | eSpec> Dos Skeleton or file nane to find.
Ret ur ns

<|Exists> a logical true (.T.) if the file exists or logical false (.F.)
Descri ption

This function return a logical true (.T.) if the given filenane <cFil eSpec>
exi st.

Dos skel etons synbols nmay be used in the filenane in <cFileSpec> as may the

drive and/or path name. If a path is not explicity specified, FILE() will |ook for
the file in the SET DEFAULT path, then in each SET PATH path, until the file is
found or there are no nore paths to search. The DOS PATH i s never searched and the
current drive/directory is only searched if SET DEFAULT is bl ank

Exanpl es

ar bour\ doc\ conpi ler.txt")

? file('c:\h
? file('c:/harbour/doc/subcodes.txt")

St at us

S (wld card support is mssing)
Conpl i ance

This function is CA-Clipper conpatible.
Files

Library is rtl
See Al so:

SET DEFAULT SET PATHSET()

FREADSTR()

Reads a string froma file.
Synt ax
FREADSTR(<nHandl e>, <nBytes>) --> cString
Argunent s
<nHandl e> DOS file handl e nunber.
<nByt es> Nunber of bytes to read.
Ret ur ns
<cString> an characted expression
Descri ption

This function returns a character string of <nBytes> bytes froma file whose
DCS file handl e is <nHandl e>.

The value of the file handle <nHandle> is obtained fromeither the FOPEN() or

FCREATE() functions.

The val ue of <nBytes> is the nunber of bytes to read fromthe file. The

returned string will be the nunber of characters specified in <nBytes> or the

number of bytes read before an end-of-file charac- ter (ASCII 26) is found.

NOTE This function is simlar to the FREAD() function, except that it wll

not read binary characters that may he required as part of a header of a file
construct. Characters Such as CHR(0) and CHR(26) may keep this function from
performing its intended operation. In this event, the FREAD() function should he

used in place of the FREADSTR() functi on.
Exanpl es

IF (nH:
cStr
? cStr
ENDI F
FCLOSE(nH)

FOPEN("x.txt")) >0
Freadstr (nH, 100)

St at us
Ready
Conpl i ance

This function is not CA-Cipper conpliant since may read strings greather the

65K dependi ng of platform
Files
Library is rtl
See Al so:

BI N2| Bl N2L () Bl N2W) FERROR() FREAD() FSEEK()

RENAME

Changes the nanme of a specified file

Synt ax
RENAME <cO dFi |l e> TO <cNewFi | e>

Argunent s
<cA dFile> Ad fil enane
<cNewfFi | e> New Fi | enane

Descri ption
Thi s command changes the name of <cO dFile> to <cNewFile> Both <cd dFile> and
<cNewFi | e> nmust include a file extension.This command if not affected by the SET
PATH TO or SET DEFAULT TO commands; drive and directoy designaters nust be specified
if either fileis in a directory other then the default drive and directory.

If <cNewFile>id currently open or if it previously exists, this conmand wll
not performthe desired operation.

Exanpl es
RENAME c:\ aut oexec. bat to c:\autoexec.old
St at us
Ready
Conpl i ance
This command is CA-Cipper conpatible
Files
Library is rtl
See Al so:

CURDIR() ERASEFI LE() FERASE() FRENAVE()

ERASE

Renbve a file from di sk

Synt ax

ERASE <xcFi |l e>

Argunent s
<xcFile> Name of file to renpve
Descri ption

This command removes a file fromthe disk. The use of a drive,directo- ry,and
wi | d-card skel eton operator is allowed for the root of the filenanme.The file
extension is required. The SET DEFAULT and SET PATH commands do not affect this
command.

The file nust be considered closed by the operating systembefore it nmay be
del et ed.

Exanpl es

Er ase c:\aut oexec. bat
Erase c:/tenp/read.txt

St at us

Ready
Conpl i ance

This command is CA-Cipper conpatible
See Al so:

CURDIR() F| |E() FERASE() DELETE FI LE

DELETE FI LE

Renbve a file from di sk

Synt ax

DELETE FI LE <xcFil e>

Argunent s
<xcFile> Name of file to renpve
Descri ption

This command removes a file fromthe disk. The use of a drive,directo- ry,and
wi | d-card skel eton operator is allowed for the root of the filenanme.The file
extension is required. The SET DEFAULT and SET PATH commands do not affect this
command.

The file nust be considered closed by the operating systembefore it nmay be
del et ed.

Exanpl es

Er ase c:\aut oexec. bat
Erase c:/tenp/read.txt

St at us

Ready
Conpl i ance

This command is CA-Cipper conpatible
See Al so:

CURDI R FI LE() FERASE() ERASE

TYPEFI LE()

Show the content 'of a file on the console and/or printer

Synt ax

__TYPEFILE(<cFile> [<IPrint>]) --> NL
Argunent s

<cFile> is a name of the file to display. If the file have an extension, it
must be specified (there is no default val ue).

<IPrint> is an optional |ogical value that specifies whether the output
should go only to the screen (.F.) or to both the screen and printer (.T.), the
default is (.F.).

Ret ur ns
__TYPEFILE() always return NI L.
Descri ption

__TYPEFILE() function type the content of a text file on the screen wth an
option to send this information also to the printer. The file is displayed as is
wi t hout any headi ngs or formating.

If <cFile> contain no path, _ TYPEFILE() try to find the file first in the

SET DEFAULT directory and then in search all of the SET PATH directories. If
<cFil e> can not be found a run-tine error occur.

Use SET CONSCLE OFF to suppress screen output. You can pause the output using
Crl-S, press any key to resune.

__TYPEFILE() function is used in the preprocessing of the TYPE comrand.
Exanpl es

The foll owi ng exanpl es assune a file name MyText.DAT exist in all
specified paths, a run-tine error would displayed if it does not

/1 display MyText.DAT file on screen
__TYPEFI LE("MyText.DAT")

/1 display MyText.DAT file on screen and printer
__TYPEFI LE("MyText.DAT", .T.)

/1 display MyText.DAT file on printer only
SET CONSOLE OFF
__TYPEFI LE("MyText.DAT", .T.)
SET CONSOLE ON
St at us
Ready
Conpl i ance
__TYPEFILE() works exactly like CA-Cipper's _ TYPEFILE()
Fil es
Library is rtl

See Al so:

COPY FILE SET DEFAULTSET PATHSET PRI NTERTYPE

TYPE

Show the content of a file on the console, printer or file
Synt ax
TYPE <xcFile> [TO PRINTER] [TO FI LE <xcDest Fi | e>]

Argunent s
<xcFile> is a nane of the file to display. If the file have an extension, it
must be specified (there is no default value). It can be specified as literal file
nane or as a character expression enclosed in parentheses.

the screen and printer.

given (.txt) is added to the output file name. <xcDestFile> can be specified as
literal file nanme or as a character expression enclosed in parentheses.
Descri ption

TYPE command type the content of a text file on the screen with an option to
send this information also to the printer or to an alternate file. The file is

di spl ayed as is without any headings or formating.

If <xcFile> contain no path, TYPE try to find the file first in the SET

DEFAULT directory and then in search all of the SET PATH directories. If <xcFile>
can not be found a run-tine error occur.

If <xcDestFile> contain no path it is created in the SET DEFAULT directory.

Use SET CONSCLE OFF to suppress screen output. You can pause the output using
Crl-S, press any key to resune.

Exanpl es

The foll owi ng exanpl es assune a file nane MyText.DAT exist in all
specified paths, a run-tine error would displayed if it does not

/1 display MyText.DAT file on screen
TYPE MyText . DAT

/1 display MyText.DAT file on screen and printer
TYPE MyText.DAT TO PRI NTER

/1 display MyText.DAT file on printer only
SET CONSOLE OFF

TYPE MyText.DAT TO PRI NTER

SET CONSOLE ON

/1 display MyText.DAT file on screen and into a file M/Report.txt
TYPE MyText.DAT TO FI LE MyReport

St at us
Ready
Conpl i ance
TYPE wor ks exactly like CA-dipper's TYPE
See Al so:

COPY FILE SET DEFAULTSET PATHSET PRINTER _TYPEFI LE()

CURDI R()

Returns the current OS directory nane.

Synt ax

CURDIR([<cDrive>]) ~--> cPath
Argunent s

<chDir> OS drive letter
Ret ur ns

<cPath> Nanme of directory
Descri ption

This function yields the nane of the current OS directory on a specified
drive.If <cDrive> is not speficied,the currently |l ogged drive will be used.

This function should not return the |l eading and trailing (back)sl ashes.

If an error has been detected by the function,or the current OS directory is
the root,the value of the function will be a NULL byte.

Exanpl es
? Curdir()
St at us
Ready
Conpl i ance
This function is Ca-Cipper Conpatible
Pl at f or ns
ALL
Fil es
Library is rtl
See Al so:

FlI LE()

COPY FI LE

Copies a file.

Synt ax

COPY FI LE <cfile> TO <cfilel>
Argunent s

<cFil e> Fi l ename of source file <cFilel> Filenane of target file
Descri ption

Thi s command nmakes an exact copy of <cFile> and names it <cFilel> Both files

must have the file extension included; the drive and the directory nanmes nust al so
be specified if they are different from the default drive and/or director.<cFilel>
also can refer to a OS device (e.g. LPT1).This command does not obsert the SET PATH
TO or SET DEFAULT TO settings.

Exanpl es

COPY FI LE C:\ HARBOUR\ TESTS\ ADI RTEST. PRG t o C:.\ TEMP\ ADI RTEST. PRG
COPY FI LE c:\harbour\utils\hbdoc\gennf.prg to LPT1

St at us
Ready

Conpl i ance
This command is Ca-dipper conpliant

See Al so:

ERASE RENAMEFRENANE() FERASE()

HB_ FEOF()
Check for end-of-file.

Synt ax
HB_FEOF(<nHandl e>) --> || sEof
Argunent s
<nHandl e> The handl e of an open file.
Ret ur ns
<IIskof> .T. if the file handle is at end-of-file, otherw se .F.
Descri ption
This function checks an open file handle to see if it is at E-OF.

If the file handle is missing, not numeric, or not open, then this

returns . T. and sets the value returned by FERROR() to -1 (FS_ERROR) or a

C-compi | er dependent errno val ue (EBADF or EI NVAL).
Exanpl es

nH =FOPEN(' FI LE. TXT")
? FREADSTR(nH, 80)
I F HB_FEOF(nH)
? "End-of-file reached.'

ELSE
? FREADSTR(nH, 80)
ENDI F
St at us
Ready
Conpl i ance
This function is a Harbour extension
Files
Library is rtl
See Al so:

FERROR

DI RREMOVE()

Attenpt to renove an directory

Synt ax

DI RCHANGE(<cDirectory>) --> nError
Argunent s

<cDirectory> The nane of the directory you want to renove.
Ret ur ns

<nError> 0 if directory was successfully renoved, otherw se the nunber of
the last error.

Descri ption

This function attenpt to renove the specified directory in <cDirectory> |If
this function fail, the it will return the last OS error code nunmber. See FERROR()
function for the description of the error.

Exanpl es

chDir:= ".\Backup"
i f (DI RREMOVE(cDi r)==0)
? "Renove of directory",cDir, "was successfull"”

endi f
Tests

See exanpl es
St at us

Ready
Conpl i ance

This function is CA Cipper 5.3 conpliant
Pl at f or ns

All
Fil es

Library is rtl

See Al so:

MAKEDI R() p| RCHANGE() | SDI SK() ARRAY() ARRAY() FERROR()

DI RCHANGE()

Changes the directory
Synt ax
DI RCHANGE(<cDirectory>) --> nError
Argunent s
<cDirectory> The nane of the directory you want do change into.
Ret ur ns

<nError> 0 if directory was successfully changed, otherw se the nunber of
the last error.

Descri ption
This function attenpt to change the current directory to the one specidied in
<cDirectory>.1f this function fail, the it will return the last OS error code
nunber. See FERROR() function for the description of the error.

Exanpl es

i f (DI RCHANGE("\tenp")==0)
? "Change to diretory was successfull”

endi f
Tests
See exanpl es
St at us
Ready
Conpl i ance
This function is CA Cipper 5.3 conpliant
Pl at f or ns
Al'l
Files

Library is rtl
See Al so:

MAKEDI R() p| RREMOVE() | SDI SK() ARRAY() ARRAY() FERROR()

MAKEDI R()

Create a new directory
Synt ax
MAKEDI R(<cDirectory>) --> nError
Argunent s
<cDirectory> The nane of the directory you want to create.
Ret ur ns

<nError> 0 if directory was successfully changed, otherw se the nunber of
the last error.

Descri ption
This function attenpt to create a new directory with the name contained in
<cDirectory>.1f this function fail, the it will return the last OS error code
nunber. See FERROR() function for the description of the error

Exanpl es
cDir:= "Tenp"

I f (MAKEDI R(cDir)==0)
? "Directory ",cDr," successfully created

Endi f
Tests

See exanpl es
St at us

Ready
Conpl i ance

This function is CA Cipper 5.3 conpliant
Pl at f or ns

All
Fil es

Library is rtl

See Al so:

DI RCHANGE DI RREMOVE() | SDI SK() ARRAY() ARRAY() FERROR()

| SDI SK()

Verify if a drive is ready

Synt ax

| SDI SK(<cDrive>) --> | Success

Argunent s
<cDrive> An valid Drive letter
Ret ur ns
<l Success> .T. is the drive is ready, otherw se .F.
Descri ption
This function attenpts to access a drive. If the access to the drive was
successfull, it will return true (.T.), otherwise false(.F.). This function is

usefull for backup function, so you can determne if the drive that will recieve
the backup data is ready or not.

Exanpl es

I F I SDI SK("A")
? "Drive is ready "

Endi f
Tests
See Exanpl es
St at us
Ready
Conpl i ance
This function is CA Cipper 5.3 conpliant
Pl at f or ns
Al'l
Files

Library is rtl
See Al so:

DI RCHANGE() vAKEDI R() DI RREMOVE() ARRAY() ARRAY()

PROCNAME()

Gets the nane of the current function on the stack
Synt ax
PROCNAME(<nLevel >) --> <cProcNane>
Argunent s
<nLevel > is the function | evel required.
Ret ur ns
<cProcName> The nane of the function that it is being executed.
Descri ption

This function | ooks at the top of the stack and gets the current executed
function if no argunents are passed. Gtherwise it returns the nanme of the function
or procedure at <nLevel >.

Exanpl es
See Test

Tests

This test will show the functions and procedures in stack
before executing it.
function Test()

LOCAL n := 1

while !'Enpty(ProcNarme(n))

? ProcName(n++)

end do

return nil

St at us

Ready
Conpl i ance

PROCNAME() is fully CA-dipper conpliant.
Files

Library is vm

See Al so:

PROCLINE() pROCFI LE

PROCLI NE()

Gets the line nunber of the current function on the stack
Synt ax
PROCLI NE(<nLevel >) --> <nLi ne>
Argunent s
<nLevel > is the function | evel required.
Ret ur ns
<nLine> The |line nunber of the function that it is being executed.
Descri ption
This function | ooks at the top of the stack and gets the current |ine nunber

of the executed function if no argunents are passed. Qherwise it returns the |ine
nunber of the function or procedure at <nLevel >.

Exanpl es

See Test

Tests
function Test()
? ProcLine(0)
? ProcName(2)
return nil
St at us
Ready
Conpl i ance
PROCLINE() is fully CA-dipper conpliant.
Files
Library is vm

See Al so:

PROCNAME() pPROCEI LE

PROCFI LE()

This function allways returns an enpty string.

Synt ax

PROCFI LE(<xExp>) --> <cEnptyString>
Argunent s

<xExp> 1is any valid type
Ret ur ns

<cEnptyString> Return an enpty string
Descri ption

This function is added to the RTL for full conpatibility. It
an enpty string.

Exanpl es
? ProcFile()
Tests
function Test()
? ProcFile()
? ProcFile(NIL)
? ProcFile(2)
return nil
St at us
Ready
Conpl i ance
PROCFI LE() is fully CA-dipper conpliant.
Files
Library is vm
See Al so:

PROCNAME() prOCLI NE

al ways returns

HB_PVALUE()

Retrieves the value of an argunent.
Synt ax
HB_PVALUE(<nArg>) --> <xExp>
Argunent s

Ret ur ns

<xExp> Returns the value stored by an argunent.
Descri ption

This function is useful to check the value stored in an argunent.
Exanpl es

See Test

Tests
function Test(nValue, cString)
if PCount() ==
? hb_PValue(1), nValue
? hb_PValue(2), cString
endi f
return nil
St at us
Ready
Conpl i ance
HB_PVALUE() is a new function and hence not CA-Cipper conpliant.
Files
Library is vm

See Al so:
PCOUNT

PCOUNT()

Retrieves the nunmber of argunents passed to a function
Synt ax
PCOUNT() --> <nArgs>
Argunent s

Ret ur ns

<nArgs> A nunber that indicates the nunber of argunents passed to a function
or procedure.

Descri ption

This function is useful to check if a function or procedure has received the
requi red nunber of argunents.

Exanpl es

See Test

Tests
function Test(XxExp)
if PCount() ==
? "This function needs a paraneter"”
el se
? xExp
endi f
return nil
St at us
Ready
Conpl i ance
PCOUNT() is fully CA-Clipper conpliant.
Files
Library is vm
See Al so:

HB_PVALUE()

QUIT()

Term nat es "an application.

Synt ax

_QUIT() --> NIL
Argunent s

Ret ur ns

Descri ption
This function terninates the current application and returns to the system
Exanpl es

See Test

Test s

function EndApp(| YesNo)
if |YesNo

__Quit()
endi f
return nil

St at us
Ready
Conpl i ance
_QUIT() is fully CA-Clipper conpliant.
Files
Library is vm
See Al so:
ARRAY

CLI PI NI T()

Initialize various Harbour sub-systens
Synt ax
CLIPINIT() --> NIL
Argunent s

Ret ur ns
CLIPINIT() always return NL
Descri ption
CLIPINIT() is one of the pre-defined INIT PROCEDURE and is executed at
program startup. It declare an enpty MEMWVAR PUBLIC array called GetList that is

going to be used by the Get system It activates the default error handler, and (at
| east for the monment) calls the function that sets the default help key.

St at us
Ready
Conpl i ance

It is said that CLIPINIT() should not call the function that sets the default
hel p key since CA-Cipper does it in sone other place.

Pl at f or ns
Al l
See Al so:

ARRAY|

_Set Hel pK()
Set F1 as the default help key

Synt ax
__SetHel pK() --> NIL
Argunent s

Ret ur ns
__SetHel pK() always return NIL.
Descri ption

Set F1 to execute a function called HELP if such a function is |inked into
t he program

St at us

Ready
Conpl i ance

__SetHel pK() works exactly like CA-Cipper's __ SetHel pK()
Files

Library is vm

See Al so:

XHELP SET KEYSETKEY()

BREAK()

Exits froma BEG N SEQUENCE bl ock
Synt ax
BREAK(<xExp>) --> NIL
Argunent s

<xExp> 1is any valid expression. It is always required. If do not want to
pass any argument, just use N L.

Ret ur ns
Descri ption
This function passes control to the RECOVER statenment in a BEG N SEQUENCE
bl ock.
Exanpl es
Break(NIL)
St at us
Ready
Conpl i ance
BREAK() is fully CA-dipper conpliant.
Files
Library is vm
See Al so:

ARRAY|

)

Call's a procedure or a function

Synt ax

DQ(<xFuncProc> [, <xArgunents...>])
Argunent s

<xFuncProc> = Either a string with a function/procedure nane to be called or
a codebl ock to eval uate.

<xArgurments> = argunents passed to a called function/procedure or to a
codebl ock.

Ret ur ns

Descri ption

This function can be called either by the harbour compiler or by user. The
conpi l er always passes the itemof |IT_SYMBOL type that stores the nane of

procedure specified in DO <proc> WTH ... statenent.
If called procedure/function doesn't exist then a runtime error is generated.
This function can be used as replacenent of nmacro operator. It is also used

internally to inplement DO <proc> WTH <args...> |In this case <xFuncProc> is of
type HB_SYMB.

Exanpl es
cbCode ={| x| MyFunc(x)}
DQ(chCode, 1)
cFunction : = "M/Func"

xRet Val :=DQ(cFunction, 2)

ad style (slower):
DO &cFunction WTH 3

Fil es

Library is rtl

VMVARLGET()

Retrive a local variable froma procedure |evel
Synt ax
__ VMWARLGET(<nProcLevel >, <nlLocal >)

Argunent s
<nProcLevel > |s the procedure | evel, same as used in ProcName() and

ProcLine(), fromwhich a |local variable containts is going to be retrieved
<nLocal > Is the index of the local variable to retrieve.

Ret ur ns

Descri ption
This function is used fromthe debugger
Files

Library is vm

| NKEY()

Extracts the next key code fromthe Harbour keyboard buffer

Synt ax

I NKEY([<nTinmeout>] [,<nEvents>]) --> nKey

Argunent s

<nTinmeout> is an optional timeout value in seconds, with a granularity of

1/10th of a second. If omtted, INKEY() returns immediately. If set to 0, INKEY()
waits until an input event occurs. If set to any other value, INKEY() will return
ei ther when an input event occurs or when
this parameter is specified and it is not

0. But if both

be treated as if it were not present.

<nEvent s>

the timeout period has elapsed. If only
nuneric, it will be treated as if it were

paraneters are specified and this paraneter is not nuneric, it wll

is an optional nask of input events that are to be enabled. If
omitted, defaults to hb_set.HB SET_EVENTMASK. Valid input nasks are in inkey.ch
and are expl ai ned below. It is reconmended
their numeric values, in case the numeric

that the mask nanes be used rather than
val ues change in future rel eases of

Har bour. To allow nmore than one type of input event, sinply add the various mask
nanes toget her.
nkey. ch IMeani ng
NKEY_MOVE VMbuse notion events are all owed
NKEY_LDOWN [The nmouse left click down event is allowed
NKEY_LUP [The nmouse left click up event is allowed
NKEY_RDOWN [The nmouse right click down event is allowed
NKEY_RUP [The nouse right click up event is allowed
NKEY_KEYBOARD Al | keyboard events are all owed
NKEY_ALL Al | nouse and keyboard events are all owed
HB_| NKEY_EXTENDED Ext ended keyboard codes are used

hb_set . HB_SET_EVENTMASK.

Ret ur ns

-47 to 386 for keyboard events or the range 1001 to 1007 for npuse events. Muse
events and non-printabl e keyboard events are represented by the K <event> val ues
listed in inkey.ch. Keyboard event return
equivalent to the printable ASCII character set. Keyboard event return codes in the
range 128 through 255 are assuned to be printable, but results may vary based on

and nationality. If HB_ | NKEY _EXTENDED node is wused, then the return val ue
for keyboard events ranges from1 through 767 and 1077 through 1491, al t hough not

all codes are used.

har dwar e

val ues.

If no keyboard nodifier was used,

codes in the range 32 through 127 are

then HB_INKEY _NONE is added. The At key

adds HB_INKEY_ALT, the Ctrl key adds HB_I NKEY_CTRL, the Shift key adds

HB_| NKEY_SHI FT, and

enhanced keys (KeyPad+/ and Cur sor Pad keys) add

HB | NKEY_ENHANCED. For exanple, Fl1 is scan code 59, so if you just press Fl1, you
get key code 315, but Alt+F1 gives 443, Crl +F1 gives 571, and Shift+ F1 gives
699. And NunPad+/ gives 1077, 1205, 1333, and 1461. At this tinme, the only val ue
conbine with other values is HB_ INKEY ENHANCED (i.e., there are no Alt+C|
conbi nations, etc.)

t hat can

resul t,

if you switch between the nornal
that some codes get translated into a

and extended nodes, you need to be aware
zero in normal node (because there is no

correspondi ng code in normal node) and that these codes get renoved fromthe
i nput buffer in normal node and you won't be able to go back and fetch
themlater in extended node.

Descri ption

keyboard

I NKEY() can be used to detect input events,

or nouse

key clicks (up and/or down).

such as keypress, nmouse novenent,

Exanpl es

/1 Wait for the user to press the Esc key
? "Pl ease press the ESC key."

VWH LE INKEY(0.1) != K ESC

END

Test s
KEYBOARD "AB"; ? INKEY(), INKEY() ==> 65 66

St at us
Started
Conpl i ance

INKEY() is conpliant with the dipper 5.3 INKEY() function with one

exception: The Harbour I NKEY() function will raise an argunent error if the first
paraneter is |less than or equal to 0 and the second paraneter (or the default mask)
is not valid, because otherw se |INKEY would never return, because it was, in
effect, asked to wait forever for no events (Note: In Cipper, this also bl ocks SET
KEY events).

Files
Library is rtl
See Al so:

ARRAY

KEYBOA

DO NOT CALL THI S FUNCTI ON DI RECTLY!

Synt ax

KEYBOARD <cStri ng>
CLEAR TYPEAHEAD

Argunent s
<cString> is the optional string to stuff into the Harbour keyboard buffer
after clearing it first. Note: The character ";" is converted to CHR(13) (this is
an undocunented CA-C i pper feature).

Ret ur ns

Descri ption

Cl ears the Harbour keyboard typeahead buffer and then inserts an optional
string into it.

Exanpl es

/] Stuff an Enter key into the keyboard buffer
KEYBQOARD CHR(13)

/1l Cear the keyboard buffer

CLEAR TYPEAHEAD

Tests
KEYBOARD CHR(13); ? INKEY() ==> 13
KEYBQARD ";" ? I NKEY() ==> 13
KEYBOARD "HELLO'; CLEAR TYPEAHEAD; ? INKEY() ==> 0
St at us
Ready
Conpl i ance
__KEYBOARD() is conpliant with CA-Clipper 5.3
Fil es
Library is rtl
See Al so:

ARRAY KEYBOARD

HB_KEYPUT()

Put "an inkey code to the keyboard buffer.
Synt ax
HB_KEYPUT(<nl nkeyCode>)

Argunent s

<nl nkeyCode> is the inkey code, which should be inserted into the keyboard
buffer.

Ret ur ns

Descri ption

Inserts an inkey code to the string buffer. The buffer is *not* <cleared in

this operation. This function allows to insert such inkey codes which are not in
the range of 0 to 255. To insert nore than one code, call the function repeatedly.
The zero code cannot be inserted.

Exanpl es
/1 Stuff an Alt+PgDn key into the keyboard buffer
HB_KEYPUT(K_ALT_PGDN)

Tests

HB_KEYPUT(K_ALT_PGDN) ; ? INKEY() ==> 417
HB_KEYPUT(K_F11) ; ? INKEY() ==> -40

St at us
Ready
Conpl i ance
HB_KEYPUT() is a Harbour extension
Files
Library is rtl
See Al so:

KEYBOARD ARRAY() | NKEY()

NEXTKEY()

Get the next key code in the buffer without extracting it.

Synt ax

NEXTKEY([<nl nput Mask>]) --> nKey
Argunent s

constants. The sole purpose of this argunent is to allow swtching between using
HB_| NKEY_EXTENDED key codes and using the normal Cipper-conpatible key codes

Ret ur ns

<nKey> The val ue of the next key in the Harbour keyboard buffer
Descri ption

Returns the value of the next key in the Harbour keyboard buffer wthout
extracting it.

Exanpl es

/1 Use NEXTKEY() with INKEY() to change display characters, or by
/] itself to exit the |l oop, so that the caller can detect the Esc.
LOCAL nKey, cChar := "+"
VWH LE TRUE
?? cChar
nKey : = NEXTKEY()
I F nKey == K ESC
EXIT
ELSE
IF nKey '=0
cChar := CHR(nKey)
END | F
END | F
END WHI LE

Test s
KEYBOARD "AB"; ? NEXTKEY(), NEXTKEY() ==> 65 65

St at us
Ready
Conpl i ance

NEXTKEY() is conpliant with CA-Cipper 5.3, but has been extended for
Har bour .

Files
Library is rtl
See Al so:

| NKEY LASTKEY()

LASTKEY()

Get the last key extracted fromthe keyboard buffer.

Synt ax

LASTKEY([<nl nput Mask>]) --> nKey
Argunent s

constants. The sole purpose of this argunent is to allow swtching between using

HB_| NKEY_EXTENDED key codes and using the normal Cipper-conpatible key codes
Ret ur ns

<nKey> The | ast key extracted fromthe keyboard buffer.
Descri ption

Returns the value of the last key exttracted fromthe Harbour keyboard buffer
Exanpl es

/1 Continue | ooping unless the ESC key was pressed in M nFunc()
VH LE TRUE
Mai nFunc()
| F LASTKEY() == K_ESC
EXIT
ENDI F
END WHI LE

Test s
KEYBQARD "AB"; ? | NKEY(), LASTKEY() ==> 65 65

St at us
Ready

Conpl i ance
LASTKEY() is conpliant with CA-Cipper 5.3, but has been extended for
Har bour .

Fil es
Library is rtl

See Al so:

| NKEY LASTKEY()

KEYBOARD

Stuffs the keyboard with a string.
Synt ax
KEYBOARD <cStri ng>
Argunent s

<cString> String to be processed, one character at a time, by the Harbour
keyboard processor

Descri ption
This command stuffs the input buffer with <cString> The nunber of characters
that can be stuffed into the keyboard buffer is controlled by the SET TYPEAHEAD
command and may range fromO to 32,622, with each character appearing in the ASClI
range of 0 to 255. None of the extended keys nmay be stuffed into the keyboard
buffer. Issuing a KEYBOARD " " will clear the keyboard buffer.

Exanpl es
[l Stuff an Enter key into the keyboard buffer
KEYBOARD CHR(13)
/1 dear the keyboard buffer
CLEAR TYPEAHEAD
Tests
KEYBOARD CHR(13); ? INKEY() ==> 13
KEYBOARD "HELLO'; CLEAR TYPEAHEAD; ? | NKEY() ==> 0
St at us
Ready
Conpl i ance
__KEYBOARD() is conpliant with CA-Clipper 5.3
See Al so:

ARRAY KEYBOARD()

READKEY() *
Find out which key term nated a READ.

Synt ax

READKEY() --> nKeyCode
Argunent s

Ret ur ns

READKEY() returns a nuneric code representing the key that caused READ to
term nate.

Descri ption

READKEY() is used after a READ was terminated to determne the exit key
pressed. If the GET buffer was updated during READ, 256 is added to the return
code.

READKEY() is a conpatibility function so try not to use it. READKEY() is
superseded by LASTKEY() which returns the INKEY() code for that key. UPDATED()
could be used to find if the GET buffer was changed during the READ.

St at us

Ready
Conpl i ance

READKEY() is conmpliant with CA-Cipper 5.3
Files

Library is rtl
See Al so:

@..Get | NKEY() LASTKEY() ARRAY() ARRAY() ARRAY()

Returns the nmouse cursor row position.
Synt ax
MRow() --> nMbuseRow
Argunent s

Ret ur ns
<nMouseRow> The npuse cursor row position.
Descri ption
This function returns the current nouse row cursor position. On graphical

systens the val ue represents pixel rows. On character-based systens the val ue
represents character rows as in dipper.

Exanpl es
IF MRow() < 1

? "Mouse is on top row "
ENDI F

St at us
Ready
Conpl i ance

MRON) is conmpliant with CA-dipper 5.3, but has been extended to work on
graphi cal systems as well as character-based systens.

Files
Library is rtl
See Al so:

MCOL()

MCCL()

Returns the nouse cursor col umm position.
Synt ax
Mol () --> nMouseCol um
Argunent s

Ret ur ns
<nMouseCol um> The mouse cursor colum position.
Descri ption
This function returns the columm position of the mouse cursor. On graphical

systens the val ue represents pixels. On character-based systens the val ue
represents character colums as in Cipper.

Exanpl es
IF Mool () <1

? "Mouse is on |eft edge!"
ENDI F

St at us
Ready
Conpl i ance

MRON) is conmpliant with CA-dipper 5.3, but has been extended to work on
graphi cal systems as well as character-based systens.

Pl at f or ns
Al l
Fil es

Library is rtl
See Al so:

MROW)

Li cense

Har bour

Li cense

Descri ption

THE HARBOUR PROJECT COWPI LER LI CENSE

Note: This license applies to nost of the files in the source/conpiler
directory.

This programis free software; you can redistribute it and/or nmodify it under
the terns of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version

This programis distributed in the hope that it will be useful, but WTHOUT ANY
WARRANTY; wi thout even the inplied warranty of MERCHANTABILITY or FITNESS FOR A
PARTI CULAR PURPOSE. See the GNU General Public License for nore details.

You shoul d have received a copy of the GNU General Public License along with
this program if not, wite to the Free Software Foundation, Inc., 675 Mass Ave,
Canbridge, MA 02139, USA (or visit their web site at http://ww.gnu.org/).

THE HARBOUR PROJECT LI BRARY LI CENSE

Note: This license applies to nost of the files in the include directory, source
directory, and subdirectories.

This programis free software; you can redistribute it and/or nodify it under
the ternms of the GNU General Public License as published by the Free Software
Foundation; either version 2, or (at your option) any later version

This programis distributed in the hope that it will be useful, but WTHOUT ANY
WARRANTY; without even the inplied warranty of MERCHANTABILITY or FITNESS FOR A
PARTI CULAR PURPOSE. See the GNU General Public License for nore details.

You shoul d have received a copy of the GNU General Public License along with
this software; see the file COPYING If not, wite to the Free Software
Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA (or visit
the web site http://ww. gnu.org/).

As a special exception, the Harbour Project gives permission for additional uses
of the text contained in its rel ease of Harbour

The exception is that, if you link the Harbour libraries with other files to
produce an executable, this does not by itself cause the resulting executable to
be covered by the GNU General Public License. Your use of that executable is in no
way restricted on account of linking the Harbour library code into it.

Thi s exception does not however invalidate any other reasons why the executable
file mght be covered by the GNU General Public License.

Thi s exception applies only to the code rel eased by the Harbour Project under

the nane Harbour. |If you copy code fromother Harbour Project or Free Software
Foundation rel eases into a copy of Harbour, as the General Public License permts,
the exception does not apply to the code that you add in this way. To avoid

nm sl eading anyone as to the status of such nodified files, you nmust delete this
exception notice fromthem

If you wite nodifications of your own for Harbour, it is your choice whether to
permt this exception to apply to your nodifications. |If you do not w sh that,
del ete this exception notice.

THE OLD HARBOUR PROJECT LI BRARY LI CENSE

Note: This license only applies to the followi ng files:

<pre> contrib\libmsc\dates2.c (Only the DateTinme() function by Jon Berg)
sampl es\pe* source\rtl\philes.c source\rtl\binnumc source\lang\nsgsr852.c
source\l ang\ nsgpl 852. ¢ source\l ang\negpli so.c source\l ang\ nsgpl maz. c
source\l ang\ nsgeu. ¢ source\l ang\ nsgcsi so. ¢ source\l ang\ nsgcsw n. c

source\l ang\ nsgcskam ¢ source\l ang\ nsgsri so. ¢ source\l ang\ nmsgde. c
source\l ang\ nsghr852. ¢ source\l ang\nmsgcs852. ¢ source\l ang\ nsghri so. c
source\l ang\ nsgi s850.¢c </ pre>

This programis free software; you can redistribute it and/or nodify it under

the ternms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any l|later version,
with one exception:

The exception is that if you link the Harbour Runtine Library (HRL) and/or the

Har bour Virtual Machine (HYM with other files to produce an executable, this does
not by itself cause the resulting executable to be covered by the GNU Cenera
Public License. Your use of that executable is in no way restricted on account of
linking the HRL and/or HVYM code into it.

This programis distributed in the hope that it will be useful, but WTHOUT ANY
WARRANTY; wi thout even the inplied warranty of MERCHANTABILITY or FITNESS FOR A
PARTI CULAR PURPCSE. See the GNU General Public License for nore details.

You shoul d have received a copy of the GNU General Public License Foundation,
Inc., 675 Mass Ave, Canbridge, MA 02139, USA (or visit their web site at
http://ww. gnu. org/).

THE HARBOUR PROJECT CONTRI B LI CENSE

There is no one single license that applies to the Harbour Project contrib
files. Some files use the Harbour Project Conpiler license. Sone files use the
Har bour Project Library license. Sonme files use the old Harbour Project Library
license (and in one case, just one function in a file that otherw se uses the
Har bour Project Library license uses the old license - this is the DateTine()
function in the file contrib\libmsc\dates2.c). Sone files may even use ot her
types of free software or open source software |licenses. Sone files have been
donated to the public domain. If you use any of the contrib files, you need to
investigate the license that applies to each file.

See Al so:
OVERVI EW

ABS()

Return the absol ute value of a nunber.
Synt ax
ABS(<nNunber >) --> <nAbsNunber >
Argunent s
<nNumber > Any nunber.
Ret ur ns
<nAbsNunber> The absol ute nuneric val ue.
Descri ption

This function yields the absolute value of the nuneric value or expression
<nNunber >.

Exanpl es
Proc Min()

Local nNunber: =50
Local nNunber 1: =27
cls

gout (nNurrber - nNurber 1)

gout (nNurrber 1- nNunber)

gout (ABS(nNunber - nNunber 1))
gout (ABSnNunber 1- nNumber))
qout (ABS(-1 * 345))

St at us
Ready
Conpl i ance
This function is CA-Clipper conpliant.
Pl at f or ns
Al'l
Files
Library is rtl
See Al so:

EXP()

EXPﬁ)

Cal cul ates the value of e raised to the passed power.
Synt ax
EXP(<nNunber>) --> <nVal ue>
Argunent s
<nNunmber> Any real nunber.
Ret ur ns
<nVal ue> The anti-logarithm of <nNunber>
Descri ption

This function returns the value of e raised to the power of <nNunber>. It is
the inverse of LOY).

Exanpl es

? EXP(45)

St at us
Ready

Conpl i ance
This function is CA-Clipper conpliant.

Pl at f or ns
Al l

Files
Library is rtl

See Al so:

LOE)

| NT()

Return the integer port of a nuneric val ue.
Synt ax
I NT(<nNunber>) --> <nlnt Nunber >
Argunent s
<nNumber> Any nuneric val ue.
Ret ur ns

<nl nt Nunber> The integer portion of the nuneric val ue.

Descri ption

This function converts a nuneric expression to an integer. Al decinal

are truncated. This function does not

Exanpl es

SET Decinmal to 5

? I NT(632512. 62541)

? I NT(845414111. 91440)
St at us

Ready
Conpl i ance

This function is CA-Clipper conpliant.
Pl at f or ns

Al l
Files

Library is rtl

See Al so:

round a val ue
truncates a nunber at the deci mal point.

upward or downwar d;

digits

it merely

L

Returns the natural |ogarithmof a nunber.

Synt ax
LOE <nNumber>) --> <nlLog>
Argunent s
<nNumber> Any numneric expression.
Ret ur ns
<nExponent> The natural |ogarithm of <nNumber>.
Descri ption
This function returns the natural |ogarithmof the nunber <nNunmber>. |If

<nNunber> is 0 or less than 0, a nuneric overflow occurs, which is depicted on the
di splay device as a series of asterisks. This function is the inverse of EXP().

Exanpl es
? LOG 632512)

St at us
Ready
Conpl i ance
This function is CA-Clipper conpliant.
Pl at f or ns
Al'l
Files
Library is rtl

See Al so:
EXP()

MAX()

Returns the maxi num of two nunbers or dates

Synt ax
MAX(<xVal ue>, <xVal uel>) --> <xMax>

Argunent s
<xVal ue> Any date or nuneric val ue.
<xVal uel> Any date or nuneric value (sanme type as <xVal ue>).

Ret ur ns
<xMax> The larger numeric (or later date) val ue.

Descri ption
This function returns the larger of the two passed espressions. If <xVal ue>
and <xVal uel> are nuneric data types, the value returned by this function will be
a nuneric data type as well and will be the Ilarger of the two nunbers passed to it.

I f <xVal ue> and <xVal uel> are date data types, the return value will be a date data
type as well. It will be the later of the two dates passed to it.

Exanpl es
? MAX(214514214,6251242142)
? MAX(CTOD(' 11/ 11/2000'), CTOX(' 21/ 06/ 2014")
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant.
Pl at f or ns
Al l
Files
Library is rtl
See Al so:

M NQ)

M N()

Det erm nes the m nunum of two nunbers or dates.
Synt ax
M N(<xVal ue>, <xVal uel>) --> <xM n>
Argunent s
<xVal ue> Any date or nuneric val ue.
<xVal uel> Any date or nuneric val ue.
Ret ur ns
<xXM n> The smaller nuneric (or earlier date) val ue.
Descri ption
This function returns the smaller of the two passed espressions. <xVal ue> and

<xVal uel> nust be the sane data type. If nuneric, the smaller nunber is returned.
If dates, the earlier date is returned.

Exanpl es

? M N(214514214, 6251242142)

2 M N(CTOD(' 11/ 11/ 2000'), CTOD(' 21/ 06/ 2014")
St at us

Ready
Conpl i ance

This function is Ca-Clipper conpliant.
Pl at f or ns

Al'l
Files

Library is rtl

See Al so:
MAX()

Return the nodul us of two nunbers.
Synt ax

MOD(<nNunber >, <nNunber 1>) --> <nRenai nder >
Argunent s

<nNunber > Nunerator in a divisional expression.

<nNunber 1> Denoni nator in a divisional expression.

Ret ur ns
<nRenai nder > The renmai nder after the division operation.
Descri ption
This functuion returns the remai nder of one nunber divided by another.
Exanpl es
? MOD(12, 8.521)
? Mod(12,0)
? Mod(62412. 5142, 4522114. 12014)
St at us
Ready
Conpl i ance
This Function is Ca-Cipper conpliant.
Pl at f or ms
All
Fil es

Library is rtl
See Al so:
ARRAY

SQRT()

Cal cul ates the square root of a number.

Synt ax

SQRT(<nNunber>) --> <nSqrt>

Argunent s

<nNumber> Any nuneric val ue.
Ret ur ns

<nSgrt > The square root of <nunber>.
Descri ption

This function returns the square root of <nNunber>. The precision of this
eval uation is based solely on the settings of the SET DECI MAL TO comand. Any
negati ve nunber passed as <nNunber> will always return a O.

Exanpl es

SET Decimal to 5
? SQRT(632512. 62541)
? SQRT(845414111. 91440)

St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant.
Pl at f or ns
All
Fil es
Library is rtl
See Al so:

ROUND()

RCOUN

Rounds o ? a nuneric expression.

Synt ax
ROUND(<nNumber >, <nPl ace>) --> <nResult>

Argunent s
<nNumber> Any nuneric val ue.
<nPl ace> The nunber of places to round to.

Ret ur ns
<nResul t> The rounded nunber.

Descri ption
This function rounds of f the val ue of <nNunber> to the nunber of decinal
pl aces specified by <nPlace>. If the value of <nPlace> is a negative nunber, the

function will attempt to round <nNunber> in whole nunbers. Numbers from5 through 9
will be rounded up, all others will be rounded down.

Exanpl es

? ROUND(632512. 62541, 5)
? ROUND(845414111. 91440, 3)

St at us
Ready
Conpl i ance
This function is CA-Clipper conpliant.
Pl at f or ns
Al'l
Files
Library is rtl
See Al so:

ILNT() STR()VAL() SET FI XED

hb_mat hGet Last Error ()

get the last math lib error
Synt ax
C Prototype

#i ncl ude <hbmat h. h>
hb_mat hGet Last Error (HB_MATH EXCEPTI ON * phb_exc) --> int i MthErrorType

Argunent s

phb_exc poi nter to HB MATH EXCEPTI ON structure, if not NULL, the

structure will be filled with information about the last math error: typedef

struct HB MATH EXCEPTION { int type; /* math error type, is one of the
constants HB MATH ERR xxx defined in math.ch */ char *funcnane; /* pointer to nane
of the math C RTL routine that caused the error */ char *error; /* pointer to
error description */ double argil; /[* first and */ double arg2; /* second
doubl e argunent to the math routine */ double retval; [* corrected return val ue
for the math routine */ int retvalwidth; /* width and */ int retval dec; /*
decimal s of the corrected return value, both default to -1 */ int handl ed; /*
1, if the math error is already corrected, O otherwise */ } HB MATH EXCEPTI ON;

Ret ur ns

Descri ption
St at us
Ready
Conpliance is not applicable to APl calls.
Files
Library is rtl
Pl at f or ns

All

hb_mat hReset Error ()

reset the internal math error information structure
Synt ax
C Prototype

#i ncl ude <hbmat h. h>
hb_mat hReset Error (void) --> void

Argunent s
Ret ur ns

Descri ption

St at us

Ready
Conpliance is not applicable to APl calls.

Fil es

Library is rtl
Pl at f or ns

Al l

hb_mat hl sMat hErr ()

check if harbour math error handling is avail able
Synt ax
C Prototype

#i ncl ude <hbmat h. h>
hb_mat hl sMat hErr (void) --> int ilsMathHandl er

Argunent s
Ret ur ns

Descri ption

St at us

Ready
Conpliance is not applicable to APl calls.

Fil es

Library is rtl
Pl at f or ns

Al l

hb_mat hSet Handl er ()

set the harbour math handl er
Synt ax
C Prototype
#i ncl ude <hbmat h. h>

hb_mat hSet Handl er (HB_MATH HANDLERPROC handl er proc) --> HB MATH HANDLERPROC
previ ous_hander pr oc

Argunent s
HB_MATH_HANDLERPROC) (HB_MATH_EXCEPTI ON * err)
Ret ur ns
previ ous_handl er proc previous math handl er typedef int (*
HB_MATH HANDLERPROC) (HB_MATH_EXCEPTI ON * err)
Descri ption
St at us
Ready
Conpliance is not applicable to APl calls.
Fil es

Library is rtl
Pl at f or ns
Al'l

hb_mat hGet Handl er ()

get current Harbour math error handl er
Synt ax
C Prototype

#i ncl ude <hbmat h. h>
hb_mat hGet Handl er (void) --> HB_MATH HANDLERPROC handl er proc

Argunent s
HB_MATH_HANDLERPROC) (HB_MATH_EXCEPTI ON * err)
Ret ur ns

Descri ption
St at us

Ready

Conpliance is not applicable to APl calls.
Files

Library is rtl

Pl at f or ns
Al l

hb_mat hSet Er r Mode()

set math error handling node
Synt ax
C Prototype

#i ncl ude <hbmat h. h>
hb_mat hSet Err Mode (int inpbde) --> int ioldnode

Argunent s

mat h. ch HB_MATH ERRMODE_DEFAULT HB MATH ERRMODE CDEFAULT HB_MATH ERRMODE USER
HB_MATH_ERRMODE_USERDEFAULT HB_MATH_ERRMODE_USERCDEFAULT

Ret ur ns

Descri ption

St at us

Ready
Conpliance is not applicable to APl calls.

Fil es

Library is rtl
Pl at f or ns

Al l

hb_mat hGet Er r Mode()

get math error handling node
Synt ax
C Prototype

#i ncl ude <hbmat h. h>
hb_mat hGet Err Mode (void) --> inode

Argunent s

Ret ur ns

Descri ption

St at us

Ready
Conpliance is not applicable to APl calls.

Files

Library is rtl
Pl at f or ns

Al

MATHERRMODE()

Set/ Get math error handling node

Synt ax
MATHERRMODE ([<nNewMbde>]) -> <nd dMode>
Argunent s
[<nNunber >] new math error handling node, one of the follow ng constants,

defined in math.ch HB_MATH ERRVODE _DEFAULT HB_MATH_ERRMODE_CDEFAULT
HB_MATH_ERRMODE_USER ~HB_MATH ERRMODE_USERDEFAULT HB_MATH ERRMODE_USERCDEFAULT

Ret ur ns

<nd dMode> old math error handling node
St at us

Ready
Pl at f or ns

All
Files

Library is rtl

MATHERRORBL OCK(

Set/ Get math error hanc?l i ng codebl ock
Synt ax
MATHERRORBLOCK ([<bNewBl ock>]) -> <bd dBl ock>
St at us

Ready
Pl at f or s
Al |
Files

Library is rtl

MEMOTRAN()

Converts hars and soft carriage returns within strings.
Synt ax
MEMOTRAN(<cString> <cHard>, <cSoft>) --> <cConvertedString>
Argunent s
<cString> is a string of chars to convert.

<cHard> is the character to replace hard returns with. If not specified
defaults to sem col on.

<cSoft> is the character to replace soft returns with. If not specified
defaults to single space.

Ret ur ns
<cConvertedString> Trasformed string.

Descri ption
Returns a string/nmeno with carriage return chars converted to specified
chars.

Exanpl es

? MEMOTRAN(DATA- >CNOTES)

Test s
@1, 1 SAY MEMOTRAN(Dat a- >CNOTES)

will display converted string starting on row two, colum two of the
current device.

St at us

Ready
Conpl i ance

MEMOTRAN() is fully CA-dipper conpliant.
Files

Library is rtl
See Al so:

HARDCR STRTRAN

HARDCR()

Repl ace all soft carriage returns with hard carriages returns.
Synt ax
HARDCR(<cString>) --> <cConvertedString>
Argunent s
<cString> is a string of chars to convert.
Ret ur ns
<cConvertedString> Trasformed string.
Descri ption

Returns a string/nmeno with soft carriage return chars converted to hard
carriage return chars.

Exanpl es

? HARDCR(Dat a- >CNOTES)

Test s
@1, 1 SAY HARDCR(Dat a- >CNOTES)

wi Il display converted string starting on row two, colum two of the
current device.

St at us
Ready
Conpl i ance
HARDCR() is fully CA-Clipper conpliant.
Files
Library is rtl
See Al so:
MEMOTRANC) STRTRAN

MEMOREAD)

Return the text file's contents as a character string

Synt ax

MEMOREAD(<cFil eNane>) --> cString

Argunent s
<cFileName> is the filenane to read fromdisk. It nust include the file
extension. If file to be read lives in another directory, you nust include the
pat h.

Ret ur ns
file that can be read is the same as the nmaximum size of a character string (nore
than 2 My). It has not the 64 Kb limt as in Cipper. |If <cFileNanme> cannot be
found, nor read, function returns a null string ("").

Descri ption
MEMOREAD() is a function that reads the content of a text file (till now)
fromdisk (floppy, HD, CD-ROM etc.) into a nmenory string. In that way you can
mani pul ate as any character string or assigned to a nmenpo field to be saved in a

dat abase.

MEMOREAD() function is used together with MEMOEDI T() and MEMOARI T() to get
fromdisk text fromseveral sources that would be edited, searched, replaced,
di spl ayed, etc.

It is used to inport data from other sources to our database.

Note: MEMOREAD() does not use the settings SET DEFAULT or SET PATH to search
for <cFileName>. It searches for <cFileNane> in the current directory. |If the
file is not found, then MEMOREAD() searches in the DOS path.

Over a network, MEMOREAD() attenpts to open <cFileNane> in read-only npde and
shared. |If the file is used in node exclusive by another process, the function
will returns a null string ("").

Is one of the nost useful Cipper functions!, it really makes sinple

Exanpl es

* This exanple uses MEMOREAD() to assign the contents of a text
file to a character variable for |later search

cFile .= "account.prg"
cString : = MEMOREAD(cFile)
I F AT("Melina", cString) == /1l check for copyright
MEMOWRI T(cFile, cCopyright + cString) // if not, add it!
ENDI F
St at us
Ready
Conpl i ance
MEMOREAD() is fully CA-dipper conpliant.
Pl at f or ns
Al l
Files

Library is rtl
See Al so:

ARRAY() MEMOWRI T() ARRAY()

MEMOWRI T()

Wite a neno field or character string to a text file on disk

Synt ax

MEMOWRI T(<cFil eNane>, <cString> [<IWiteEof>]) --> | Success

Argunent s
<cFileName> is the filenane to read fromdisk. It nust include the file
gg'{ﬁ.nsi on. If file to be read lives in another directory, you nust include the
<cString> Is the meno field or character string, to be wite to <cFile>.
<IWiteEof> |Is a logic variable that settle if the "end of file" character -
CHR(26) - is witten to disk. This paraneter is optional. By default is true (.T.)
Ret ur ns
returns false (.F.).
Descri ption

This a function that wites a neno field or character string to a text file
on disk (floppy, HO, CO-ROM etc.) If you not specified a path, MEMORI T() wites
<cFileNanme> to the «current directory. If <cFileNane> exists, it is overwitten.

Note: There is a third paraneter (optional), <IWiteEof> (not found in

Clipper) which et to progranmmer change the default behavior of - allways - to
wite the EOF character, CHR(26) as in Clipper. |If there is no third paraneter,
not hi ng change, EOF is witten as in Cipper, the same occurs when <IWiteEof> is
set to .T. But, if <IWiteEof>is set to .F., EOF char is Not witten to the end
of the file.

MEMOWRI T() function is used together with MEMOREAD() and MEMOEDI T() to save

to disk text fromseveral sources that was edited, searched, replaced, displayed,
etc.

It is used to export the database to another fornmat.

Note: MEMOWRI T() do not use the directory settings SET DEFAULT.

Is one of the nost useful Cipper functions!, it really makes sinple

Exanpl es

* This exanple uses MEMOWRI T() to wite the contents of a character
variable to a text file.

cFile .= "account.prg"
cString : = MEMOREAD(cFile)
IF AT("Melina", cString) == 0 /1l check for copyright
MEMOWRI T(cFile, cCopyright + cString) // if not, add it!
ENDI F
St at us
Ready
Conpl i ance
MEMOWRI T() is fully CA-dipper conpliant.
Pl at f or ns
Al l
Files

Library is rtl
See Al so:

ARRAY/

VEMOREA

ACHO CE()

Al'l ows selection of an elenent froman array

Synt ax

ACHO CE(<nTop>, <nLeft>, <nBottonP, <nRi ght> <acMenultens>, [<al Sel ableltens> |
<l Sel abl el tens>], [<cUserFunction> | <bUserBlock>], [<nlnitialltenp],
[<nW ndowRow>]) --> nPosition

Argunent s
<nTop> - topnost row used to display array (default 0)
<nLeft > - leftnost row used to display array (default 0)
<nBot t on® - bottomost row used to display array (default MAXROWN))
<nRi ght > - rightnost row used to display array (default MAXCOL())

<acMenul t enrs>

the character array of itens fromwhich to sel ect

<al Sel ableltenms> - an array of items, either |ogical or character, which is

used to determne if a particular item may be selected. |If the type of a given
itemis character, it is macro evaluated, and the result is expected to be a
logical. A value of .T. neans that the itemnmay be selected, .F. that it nay not.
(See next argunent: | Sel ectabl el t ens)

<| Sel ableltems> - a logical value which is used to apply to all itens in
acMenultens. If .T., all items may be selected; if .F., none may be sel ected
(See previous argunent: al Sel ectableltens) Default .T.

<cUser Functi on> - the nanme of a function to be called which may affect

speci al processing of keystrokes. It is specified wthout parentheses or

paraneters. Wen it is called, it will be supplied with the paraneters: nMbde,
nCur El enent, and nRowPos. Default NI L.

<bUser Bl ock> - a codeblock to be called which may affect speci al
processi ng of keystrokes. It should be specified in the form {|nMde,
nCur El enenet, nRowPos| ; MyFunc(nModde, nCurEl enenet, nRowPos) }. Default NIL.
<nlnitialltenr - the nunber of the element to be highlighted as the
current itemwhen the array is initially displayed. 1 origin. Default 1.
<nW ndowRow> - the nunmber of the wi ndow row on which the initial itemis
to be displayed. 0 origin. Default O.

Ret ur ns
<nPosi ti on> - the nunber of the itemto be selected, or 0 if the selection
was abort ed.

Descri ption

Al'l ows selection of an elenent froman array. Please see standard i pper
docunentation for ACHO CE for additional detail.

Exanpl es
altems := { "One", "Two", "Three" }
nChoi ce : = ACHO CE(10, 10, 20, 20, altens)
I F nChoi ce ==
? "You did not choose an itent
ELSE

? "You chose elenment " + LTRIM STR(nChoice))
?? " which has a value of " + altens[nChoice]
ENDI F
Files
Library is rtl
See Al so:

MENU TO

At Pronpt ()

“splay a nenu itemon screen and define a nessage

Synt ax

__AtPronpt(<nRow>, <nCol >, <cPronpt>, [<xMsg>]) --> .F.
Argunent s

<nRow> is the row nunber to display the nenu <cPronpt>. Value could range

fromzero to MAXRON).

<nCol > is the colum nunber to display the nmenu <cPronpt>. Val ue could range

fromzero to MAXCOL().

<cPronpt> is the menu itemcharacter string to display.

<xMsg> define a nessage to display each tine this nenu itemis highlighted.
<xMsg> coul d be a character string or code block that is evaluated to a character
string. If <xMsg> is not specified or got the wong type, an enpty string ("")

woul d be used.
Ret ur ns

__AtPronpt() always return .F.
Descri ption

Wth _ AtPronpt () you define and display a menu item each call to
__AtPronpt() add another itemto the nmenu, to start the nenu itself

you shoul d

call the _ MenuTo() function (MENU TO command). You can define any row and col um

conbi nation and they will be displayed at the order of definition.

After each call

to __AtPrompt(), the cursor is placed one colum to the right of the |ast text

di spl ayed, and ROW) and COL() are updated.

@ .. PROVWT conmand is preprocessed into __ AtPronpt() function during conpile

time.
Exanpl es

/1 display a two line menu with status line at the bottom
/1 let the user select favorite day

SET MESSAGE TO 24 CENTER

@10, 2 PROWPT "Sunday" MESSAGE "This is the 1st itent
@11, 2 PROVWPT "Monday" MESSAGE "Now we're on the 2nd itent
MENU TO nChoi ce

DO CASE
CASE nChoice == 0 /1 user press Esc key
QIT
CASE nChoi ce == /1 user select 1st nmenu item
? "Quess you don't |ike Mondays"
CASE nChoi ce == /1 user select 2nd nenu item
? "Just anot her day for some"
ENDCASE
St at us
Ready
Conpl i ance

CA-Clipper array is limted to 4096 itens, and therefor 4096 nenu

items are

the maxi num that could be defined per one nenu, Harbour does not have this limt

(not that you'll ever need that).
Fil es
Library is rtl
See Al so:

ACHO CE() VENU TOSET MESSAGESET | NTENSI TYSET WRAP__MenuTo()

@ . . PROVPT

D splay a nenu itemon screen and define a nessage

Synt ax

@ <nRow>, <nCol > PROVWPT <cPronpt> [MESSAGE <xMsg>]
Argunent s

<nRow> is the row nunber to display the nenu <cPronpt>. Value could range

fromzero to MAXRON).

<nCol > is the colum nunber to display the nmenu <cPronpt>. Val ue could range

fromzero to MAXCOL().

<cPronpt> is the menu itemcharacter string to display.

<xMsg> define a nessage to display each tine this nenu itemis highlighted.
<xMsg> coul d be a character string or code block that is evaluated to a character
string. If <xMsg> is not specified or got the wong type, an enpty string ("")

woul d be used.
Ret ur ns

@..Pronmpt always return .F.
Descri ption

Wth @..Pronpt you define and display a nmenu item each call to

@ . . Pronpt

add another itemto the nmenu, to start the nenu itself you should call the
__MenuTo() function (MENU TO conmmand). You can define any row and col um

combi nation and they will be displayed at the order of definition.

After each call

to @..Pronpt, the cursor is placed one colunn to the right of the |ast text

di spl ayed, and ROW) and COL() are updated.

@ .. PROVWT conmand is preprocessed into __ AtPronpt() function during conpile

time.
Exanpl es

/1 display a two line menu with status line at the bottom
/1 let the user select favorite day

SET MESSAGE TO 24 CENTER

@10, 2 PROWPT "Sunday" MESSAGE "This is the 1st itent
@11, 2 PROVWPT "Monday" MESSAGE "Now we're on the 2nd itent
MENU TO nChoi ce

DO CASE
CASE nChoice == 0 /1 user press Esc key
QIT
CASE nChoi ce == /1 user select 1st nmenu item
? "Quess you don't |ike Mondays"
CASE nChoi ce == /1 user select 2nd nenu item
? "Just anot her day for some"
ENDCASE
St at us
Ready
Conpl i ance

CA-Clipper array is limted to 4096 itens, and therefor 4096 nenu

items are

the maxi num that could be defined per one nenu, Harbour does not have this limt

(not that you'll ever need that).
See Al so:

ACHO CE() NVENU TOSET MESSAGESET | NTENSI TYSET WRAP MenuTo()

_MenuTo()
Tnvoked a nenu defined by set of @..PROVPT

Synt ax

__MenuTo(<bBIl ock>,
Argunent s
<bBl ock>

<cVari abl e>)

<cVari abl e>
hol d the nenu choi ces,
nanme <cVari abl e> woul d be created to

Ret ur ns
__MenuTo()

--> nChoi ce

is a set/get code block for variabl e named <cVari abl e>.

is a character string that contain the nane of the variable to
if this variable does not exist

a PRI VATE variable with the
hold the result.

return the nunber of select nenu item or O if there was no item

to select fromor if the user pressed the Esc key.

Descri ption
__MenuTo()
<cVari abl e> does not exist or

created and hold the current
<cVari abl e>, its val ue

i nvoked the nenu define by previous _ AtPronpt() call
a highlight bar that the user can nove to sel ect an
not vi si bl e,
menu sel ecti on.
is used to select the first highlighted item

and di spl ay
option fromthe nmenu. If

a PRI VATE vari abl e naned <cVariable> is
If there is a variabl e naned

Menu pronpts and nmessages are displayed in current Standard col or,
hi ghl i ghted bar is displayed using current Enhanced col or.

Pressing the arrow keys nove the highlighted bar.
hi ghl i ghted the nessage associated with it

VWhen a nenu item is

is displayed on the line specified with
press UP arrow while on the first

if the user press Down arrow while on

SET MESSAGE. |f SET WRAP is ON and the user
selection the last nenu itemis highlighted,
the last item the first itemis highlighted.

Fol I owi ng are active keys that handled by _ MenuTo():

key [Meani ng

Up Move to previous item

Down Move to next item

Left Mbve to previous item

Ri ght Mbve to next item

Homre Move to the first item

End Move to the last item

Page- Up Sel ect nmenu item return position

Page- Down Sel ect menu item return position

Ent er Sel ect menu item return position

Esc lAbort sel ection, return O

First letter Sel ect next nmenu with the sane first letter,
eturn this item position.

upon exit the cursor is placed at MAXRON)-1, O

wi t hout | oosing the previous pronpts.

MENU TO conmmand i s preprocessed into

Exanpl es

__MenuTo() function during

__MenuTo() can be nested

compile tinme.

/1 display nenu item on each screen corner and | et user select one
CLS

SET MESSAGE TO MAXROW)/ 2 CENTER

@O0, 0 PROVPT "1. Upper left” MESSAGE " One "
@O0, MAXCOL()-16 PROVPT "2. Upper right" MESSAGE " Two "
@ MAXROW() - 1, MAXCOL() - 16 PROVPT "3. Bottomright" MESSAGE " Three"
@ MAXRON() - 1, 0 PROVPT "4. Bottomleft" MESSAGE "Four "

MENU TO nChoi ce
SETPCS (MAXROW) /2, MAXCOL()/2 - 10)
if nChoice == 0

?? "Esc was pressed”

el se
?? "Sel ected option is", nChoice
endi f
St at us
Ready
Conpl i ance
This command is CA-dipper conpliant
Files
Library is rtl
See Al so:

@_. . PROVWPT ACHO CE() SET MESSAGESET | NTENSI TYSET WRAP__ At Pr onpt ()

MVENU TO

I nvoked a nenu defined by set of @..PROVWPT

Synt ax

MENU TO <cVari abl e>
Argunent s

<cVariable> is a character string that contain the nane of the variable to
hold the nmenu choices, if this variable does not exist a PRI VATE variable with the
nanme <cVari abl e> woul d be created to hold the result.

Ret ur ns
fromor if the user pressed the Esc key.
Descri ption

Menu To() invoked the nmenu define by previous __ AtPronmpt() call and display a

hi ghl i ght bar that the user can nove to select an option fromthe nenu. If

<cVari abl e> does not exist or not visible, a PRIVATE variable naned <cVariable> is
created and hold the current nenu selection. If there is a variable naned
<cVariable> its value is used to select the first highlighted item

Menu pronpts and nmessages are displayed in current Standard col or,
hi ghl i ghted bar is displayed using current Enhanced col or.

Pressing the arrow keys move the highlighted bar. Wien a nenu item is

hi ghl i ghted the nmessage associated with it is displayed on the line specified with
SET MESSAGE. |If SET WRAP is ON and the user press UP arrow while on the first
selection the last nenu itemis highlighted, if the user press Down arrow while on
the last item the first itemis highlighted.

Fol I owi ng are active keys that handl ed by Menu To:

key [Meani ng

Up I Move to previous item

Down [Move to next item

Left I Move to previous item

Ri ght [Move to next item

Homre I Move to the first item

End I Move to the last item

Page- Up I} Select menu item return position

Page- Down [Select menu item return position

Ent er [Select menu item return position

Esc I Abort selection, return O

First letter I Select next menu with the sane first letter,
eturn this item position.

upon exit the cursor is placed at MAXROAN)-1, O Menu To can be nested w t hout
| oosing the previous pronpts.

MENU TO command i s preprocessed into _ MenuTo() function during conpile tine.

Exanpl es
/1 display nenu item on each screen corner and | et user select one
CLS
SET MESSAGE TO MAXRON()/ 2 CENTER
SET WRAP ON
@O0, 0 PROVPT "1. Upper left" MESSAGE " One "

@0, MAXCOL() - 16 PROVPT "2. Upper right" MESSAGE " Two "

@ MAXROWN() - 1, MAXCOL()-16 PROWPT "3. Bottomright" MESSAGE " Three"
@MAXROWN)-1,0 PROVPT "4. Bottomleft" NMESSAGE "Four "
MENU TO nChoi ce
SETPCS (MAXROW) /2, MAXCOL()/2 - 10)
if nChoice == 0

?? "Esc was pressed”
el se

?? "Sel ected option is", nChoice
endi f
St at us
Ready
Conpl i ance
This command is CA dipper conpliant
See Al so:

@..PROVPT ACHO CE() SET MESSAGESET | NTENSI TYSET WRAP__At Pr onpt ()

O5()

Return the current operating system
Synt ax
OS() --> <cQOperatingSystenr
Ret ur ns
<cQperatinSystenr The Current operating system
Descri ption
This function will return the current operating system
Exanpl es
? O8()
St at us
Ready
Conpl i ance
This function is CA-Clipper conpatible.
Pl at f or ns
All
Files

source/rtl/version.c

VERSI ON(

Returns the LARBQJR Versi on or the Harbour/ Conpiler Version.
Synt ax
VERSI ON() --> <cReturn>
Argunent s

Ret ur ns

<cRet urn> String containing the Harbour Version
Descri ption

This function returns the current Harbour Version.
Exanpl es

? QQUT(VERSI CN()I)-

"Har bour Term na St andard stream consol e"

St at us
Started
Conpl i ance
This function is Ca-Cipper conpatible.
Pl at f or ns
All
Fil es
source/rtl/version.c Library is rtl
See Al so:

Gs()

GETENV()

ot ai ns system envi ronnmental settings.

Synt ax

GETENV(<cEnvi r onent >, <cDefaul tValue>) --> <cReturn>
Argunent s

<cEnviroment> Environmental variable to obtain.

<cDef aul t Val ue> Optional value to return if <cEnvironnent> is not found.
Ret ur ns

<cRet ur n> Val ue of the Environment Variable.
Descri ption

This function yields a string that is the value of the environnent variable
<cEnvironment>, which is stored at the systemlevel with the Set command. |If no

environnent variable can be found, the value of the function will be
<cDefaultValue> if it is passed, else an enpty string.
Exanpl es

? QOUT(GETENV(' PATH))

? QOUT(GETENV(' CONFI G))

? QQUT(GETENV(' HARBOURCMD , '-n -| -es2'))
St at us

Ready
Conpl i ance

This command is Ca-dipper conpliant. The <cDefaultVal ue> paraneter is a
Har bour ext ensi on.

Pl at f or ns
Al |
Fil es

source/rtl/gete.c Library is rtl

_RUN()

Run an external program
Synt ax
__RUN(<cCommand>)
Argunent s
<cCommand> Conmand to execute.
Descri ption
This command runs an external program Please nmake sure that you have enough

free menory to be able to run the external program Do not use it to run Term nate
and Stay Resident programs (in case of DOS) since that causes several problens.

Note: This function is what the RUN comand preprocesses into. It is
considered bad formto use this function directly. Use the RUN command i nstead.
Exanpl es
__Run("edit " + cMWTextFile) /1 Runs an external editor
__Run("command") /1 Gves a DCS shell (DOS only)
St at us
Ready
Conpl i ance
This function is Ca-Clipper conpliant.
Pl at f or ns
Al l
Files

source/rtl/run.c Library is rtl

See Al so:
RUN

TONE()

Sound a tone with a specified frequency and durati on.

Synt ax

TONE(<nFrequency>, <nDuration>) --> NL
Argunent s

<nFrequency> A non-negative nuneric value that specifies the frequency of
the tone in hertz.

<nDur at i on> A positive nuneric value which specifies the duration of the
tone in 1/18 of a second units.

Ret ur ns
TONE() always returns N L.
Descri ption

TONE() is a sound function that could be used to irritate the end user, his
or her dog, and the surroundi ng nei ghborhood. The frequency is clanped to the
range 0 to 32767 Hz.

Exanpl es

If 1 Ck /'l Good Sound
TONE(500, 1)
TONE(4000, 1)
TONE(2500, 1)

El se // Bad Sound
TONE(300, 1)
TONE(499, 5)
TONE(700, 5)

Endl f

Test s

TONE(800, 1) [l same as ? CHR(7)
TONE(32000, 200) /1 any dogs around yet?
TONE(130.80, 1) /1 rnusical note - C
TONE(400, 0) /1 short beep
TONE(700) /1 short beep
TONE(10, 18.2) /1 1 second del ay
TONE(-1) /1 1/18.2 second del ay
TONE() /1 1/18.2 second del ay
Tests
St at us
Started
Conpl i ance
TONE() works exactly like CA-Cipper's TONE().
Pl at f or ns
Al l
Files

Library is rtl
See Al so:

CHR() SET BELL

RUN

Run an external program
Synt ax
RUN <cCommand>
Argunent s
<cCommand> Conmand to execute.
Descri ption
This command runs an external program Please make sure that you have enough

free menory to be able to run the external program Do not use it to run Term nate
and Stay Resident programs (in case of DOS) since that causes several problens.

Exanpl es

Run "edit " + cMyTextFile /1 Runs an external editor
Run "command" /1 Gves a DCS shell (DOS only)
St at us
Ready
Conpl i ance
This command is Ca-Cdipper conpliant.
Pl at f or ns
All
Files

source/rtl/run.c Library is rtl
See Al so:
RUN

| SAFFI RM)

Checks if passed char is an affirmation char
Synt ax
| SAFFI RM <cChar>) --> <| TrueO Fal se>
Argunent s
<cChar> is a char or string of chars
Ret ur ns

<| TrueOrFal se> True if passed char is an affirmation char, otherw se fal se

Descri ption

This function is used to check if a user's input

t he msgxxx nodul e used.
Exanpl es

// Wait until user enters Y
DO WHI LE ! | SAFFI RM cYesNo)
ACCEPT "Sure: " TO cYesNo

END DO
St at us
Ready
Conpl i ance
| SAFFIRM) is fully CA-dipper conpliant.
Files
Library is rtl
See Al so:

| SNEGATI VE() NATI ONMVBQ()

is true or not

according to

| SNEGATI VE()

Checks i f passeg char is a negation char.
Synt ax
| SNEGATI VE(<cChar>) --> <| TrueOr Fal se>
Argunent s
<cChar> is a char or string of chars
Ret ur ns
<| TrueOrFal se> True if passed char is a negation char, otherw se false.
Descri ption

This function is used to check if a user's input is true or not according to
t he msgxxx nodul e used.

Exanpl es

// Wait until user enters N
DO WHI LE ! | SNEGATI VE(cYesNo)
ACCEPT "Sure: " TO cYesNo

END DO
St at us
Ready
Conpl i ance
| SNEGATI VE() is fully CA-dipper compliant.
Files
Library is rtl
See Al so:

| SAFFI RM) NATI ONVBQE)

NATI ONMVBG()

Returns international strings nmessages.
Synt ax
NATI ONMSE <nMsg>) --> <cMessage>
Argunent s
<nMsg> is the nessage nunber you want to get.

Ret ur ns

<cMessage> |If <nMsg> is a valid nessage selector, returns the nessage. If
<nMsg> is nil returns "lnvalid Argument", and if <nMsg> is any other type it
returns an enpty string.

Descri ption

NATI ONMSE) returns international nessage descriptions.
Exanpl es

/1 Displays "Sure Y/N. " and waits until user enters Y

/1 YINis the string for NATIONMSGE 12) with default natnsg nodul e.
DO WHI LE ! 1 SAFFI RM cYesNo)

ACCEPT "Sure " + NATIONMSE 12) + ": " TO cYesNo
END DO
St at us
Cl i pper
Conpl i ance
NATI ONMSE) is fully CA-Cipper conpliant.
Files

Library is rtl
See Al so:

| SAFFI R | SNEGATI VE()

obj HasDat a()

Determ ne whether a’'synbol exist in object as DATA
Synt ax
__Obj HasDat a(<oObj ect>, <cSynbol>) --> | Exi st
Argunent s
<oObject> is an object to scan.
<cSynbol > is the nane of the synbol to | ook for.
Ret ur ns

__ObjHasData() return .T. if the given <cSynbol > exist as DATA (instance
variable) in object <oject), .F. if it does not exist.

Descri ption

__ObjHasData() is a low |l evel class support function that let you find out if
a synbol is an instance variable in a given object.

Exanpl es

oB := TBrowseNew(0, 0, 24, 79)

? _ objHasData(oB, "nLeft") his should return .T.

It
? _ _objHasData(oB, "IBugFree") /1 hopefully this should be .F.
/1

? __objHasData(oB, "Left") .F. since this is a METHOD

St at us
Ready
Conpl i ance
__ObjHasData() is a Harbour extension.
Files
Library is rtl
See Al so:

obj Get MethodList() _ opj Get MsgLi st () __obj HasMet hod()

obj HasMet hod()

Determ ne whet her a synbol

Synt ax

__0obj HasMet hod(<oOhj ect >,

Argunent s
<obj ect >
<cSynbol >

Ret ur ns

___0obj HasMet hod()
function)

Descri ption

___0Obj HasMet hod()
if a synbol

Exanpl es

oB : = TBrowseNew(
? __ obj HasMet hod(

? __obj HasMet hod(

? __obj HasMet hod(
St at us

Ready
Conpl i ance

__Obj HasMet hod()
Fil es

Library is rtl

See Al so:

obj Get Met hodLi st ()

is the nane of the synbol

exi st in object as METHOD

<cSynbol >) --> | Exi st

is an object to scan.

to | ook for.

return . T.
it does not exist.

is alowlevel class support function that let you

is a class function in a given object.

0, 0, 24, 79)

oB, "nLeft") /[l .F. since this is a DATA
oB, "FixBugs") /1 hopefully this should be .F.
oB, "Left") /1 this should return . T.

is a Harbour extension.

__obj Get MsgLi st ()__obj HasDat a()

if the given <cSynbol > exi st as METHOD (cl ass
in object <oObject), .F. if

find out

obj Get MsgLi st ()

Return names of all DATA or

Synt ax

__0Obj Get MsgLi st(<onhj ect >,
Argunent s

<obj ect >

METHOD for a given

[<IData>], |

is an object to scan.

<IData> is an optional |ogical value t
return. A value of . T. instruct the fun
return |ist of all METHOD nanes. Def aul

<nCl assType> is on optional nuneric co
return. Default value is HB MSG.I STALL,

Ret ur ns

__Obj GetMsgList() return an array of c¢
all METHOD nanes for a given object. __
{} if the given object does not contain

Descri ption

__Obj GetMsgList() is a low |level class
i nstance variable or nethod nanes for a

If specified, the follow ng table shoes
all ow you to distinguish between DATA a

DATA are instance variable usable w thi
obj ect has its own DATAs.

CLASSDATA are shared by all
hjectl will

Exanpl es

obj ects fro

// show informati on about TBrowse cl ass
oB := TBrowseNew(0, 0, 24, 79)

be refl ected when accessing the CLASSDATA

obj ect

nCl assType]) --> aNanes

hat specifies the information to
ction to return list of all DATA names, .F.
t value is .T.

de for selecting which class type to
returning the whole 1ist.

haracter stings with all DATA names or
obj Get MsgList() would return an enpty array
the requested information.

support function that let you find all
gi ven obj ect.
the val ues for <nC assType> that

nd CLASSDATA:

n each object froma class, where each

value within
from Obj ect 2.

ma O ass, so the changed

HB_MSGLI STCLASS)

aDat a := __objGetMsgList(oB, .T.)
aCl assData := __obj Get MsgList(oB, .T.,
aMet hod = _ obj GetMsgList(oB, .F.)
FORi =1to len (abata)
? "DATA name:", aData] i]
NEXT
FORi =1to len (adassbata)
? "CLASSDATA name:", aC assData] i]
NEXT
FORi =1to len (aMethod)
? "METHOD nanme: ", aMethod[i]
NEXT
St at us
Ready
Conpl i ance
__Obj Get MsgList() is a Harbour extension.
Files
Header file is hboo.ch Library is rtl
See Al so:

__obj Get Met hodLi st ()

__obj Get Val ueli st (

) __obj HasData()__obj HasMet hod()

obj Get Met hodLi st ()

Return names of all METHOD for a given object

Synt ax
___0Obj Get Met hodLi st(<oChject>) --> aMet hodNanes
Argunent s
<oObject> is an object to scan.
Ret ur ns
__Obj Get MethodList() return an array of character stings with all METHOD
nanes for a given object. _ obj Get MethodList() would return an enpty array {} if
the gi ven object does not contain any METHOD.
Descri ption
__Obj Get MethodList() is a low |level class support function that let you find
all class functions nanes for a given object. It is equivalent to _ obj Get MsgLi st (
object, .F.).
Exanpl es

// show informati on about TBrowse cl ass
oB := TBrowseNew(0, 0, 24, 79)

aMet hod : = _ obj Get Met hodLi st(oB)
FORi =1to len (aMethod)
? "METHOD nane:", aMethod[i]

NEXT
St at us

Ready
Conpl i ance

__0Obj Get Met hodLi st() is a Harbour extension.
Files

Library is rtl
See Al so:

__obj Get MsgLi st () obj Get Val ueLi st () _obj HasDat a() __obj HasMet hod()

obj Get Val uelLi st ()

Return an array of DATA names and val ues for a given object

Synt ax

___0obj Get Val uelLi st (<oOhj ect>, [<aExcept>]) --> abata
Argunent s
<oObject> is an object to scan.

<aExcept> is an optional array wi th DATA names you want to exclude fromthe
scan.

Ret ur ns

__ObjGetValueList() return a 2D array that contain pairs of a DATA synbol
nane and the val ue of DATA. _ obj GetVal ueList() would return an enpty array {} if
t he given object does not contain the requested information.

Descri ption

__ObjGetValueList() is a low |l evel class support function that return an

array wi th DATA nanes and val ue, each array elenment is a pair of: abata[i,
HB_OO DATA SYMBCL] contain the synbol name abData] i, HB OO DATA VALUE] contain
the val ue of DATA

Exanpl es

/!l show i nformati on about TBrowse cl ass
oB := TBrowseNew(0, 0, 24, 79)

aData := __ obj Get Val ueList(oB)
FORi =1to len (abata)
? "DATA nane:", aData[i, HB_OO DATA SYmMBOL], ;
" val ue=", abData] i, HB OO DATA VALUE]
NEXT
St at us
Ready
Conpl i ance
__0Obj GetVal ueList() is a Harbour extension.
Files

Header file is hboo.ch Library is rtl
See Al so:

—obj GetMethodList() _ obj Get MsgLi st ()__obj HasData() __obj HasMet hod() __ Obj Set Val ueLi st ()

bj Set Val ueli st

Set object with an array og DATA nanmes and val ues
Synt ax
___(Obj Set Val ueLi st(<oObject> <abata>) --> o(hject
Argunent s
<oObject> is an object to set.

<aData> is a 2D array with a pair of instance variables and val ues for
setting those variabl e.

Ret ur ns
__ Obj SetValueList() return a reference to <oj ect >.
Descri ption

__Obj SetValueList() is a low level class support function that et you set a
group of instance variables with values. each array elenent in <aData> is a pair

of: aData] i, HB OO DATA SYMBOL] which contain the variable nane to set abData
HB OO DATA VALUE] contain the new variabl e val ue.
Exanpl es

/'l set sone TBrowse instance variable
0B : = TBrowse(): New()
aData := array(4, 2)

abData[1, HB OO DATA SYMBOL | = “"nTop"
aData[1, HB_ OO DATA VALUE =1
aData] 2, HB_OO DATA SYMBOL] = "nLeft"
aData[2, HB OO DATA VALUE = 10
aData[3, HB_OO DATA SYMBOL | = "nBott ont
aData] 3, HB_OO DATA VALUE = 20
abData] 4, HB_OO DATA _SYMBOL = "nRi ght"
aData] 4, HB_ 0O DATA VALUE =70
_hj Set Val ueLi st(oB, aData)
? oB: nTop /11
? oB: nLeft /1 10
? oB:nBottom // 20
? oB: nRi ght /1 70
St at us
Ready
Conpl i ance
___Obj Set Val ueList() is a Harbour extension.
Files

Header file is hboo.ch Library is rtl
See Al so:
__obj Get val ueli st ()

obj AddMet hod()

Add a METHOD to an already existing class

Synt ax

___Obj AddMet hod(<oObj ect >, <cMet hodName>, <nFuncPtr>) --> oOhject
Argunent s

<oObject> is the object to work on.

<cMet hodName> is the synbol name of the new METHOD to add.

<nFuncPtr> 1is a pointer to a function to associate with the nethod.
Ret ur ns

__Obj AddMet hod() return a reference to <o(oject >.
Descri ption

__Oobj AddMethod() is a low | evel class support function that add a new METHOD
to an object. <oObject> is unchanged if a synbol with the nanme <cMet hodNane>
al ready exist in <oQbject>.

Note that <nFuncPtr> is a special pointer to a function that was created
usi ng the @operator, see exanple bel ow

Exanpl es

/] create a new THappy class and add a Snil e nethod
oHappy := HBC ass(): New("THappy")
__obj AddMet hod(oHappy, "Smile", @¥Snile())

? oHappy:Smile(1) 1)
? oHappy:Smle(2) ;)
? oHappy:Smle(3) [l *SM LE*

STATI C FUNCTI ON MySmi | e(nType)
LOCAL cSml e

DO CASE
CASE nType ==
cSmle :=":)"
CASE nType ==
cSmle :=";)"
CASE nType ==
cSmle := "*SM LE*"
ENDCASE

RETURN cSni |l e

St at us

Ready
Conpl i ance

___Obj AddMet hod() is a Harbour extension.
Files

Library is rtl
See Al so:

_obj Addinline() opj AddData() __obj Del Met hod() __obj Get Met hodLi st () __obj Get MsgLi st ()

obj HasMet hod() __obj ModMet hod()

obj AddI nl i ne()

Add an INLINE to an already existing class
Synt ax
__0obj AddI nli ne(<oObj ect>, <clnlineName>, <blinline>) --> oCbject
Argunent s
<oObject> is the object to work on.
<clnlineName> is the synbol name of the new I NLINE to add.
<blnline> is a code block to associate with the |INLI NE net hod.
Ret ur ns
__ObjAddinline() return a reference to <o(bject >.
Descri ption
__OobjAddIinline() is a low level class support function that add a new I NLI NE

met hod to an object. <oObject> is unchanged if a synbol wth the name
<cl nli neNane> al ready exist in <oQbject>.

Exanpl es
/] create a new THappy class and add a Snile | NLI NE net hod
oHappy := HBC ass():New("THappy")
binline :={ | nType | { ":)", ";)", "*SMLE*" }[nType] }
__obj AddI nline(oHappy, "Smle", blnline)
? oHappy:Smle(1))
? oHappy:Smle(2) Iy
? oHappy: Snmile(3) [l *SM LE*
St at us
Ready
Conpl i ance
__obj AddInline() is a Harbour extension.
Files

Library is rtl
See Al so:

__obj AddDat a() obj AddMet hod() _obj Del I nline() _obj Get Met hodLi st () _obj Get MsgLi st ()

ARRAY obj Mbdl nl i ne()

AddDat a()

Add a{D ATA to an already existing class

Synt ax

___Obj AddDat a(<o(nj ect >, <cDataNane>) --> oOhject
Argunent s

<oObject> is the object to work on.

<cDat aNanme> is the synbol nane of the new DATA to add.
Ret ur ns

__Obj AddData() return a reference to <o(ject >.

Descri ption

__Obj AddData() is a low | evel class support function that add a new DATA to
an object. <oObject> is unchanged if a synbol with the name <cDataNane> al ready
exi st in <oQbject >.

Exanpl es

/] create a new THappy class and add a | Happy DATA
oHappy := HBd ass():New("THappy")
___0Obj AddDat a(oHappy, "| Happy")
oHappy: | Happy := . T.
| F oHappy: | Happy
? "Happy, Happy, Joy, Joy !I!I"
ELSE
l) n

ENDI F
St at us

Ready
Conpl i ance

__obj AddDat a() is a Harbour extension.
Files

Library is rtl
See Al so:

__obj AddI nl i ne() obj AddMet hod() __obj Del Data() __obj Get MsgLi st () __obj Get Val uelLi st ()

__obj HasDat a() bj Set Val ueli st ()

obj ModMet hod

Modify (replace) a METHOD in an already existing class

Synt ax

__Obj ModMet hod(<oObj ect >, <cMet hodName>, <nFuncPtr>) --> oOhject
Argunent s

<oObject> is the object to work on.
<cMet hodNane> is the synbol nane of the METHOD to nodify.

<nFuncPtr> is a pointer to a new function to associate with the method.
Ret ur ns

__Obj ModMet hod() return a reference to <o(bject >.

Descri ption

__Oobj ModMethod() is a low I evel class support function that nodify a METHOD

in an object and replace it with a new function. <oObject> is unchanged if a
synbol with the nane <cMet hodNane> does not exist in <oOChject> _ obj ModMet hod()
used in inheritance mechani sm

Note that <nFuncPtr> is a special pointer to a function that was created
usi ng the @operator, see exanple bel ow

Exanpl es

/] create a new THappy class and add a Sm | e nethod
oHappy := HBC ass(): New("THappy")

__Oobj AddMet hod(oHappy, "Snile", @¥Smile())

? oHappy:Smle(1))

? oHappy:Smle(2) I3

/1 replace Smile method with a new function

__Obj AddMet hod(oHappy, "Smile", @ourSmle())

? oHappy:Smle(1) [l *SM LE*

? oHappy:Snmile(2) [*W NK*

STATI C FUNCTI ON MySmi | e(nType)
LOCAL cSnile
DO CASE
CASE nType == 1
cSmle :=":)"
CASE nType == 2
cSmle :=";)"
ENDCASE
RETURN cSmi | e

STATI C FUNCTI ON Your Smi | e(nType)
LOCAL cSm |l e

DO CASE
CASE nType == 1
cSmle := "*SM LE*"
CASE nType == 2
cSmle 1= "*WNK*"
ENDCASE

RETURN cSni |l e

St at us

Ready
Conpl i ance

__Obj ModMet hod() is a Harbour extension.
Files

Library is rtl
See Al so:

obj AddMet hod() obj Del Met hod() __obj Get Met hodLi st () __obj Get MsgLi st () __obj HasMet hod()

obj Modl nl i ne()

Modify (replace) an INLINE method in an already existing class
Synt ax
__obj Modlnline(<oObject> <clnlineName>, <blinline>) --> oCbject
Argunent s
<oObject> is the object to work on.
<clnlineNane> 1is the synbol nane of the INLINE nethod to nodify.
<blnline> is a new code block to associate with the |INLI NE net hod.
Ret ur ns
__ObjMdInline() return a reference to <o(oject >.
Descri ption
__objModinline() is a low level class support function that nodify an |INLI NE
met hod in an object and replace it with a new code bl ock. <oCbject> is unchanged

if a synbol with the nane <clnlineNane> does not exist in <oCbject>.
__objModinline() is used in inheritance nechanism

Exanpl es
/] create a new THappy class and add a Smile | NLI NE net hod
oHappy := HBC ass():New("THappy")
bWinline :={ | nType | { ":)", ";)" }[nType] }
byourinline := { | nType | { "*SMLE*", "*WNK*" }[nType] }
__Obj AddI nli ne(oHappy, "Snile", bMiInline)
? oHappy:Smile(1) 1)
? oHappy:Smle(2) I
/1 replace Snmile inline nethod with a new code bl ock
__obj Modl nli ne(oHappy, "Snile", bYourlnline)
? oHappy:Smle(1) [l *SM LE*
? oHappy:Smle(2) [*W NK*
St at us
Ready
Conpl i ance
__ObjModInline() is a Harbour extension.
Files

Library is rtl
See Al so:

objAddinline() opjDellnline() _obj Get Met hodLi st () __obj Get MsgLi st () __obj HasMet hod()

obj Del Met hod()

Delete a METHOD from cl ass

Synt ax

___0obj Del Met hod(<oOhj ect>, <cSynbol >) --> oOhject
Argunent s

<oObject> is the object to work on.

<cSynbol > is the synbol nanme of METHOD or | NLINE nethod to be del eted
(rermoved) fromthe object.

Ret ur ns
__Obj Del Method() return a reference to <o(bj ect >.

Descri ption

__ObjDel Method() is a low |l evel class support function that delete (renpbve) a
METHOD or an | NLINE nmethod from an object. <oObject> is unchanged if a symbol with
the name <cSynbol > does not exist in <oQbject>.

__objDellnline() is exactly the sanme as __obj Del Met hod().
Exanpl es

/] create a new THappy class and add a Sm | e nethod
oHappy : = HBC ass(): New("THappy")

__Oobj AddMet hod(oHappy, "Snile", @¥Snmile())

? __obj HasMet hod(oHappy, "Smile") [. T.

/'l renove Snile nethod

__obj Del Met hod(oHappy, "Snmile")

? __obj HasMet hod(oHappy, "Smle") Il . F

STATI C FUNCTI ON MySmi | e(nType)
LOCAL cSm |l e

DO CASE
CASE nType ==
cSmle :=":)"
CASE nType ==
cSmile :=";)"
ENDCASE

RETURN cSni |l e

St at us

Ready
Conpl i ance

__Obj Del Method() is a Harbour extension.
Files

Library is rtl
See Al so:

_obj Addinline() opj AddMet hod() __obj Get Met hodLi st () __obj Get MsgLi st () __obj HasMet hod()

obj Modinline() — obj MbdMet hod()

obj Del I nl i ne

Delete” a METHOD I NLI NE from cl ass
Synt ax
__objDelInline(<oOhject> <cSynbol>) --> ohject
Argunent s
<oObject> is the object to work on.

<cSynbol > is the synbol nanme of METHOD or | NLINE nethod to be del eted
(rermoved) fromthe object.

Ret ur ns
__ObjDel I nMethod() return a reference to <oQbj ect >.
Descri ption
_obj Del I nMet hod() i

a
a METHOD or an | NLINE ne
wi th the nane <cSynbol >

| ow | evel class support function that delete (renove)
thod from an object. <oObject> is unchanged if a synbol
does not exist in <o(bject>.

Exanpl es

/1 create a new THappy class and add a Sm | e nethod
oHappy := HBC ass(): New("THappy")

__Obj AddMet hod(oHappy, "Smile", @¥Smle())

? __ obj HasMet hod(oHappy, "Snmile") /1. T.

/1 renove Snile nethod

__Obj Del I nMet hod(oHappy, "Smile")

? __ obj HasMet hod(oHappy, "Snmile") /1 . F.

STATI C FUNCTI ON MySni | e(nType)

LOCAL cSnile
DO CASE
CASE nType == 1
cSmle :=":)"
CASE nType ==
cSmle :=";)"
ENDCASE

RETURN cSni |l e

St at us

Ready
Conpl i ance

__Obj Del Method() is a Harbour extension.
Files

Library is rtl
See Al so:

__obj AddI nl i ne() obj AddMet hod() __obj Get Met hodLi st () __obj Get MsgLi st () __obj HasMet hod()

__obj Modlnline() obj ModMet hod()

obj Del Dat a()

Delete a DATA (instance variable) fromclass
Synt ax
__Obj Del Met hod(<oObj ect>, <cDataNane>) --> oObject
Argunent s
<oObject> is the object to work on.

<cDat aNanme> is the synbol nane of DATA to be deleted (renoved) fromthe

obj ect .
Ret ur ns

__ObjDelData() return a reference to <o(hject >.
Descri ption

__oObjDelData() is a low |l evel class support function that delete (renove) a
DATA from an object. <oCbject> is unchanged if a synmbol wth the nane <cDataName>
does not exist in <oQbject>.

Exanpl es
/1 create a new THappy class and add a | Happy DATA
oHappy := HBd ass():New("THappy")

__obj AddDat a(oHappy, "I Happy")

? __obj HasDat a(oHappy, "I Happy") /[l .T.

/'l renove | Happy DATA

__obj Del Data(oHappy, "l Happy")

? __obj HasDat a(oHappy, "I Happy") /1 .F.
St at us

Ready
Conpl i ance

__ObjDel Data() is a Harbour extension.
Files

Library is rtl

See Al so:

_obj AddData() opj Get MsgLi st ()__obj Get Val ueli st () __obj HasDat a() __Obj Set Val ueLi st ()

obj Deri vedFrom()

Determ ne whether a class’is derived from another class
Synt ax
__obj DerivedFron{ <oOhject>, <xSuper>) --> |I|sParent
Argunent s
<oObject> is the object to check.

<xSuper> is the object that may be a parent. can be either an Cbject or a
Character string with the class nane.

Ret ur ns

__objDerivedFron() return a logical TRUE (. T.) if <oObject> is derived from
<xSuper >.

Descri ption

__objDerivedFron() is a low level class support function that check is one
class is a super class of the other, or in other words, does class <o(hject> a
child or descendant of <xSuper>.

Exanpl es
/Il Create three classes and check their relations
#i ncl ude "hbcl ass. ch”

FUNCTI ON mai n()
| ocal oSuper, oQbject, oDress

oSuper = TMood() : New()
oQbj ect : = THappy(): New()
oDr ess = TShirt(): New()
? _ objDerivedFron{ oQnject, oSuper) [T
? __ objDerivedFron{ oSuper, o(bject) Il .F
? __obj DerivedFron{ oObject, oDress) Il .F
RETURN NI L
CLASS Thbod
METHOD New() | NLINE Sel f
ENDCLASS

CLASS THappy FROM TMood
METHOD Snmile() INLINE qout("*smile*")
ENDCLASS
CLASS TShirt
DATA Col or
DATA Si ze
METHOD New() | NLINE Sel f
ENDCLASS
St at us
Ready
Conpl i ance
__Obj DerivedFronm() is a Harbour extension.
Files
Library is rtl

See Al so:

obj HasDat a() __obj HasMet hod()

RDDLI ST()

Return an array of the avail abl e Repl aceabl e Dat abase Drivers

Synt ax
RDDLI ST([<nRDDType>]) --> aRDDLi st
Argunent s
<nRDDType> is an integer that represents the type of the RDD you wish to
list. The constants RDT_FULL and RDT_TRANSFER represent the two types of RDDs
currently avail abl e.

AA Const ant

Val ue —— Meaning oo
AA - RDT_FULL
1 Full RDD inplenmentation RDT_TRANSFER 2 | mport/Export only

driver AAAAAAAAAANAAANAAAAAAAAAAAAAAAAAAAAAANAAAAAAAAAANAANAAAAAAAAAAAAAAAAAAAAAA

RDT_FULL identifies full-featured RDDs that have all the capabilities
associ ated with an RDD.

RDT_TRANSFER identifies RDDs of limted capability. They can only transfer
records between files. You cannot use these limted RDD drivers to open a file in
a work area. The SDF and DELIMdrivers are exanples of this type of RDD. They are
only used in the inplenentation of APPEND FROM and COPY TO with SDF or DELIM TED
files.

Ret ur ns

RDDLI ST() returns a one-dinmensional array of the RDD nanes registered with
the application as <nRDDType>

Descri ption

RDDLI ST() is an RDD function that returns a one-dinmensional array that lists
the avail abl e RDDs.

If you do not supply <nRDDType>, all available RDDs, regardl ess of type, are
ret ur ned.

Exanpl es

In this exanple RDDLI ST() returns an array containing the
character strings, "DBF', "SDF', "DELIM, "DBFCDX', and "DBFNTX":

REQUEST DBFCDX
< statenents >

aRDDs : = RDDLI ST()
// Returns {"DBF", SDF", "DELIM, "DBFCDX", "DBFNTX' }

In this exanple, RDDLIST() returns an array containing the
character strings, "SDF' and "DELI M

#i ncl ude "rddsys. ch"
. < statements >

al npExp : = RDDLI ST(RDT TRANSFER)

Tests

St at us
Ready

RDDNAVE()

Return the nane of the currently active RDD
Synt ax
RDDNAME() --> cRDDNane
Argunent s

Ret ur ns
current or specified work area.
Descri ption

RDDNAME() is an RDD function that returns a character string, cRDDNane, the
name of the active RDD in the current or specified work area.

You can specify a work area other than the currently active work area by
aliasing the function.

Exanpl es

USE Custoner VI A "DBFNTX" NEW
USE Sal es VI A "DBFCDX" NEW

? RDDNAME() /1 Returns: DBFCDX
? Custoner->(RDDNAME()) /1 Returns: DBFNTX
? Sal es->(RDDNAME()) /1 Returns: DBFCDX
Tests
St at us
Ready
See Al so:

RDDLI ST()

RDDSETDEFAULTg)

Set or return the default RDD for the application

Synt ax

RDDSETDEFAULT([<cNewDef aul t RDD>])
--> cPrevi ousDef aul t RDD

<cNewDef aul t RDD> is a character string, the nane of the RDD that is to be
made the new default RDD in the application.

Ret ur ns
RDDSETDEFAULT() returns a character string, cPreviousDefaultRDD, the nane of

the previous default driver. The default driver is the driver that HARBOUR uses
if you do not explicitly specify an RDD with the VIA clause of the USE comand.

Descri ption
RDDSETDEFAULT() is an RDD function that sets or returns the name of the
previous default RDD driver and, optionally, sets the current driver to the new
RDD driver specified by cNewDefaul tRDD. |If <cNewDefaul tDriver> is not specified,
the current default driver nane is returned and continues to be the current default
driver.

This function replaces the DBSETDRI VER() functi on.
Exanpl es
/1 1f the default driver is not DBFNTX, make it the default
| F (RDDSETDEFAULT() != "DBFNTX"
ENDICE dRdd : = RDDSETDEFAULT(" DBFNTX")

Test s

St at us
Ready

See Al so:
DBSETDRI VER()

RDDSETDEFAULTﬁ)

Set or return the default RDD for the application

Synt ax

__ RDDSETDEFAULT([<cNewDef aul t RDD>])
--> cPrevi ousDef aul t RDD

<cNewDef aul t RDD> is a character string, the nane of the RDD that is to be
made the new default RDD in the application.

Ret ur ns

__ RDDSETDEFAULT() returns a character string, cPreviousDefaultRDD, the name

of the previous default driver. The default driver is the driver that HARBOUR
uses if you do not explicitly specify an RDD with the WVIA clause of the USE
command.

Descri ption
RDDSETDEFAULT() is an RDD function that sets or returns the nane of the
previous default RDD driver and, optionally, sets the current driver to the new

RDD driver specified by cNewDefaul t RDD. [|f <cNewDefaultDriver> is not specified,
the current default driver nanme is returned and continues to be the current default

driver.
This function replaces the DBSETDRI VER() functi on.
Exanpl es

/] 1f the default driver is not DBFNTX, nmake it the default

IF (__RDDSETDEFAULT() != "DBFNTX")
cO dRdd := _ RDDSETDEFAULT(" DBFNTX")
ENDI F
Test s
St at us
Ready
See Al so:

DBSETDRI VER()

DBEVAL()

Performs a code bl ock operation on the current Database
Synt ax
DBEVAL(<bBl ock>,
[<bFor>], [<bWile>],
[<nNext >], [<nRecord>],
[<IRest>]) --> NIL
Argunent s
<bBl ock> Operation that is to be performed
<bFor> Code bl ock for the For condition
<bWhi | e> Code bl ock for the WH LE condition
<nNext > Nunber of NEXT records to process
<nRecord> Record nunber to work on exactly
<| Rest> Toggle to rewind record pointer
Ret ur ns
DBEVAL() always returns N L
Descri ption
Performs a code bl ock operation on the current Database

Exanpl es

FUNCTI ON Mai n()
LOCAL nCount

USE Test
dbGoto(4)
? RecNo()
COUNT TO nCount
? RecNo(), nCount
COUNT TO nCount NEXT 10
? RecNo(), nCount
RETURN NI L
St at us
Started
Conpl i ance
DBEVAL is fully CA-dipper conpliant.
Files
Li brary is rdd
See Al so:

EVAL

DBF()

Alias name of a work area
Synt ax
Dbf () --> <cWorkArea>
Ret ur ns
<cWor kArea> Nane of alias
Descri ption
This function returns the same alias nanme ofthe currently selected work area.
Exanpl es
FUNCTI ON Mai n()

USE Test

select 0

qQut (I F(DBF()=="","No Nane", DBF()))

Test ->(qQut (DBF())

qQut (Alias(1))

RETURN NI L
St at us

Ready
Conpl i ance
DBF() is fully CA-dipper conpliant.
Files
Library is rdd

See Al so:
ALI AS()

DBAPPEND)

Appends a new record to a database file.

Synt ax

DbAppend([<lLock>]) --> NL
Argunent s

<l Lock> Toggle to release record | ocks
Ret ur ns

DbAppend() always returns NL
Descri ption

This function add a new record to the end of the database in the selected or
aliased work area. Al fields in that database will be given enpty data val ues -
character fields wll be filled with blank spaces,date fields with CTOD('//"),
nuneric fields with 0,logical fields with .F., and neno fields wth NULL bytes. The
header of the database is not updated until the record is flushed fromthe buffer
and the contents are witten to the disk

Under a networ ki ng enviroment, DBAPPEND() perforns an addition
attrnps to lock the newy added record. If the database file
or if a locking assignnent iif nmade to LASTREC() +1, NETERR() wi
true (.T.) imrediately after the DBAPPEND() function. This fu
unl ock the | ocked records.

al operation: It

is currently | ocked
Il return a |ogica
nction does not

If <lLock> is passed a logical true (.T.) value, it wl
| ocks, which allows the application to main- tain nult
appendi ng operation. The default for this paraneter is

Exanpl es
FUNCTI ON Mai n()

| release the record
iple record | ocks during an
a logical false (.F.).

USE Test
| ocal cNanme="HARBOUR', nl d=10
Test - >(DbAppend())
Repl ace Test->Nanme wit cNane,ld with nld
Use
RETURN NI L
St at us
Ready
Conpl i ance
DBAPPEND() is fully CA-Cipper conpliant.
Files
Li brary is rdd

See Al so:

DBUNL OCK DBUNL OCKALL ()

DBCLEARFI LTER(

Clears the current f|?ter condiction in a work area
Synt ax
DbCl earFil Ter() --> N L
Ret ur ns
DbCl earFil Ter() always returns NL
Descri ption

This function clears any active filter condiction for the current or selected
wor k ar ea.

Exanpl es
Function Min()
Use Test
Set Filter to Left(Test->Nane,2) == "An"
Dbedi t ()
Test->(DbCl earFilter())

USE
Return Nil
St at us
Ready
Conpl i ance
DBCLEARFI LTER() is fully CA-dipper conpliant.
Files
Library is rdd
See Al so:

DBSETFI LTER() pgFi LTER()

DBCLOSEALL()

Close all open files in all work areas.

Synt ax

DbCl oseAll () --> NIL
Ret ur ns

DBCLOSEALL() always return N L
Descri ption

This function close all open databases and all associated indexes.In
addition, it closes all format files and nmoves the work area pointer to the first
posi tion

Exanpl es
Function Main()
Use Test New
DbEdi t ()
Use Test1l New
DbEdi t ()
Dbd oseAl | ()
USE
Return Nil

St at us
Ready

Conpl i ance
DBCLOSEALL() is fully CA-dipper conpliant.

Fil es
Library is rdd

See Al so:

DBUSEAREA DBCL OSEAREA()

DBCLOSEAREA()

Close a databaseglle in a work area.
Synt ax
DbC oseArea() --> NL
Ret ur ns
DbC oseArea() always returns NI L.
Descri ption

This function wll close any database open in the selected or aliased work
ar ea.

Exanpl es
Functi on Main()
Use Test
Dbedi t ()
Test->(DbC oseArea())

USE

Return Nil
St at us

Ready
Conpl i ance

DBCLOSEAREA() is fully CA-Cipper conpliant.
Files

Li brary is rdd
See Al so:

DBUSEAREA DBCLOSEALL ()

DBCOWM T()

Updates all index and dat abase buffers for a given workarea
Synt ax
DBCOW T() --> NIL
Ret ur ns
DBCOW T() always returns NI L.
Descri ption

This function updates all of the information for a give,selected, or active
wor kar ea. This operation includes all database and index buffers for that work area
only. This function does not update all open work areas.

Exanpl es

FUNCTI ON Mai n()
LOCAL cNane: =SPACE(40)

LOCAL nl d: =0
USE Test EXCLUSI VE NEW
/1

@10, 10 GET cNane

@11, 10 GET nld

READ

/1

| F UPDATED)
APPEND BLANK
REPLACE Test s->Nane W TH cNane
REPLACE Tests->Id WTH nld
Tests->(DBCOW T())

ENDI F
RETURN NI L
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files

Li brary is rdd
See Al so:

DBCLGSEALL() pBCOVM TALL() DBUNLOCK()

DBCOVM TALL()

Fl ushes the nmenory buffer and perforns a hard-disk wite

Synt ax

DBCOMWM T() --> NIL
Ret ur ns

DBCOW T() always returns NI L.
Descri ption

This function perfornms a hard-disk wite for all work areas. Before the disk
wite is perforned,all buffers are flushed. open work areas.

Exanpl es

FUNCTI ON Mai n()

LOCAL cName: =SPACE(40)

LOCAL nld: =0

USE Test EXCLUSI VE NEW

USE Testld New | NDEX Testi d

/1

@10, 10 GET cNane

@11, 10 GET nld

READ

/1

| F UPDATED)
APPEND BLANK
REPLACE Test s->Nane W TH cNane
REPLACE Tests->Id WTH nld
| F ! Test | d->(DBSEEK(nl d))

APPEND BLANK
REPLACE Tests->Id WTH nld

ENDI F

ENDI F

DBCOWM TALL()

RETURN NI L

St at us
Ready
Conpl i ance
This function is CA-Clipper conpliant.
Files
Library is rdd
See Al so:

DBCLOSEALL() pBCOVM T() DBUNLOCK()

DBCONTINUE&&JE

Resune a pending L

Synt ax

__DbCONTI NUE() --> NIL

Ret ur ns
__ DbCONTINUE() Always return N L
Descri ption

__DBCONTINUE i s a database command that searches fromthe current record
position for the next record neeting the nost recent LOCATE condition executed in

the current work area. It terminates when a match is found or end of file is
encountered. |If _ DBCONTINUE is successful, the matching record becones the
current record and FOUND() returns true (.T.); if unsuccessful, FOUND() returns
false (.F.).

Each work area may have an active LOCATE condition. |In CA-Cipper, a LOCATE
condi tion renmains pending until a new LOCATE condition is specified. No other
commands rel ease the condition.

Not es

Scope and WHI LE condition: Note that the scope and WHILE condition of the

initial LOCATE are ignored; only the FOR condition is used with CONTINUE. If you
are using a LOCATE with a WHILE condition and want to continue the search for a

mat ching record, use SKIP and then repeat the original LOCATE statenment addi ng REST
as the scope.

Thi s exanpl e scans records in Sal es.dbf for a particular
sal esman and di splays a running total sales amounts:

LOCAL nRunTotal := 0

USE Sal es NEW

LOCATE FOR Sal es->Sal esman = "1002"

DO VWHI LE FOUND)
? Sal es->Sal esnane, nRunTotal += Sal es->Anpunt
__ DBCONTI NUE()

ENDDO

Thi s exanpl e denmponstrates how to continue if the pending
LOCATE scope contains a WH LE condi tion:

LOCAL nRunTotal := 0
USE Sal es | NDEX Sal esman NEW
SEEK "1002"

LOCATE REST WH LE Sal es->Sal esman = "1002";
FOR Sal es- >Ampbunt > 5000
DO WHI LE FOUND()
? Sal es->Sal esnane, nRunTotal += Sal es->Anpunt
SKI P
LOCATE REST WHI LE Sal es->Sal esnman = "1002";
FOR Sal es- >Ampbunt > 5000

ENDDO
St at us
Ready
Conpl i ance
This function is CA-Clipper conpliant.
Files
Library is rdd
See Al so:

ECEQ). Foun

DBCREATE()

Creates an enpty database froma array.

Synt ax

DBCREATE(<cDat abase>, <aStruct>, [<cDriver>], [<IOpen>],
[<cAlias>]) --> NL

Argunent s
<cDat abase> Nane of database to be create

<aStruct > Nanme of a nultidinmensional array that contains the database
structure

<cDriver> Nane of the RDD

<l OpenNew> 3-way toggle to Open the file in New or Current workarea:

IL The file is not opened
Tr ue t is opened in a New area
Fal se t is opened in the current area
<cAli as> Nanme of database Alias
Ret ur ns
DBCREATE() always returns NI L.
Descri ption

This function creates the database file specified as <cDatabase> fromthe

mul tidi nensional array <aStruct>.1f no file extension is use with <cDatabase> the
.DBF extension is assunmed. The array specified in <aStruct> nust follow a few

gui del i nes when being built prior to a call to DBCREATE():

- Al subscripts values in the second di nensi on nust be set to proper val ues

- The fourth subscript value in the second di nension - which contains the
deci mal val ue-nust he specified. even 1lkw nonnuneric fields.

- The second subscript value in the second di nensi on-which contains the field

data type-nust contain a proper value: C, D, L, Mor N It is possible to use
additional letters (or clarity (e.g., "Numeric' for 'N): however, the first letter
of this array el enent nust be a proper val ue.

The DBCREATE() function does not use the decimal field to calculate the

|l ength of a character held | onger than 256. Values wup to the naximumlength of a
character field (which is 65,519 bytes) are stored directly in the database in the
length attribute if that database was created via this function. However, a file
containing fields |longer than 256 bytes is not conpatible with any interpreter

The <cDriver> paraneter specifies the nane of the Repl aceabl e Database Driver
to use to create the database. If it is not specified, then the Repl aceabl e
Dat abase Driver in the current work area is used

The <l OpenNew> paraneter specifies if the already created database is to be

opened, and where. |If NL, the file is not opened. If True, it is opened in a New
area, and if False it is opened in the current area (closing any file already
occupying that area). The <cAlias> paraneter specifies the alias nanme for the new
opened dat abase.

Exanpl es

function main()

local nl, aStruct :={ { "CHARACTER', "C', 25, 0 },
{ "NUMERI C', "N', 8, 01}, ;
{ "DOUBLE", "N, 8, 2}, ;
{ "DATE", "D', 8, 0}, ;
{ "LOG& CAL", "L, 1, 0},
{ "MEMOL", "M, 10, 0}, ;
{ "MEMRR", "M, 10, 0} }

REQUEST DBFCDX

dbCreate("testdbf", aStruct, "DBFCDX', .t., "MALIAS")
RETURN NI L

St at us
Ready

Conpl i ance
This function is Not CA-dipper conpliant

Fil es
Library is rdd Header is Dbstruct.ch

See Al so:

AFI ELDS() DBSTRUCT()

DBDELETE()

Mar ks records for deletion in a database.

Synt ax

DBDELETE() --> NIL
Ret ur ns

DBDELETE() always returns NI L.
Descri ption

This function marks a record for deletion in the selected or aliased work
area.|f the DELETED setting is on, the record wll still be visible until the
record pointer in that work area is noved to another record.

In a networking situation, this function requires that the record be |ocked
prior to issuing the DBDELETE() function.

Exanpl es

nl d: =10
USE Testld I NDEX Testld NEW
| F Test | d->(DBSEEK(nl d))

I F Test1d->(RLOCK())

DBDELETE()
ENDI F
ENDI F
USE
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files
Library is rdd
See Al so:

DBRECALL

DBFI LTER()

Return the filter expression in a work area

Synt ax

DBFI LTER() --> cFilter
Ret ur ns

DBFI LTER() returns the filter expression.
Descri ption

This function return the expression of the SET FILTER TO conmand for the
current or designated work area. If no filter condition is present,a NULL string
wi Il be returned.

Exanpl es

USE Test | NDEX Test NEW

SET FILTER TO Nane= "Har bour"
USE Testld | NDEX Testld NEW
SET FILTER TOId =1

SELECT Test
{?/ DBFI LTER()
? Test|d->(DBFI LTER())
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files
Library is rdd
See Al so:

ARRAY ARRAY

DBGOBOTT

Moves the record pointer to the bottom of the database.

Synt ax

DBGOBOTTOM) --> NI L

Ret ur ns
DBGOBOTTOM) al ways returns NI L.
Descri ption

This function noves the record pointer in the selected or aliased work area

to the end of the file. The position of the record pointer is affected by the
values in the index key or by an active FILTER condition. O herwise,if no index is
active or if no filter condition is present,the value of the record pointer will be
LASTREC() .

Exanpl es

USE Tests
DBGOTOP()

? RECNO()
DBGOBOTTOM)

? RECNQ()
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files
Library is rdd
See Al so:

BOF() EOF() DBSKI P() DBSEEK() DBGOTCP()

DBGOT()

Position the record pointer to a specific |ocation.

Synt ax

DBGOTQ(<xRecor dNunber>) --> N L

Argunent s
<xRecor dNunber > Record nunber or unique identity
Ret ur ns
DBGOTQ() always returns NI L.
Descri ption
This function places the record pointer,if working with a .DBF file, in

sel ected or aliased work area at the record nunber specified by
<xRecor dNunber >. The position if not affected by an active index or by any
envi ronental SET condiction.

I ssuing a DBGOTQ(RECN(()) call in a network environent will refresh the

dat abase and index buffers.This is the same as a DBSKIP(0) call. The paraneter
<xRecor dNumber > may be sonething other than a record nunber.In sonme data formats,
for exanple, the value of <xRecordNunmber> 1is a unique primary key while in other
formats, <xRecor dNunber> could be an array offset if the data set was an array.

Exanpl es

The foll owi ng exanpl e uses DBGOTQ() to iteratively process
every fourth record:

DBUSEAREA(. T., "DBFNTX', "Sales", "Sales", .T.)
11
/1 toggle every fourth record
DO WHI LE ! EOF()
DBGOTO(RECNQ() + 4)
Sal es->G oup : = "Bear"
ENDDO

St at us

Ready
This function is CA-Clipper conpliant.

Fil es
Library is rdd
See Al so:

BOE(). EOF() DBGOTOP() DBGOBOTTOM) DBSEEK() DBSKI P()

DBGOTOP()

Moves the record pointer to the bottom of the database.

Synt ax

DBGOTOP() --> NIL

Ret ur ns
DBGOTOP() always returns N L.
Descri ption

This function noves the record pointer in the selected or aliased work area

to the top of the file. The position of the record pointer is affected by the
values in the index key or by an active FILTER condition. therwise,if no index is
active or if no filter condition is present,the value of RECNQ() will be 1.

Exanpl es
USE Tests
DBGOTOP()
? RECNQ()
DBGOBOTTOM)
? RECNQ()
USE
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files
Li brary is rdd

See Al so:

BOE() EOF() DBSKI P() DBSEEK() DBGOBOTTOM)

DBRECALL ()

Recal | s a record previousy marked for del etion.

Synt ax

DBRECALL() --> NIL

Ret ur ns
DBRECALL() always returns NI L.
Descri ption

Thi s function unmarks those records marked for deletion and reactivates them

in the aliased or selected work area. If a record is DELETED and t he DELETED
setting is on, the record will still be visible for a DBRECALL() provided that the
dat abase record pointer has not been skipped. Once a record nmarked for del etion
with the DELETE setting ON has been skipped, it no |l onger can be brought back wth
DBRECALL() .

Exanpl es
USE Test NEW
DBGOT((10)
DBDELETE()
? DELETEI)
DBRECALL()
? DELETED()
USE
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files
Li brary is rdd

See Al so:
DBDELETE()

DBRL OCK()

This function | ocks the record basedon identify

Synt ax

DBRLOCK([<xl dentity>]) --> | Success
Argunent s

<xldentity> Record indetifier
Ret ur ns

DBRLOCK() returns a logical true (.T.) if lock was successful
Descri ption

This function attenpts to lock a record which is indentified by <xldentity>

in the active data set.If the lock is successful the function will return a

logical true (.T.) value;otherwise a logical false (.F.) will be returned.If
<xldentity> is not passed it will be assuned to |l ock the current active record/data
item

Exanpl es

FUNCTI ON Mai n()

LOCAL x: =0

USE Tests New

FOR x:=1 to reccount ()

| F ! DBRLOCK()
DBUNL OCK()
ENDI F
NEXT
USE
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files
Library is rdd
See Al so:

DBUNLOCK() DBUNLOCKALL () FLOCK() RLOCK()

DBRLOCKLI ST()

This function return a list of records in the database work area

Synt ax

DBRLOCKLI ST() --> aRecordLocks
Ret ur ns

<aRecordList> 1is an array of |ock records
Descri ption

This function will return an array of |ocked records in a given and active
work area.lf the return array is an enpty array (neaning no elements init),then
there are no locked record in that work area.

Exanpl es

FUNCTI ON Mai n()

LOCAL aList: ={}

LOCAL x: =0

USE Tests NEW

DBGOT((10)

RLOCK()

DBGOT((100)

RLOCK()

aLi st : =DBRLOCKLI ST()
FOR x:=1 TO LEN(aLi st)

? alist[x]
USE
RETURN NI L
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files
Library is rdd
See Al so:

RLOCK(). DBRLOCK() DBRUNLOCK()

DBRUNL OCK()

Unl ocks a record base on its indentifier

Synt ax
DBRUNLOCK([<xl dentity>]) --> NL
Argunent s
<xldentity> Record indentifier,tipicaly a record numnber
Ret ur ns
DBRUNLOCK() always returns NI L.
Descri ption

This function will attenpt to unlock the record specified as
<xldentity> which in a .DBF format is the record nunber.If not specified,themthe
current active record/data itemw |l be wunlocked

Exanpl es

FUNCTI ON Mai n()
USE Tests New
DBGOT((10)
I F RLOCK()
? Tests->ID
DBRUNL OCK()
ENDI F
USE
RETURN NI L

St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files
Li brary is rdd
See Al so:

RLOCK() DBRLOCK() DBRLOCKLI ST()

DBSEEK()

Searches for a value based on an active index.
Synt ax
DBSEEK(<expKey>, [<I| Soft Seek>],[<l FindLast>]) --> | Found
Argunent s
<expKey> Any expression
<| Sof t Seek> Toggl e SOFTSEEK condition

<| FindLast> 1is an optional |ogical value that set the current record
position to the last record if successful

Ret ur ns
DBSEEK() returns logical true (.T.) if found, otherw se false

Descri ption
This function searches for the first record in a database file whose index
key matches <expKey>. If the itemis found, the function will return a | ogical

true (.T.), the value of FOUND() will be a logical true (.T.), and the value of
EOF() will be a logical false (.F.). If noitemis found. then the function wll
return a logical false, the value of FOUND() will be a logical false (.F.), and
the value of EOF() will be a logical true (.T.).

This function always "rew nds" the database pointer and starts the search
fromthe top of the file.

If the SOFTSEEK flag is on or if <l SoftSeek> is set to a logical true (.T.)
the value of FOUND() will be a logical false and EOF() will be false if there is
an itemin the index key with a greater value than the key expression <expKey>; at

this point the record pointer will position itself on that record. However, if
there is no greater key in the index,EOF() will return a logical true (.T.) val ue.
If <l SoftSeek> is not passed, the function will look to the internal status of
SOFTSEEK before perform ng the operation. The default of <l SoftSeek> is a | ogical
false (.F.)

Exanpl es

FUNCTI ON Mai n()
USE Tests New | NDEX Tests
DBGOT((10)
nld: =Tests->nld
| F Test s->(DBSEEK(nl d))
I F RLOCK()
? Test s->Nane
DBRUNL OCK()
ENDI F
ENDI F
USE
RETURN NI L

ACCEPT "Enpl oyee nane: " TO cNane
| F (Enpl oyee- >(DBSEEK(cNane)))
Enmpl oyee- >(Vi ewRecord())

ELSE
? "Not found"

END
St at us

Started
Conpl i ance

DBSEEK() is Conpatible with CA-Cipper 5.3
Fil es

Library is rdd

See Al so:

DBGOBOTTOM) pBGOTOP() DBSKI P() EOF() BOF() FOUND()

DBSEL ECTAREA()

Change to another work area

Synt ax

DBSELECTAREA(<xAr ea>) --> NI L

Argunent s
<xArea> Alias or work area
Ret ur ns
DBSELECTAREA() always returns NI L.
Descri ption
This function noves the Harbour internal primary focus to the work area
designated by <xArea>. |If <xArea> is nuneric, themit will select the numeric work
area;if <xArea> is character,then it will select the work area with the alias nane.

DBSELECTAREA(O) will select the next avaliable and unused work area. Up to

255 work areas are supported. Each work area has its own alias and record pointer,
as well as its own FOUND(), DBFILTER(), DBRSELECT() and DBRELATION() function
val ues.

Exanpl es

FUNCTI ON Mai n()
LOCAL nld
USE Tests NEW | NDEX Tests
USE Testsl NEW I NDEX Testsl
DBSELECTAREA(1)
nld: =Tests->Id
DBSELECTAREA(2)
| F DBSEEK(nl d)
? Testsl->cNane
ENDI F
DBCLOSEALL()
RETURN NI L

St at us
Ready
Conpl i ance
This function is CA-CLI PPER conpati bl e.
Files
Library is rdd
See Al so:

DBUSEAREA SELECT

DBSETDRI VER

Est abl i shes the nanme for the selected work area

Synt ax

DBSETDRI VER([<cDriver>]) --> cCurrentDriver

Argunent s
<cDriver> Optional database driver nane
Ret ur ns
DBSETDRI VER() returns the name of active driver
Descri ption
This function returns the nane of the current database driver for the
sel ected work area. The default will be "DBFNTX". I|f specified, <cDriver> contains
the nane of the database driver that should be wused to activate and manage the work
area.|f the specified driver is not avaliable,this function will have no effect.
Exanpl es
DBSETDRI VER(" ADS")
St at us
Ready
Conpl i ance
This function is CA-Clipper conpatible
Fil es
Library is rdd
See Al so:

DBUSEAREA()

DBSKI P()

Moves the record pointer in the selected work area.

Synt ax

DBSKI P([<nRecords>]) --> N L
Argunent s

<nRecords> Nunbers of records to nmove record pointer.
Ret ur ns

DBSKI P() always returns NI L.
Descri ption

This function noves the record pointer <nRecords> in the selected or aliased

wor k area. The default value for <nRecords> will be 1. A DBSKIP(0) wll flush and
refresh the internal database bufer and nmake any changes nmade to the record visible
wi t hout noving the record pointer in either direction.

Exanpl es

FUNCTI ON Mai n()

USE Tests NEW

DBGOTOR()

VWHI LE ! EOF()
? Tests->1d, Tests->Nane
DBSKI P()

ENDDO

USE

RETURN NI L

St at us
Ready
Conpl i ance
This function is CA-CLI PPER conpati bl e
Files
Library is rdd
See Al so:

BOF() pDBGOBOTTOM) DBGOTOP() DBSEEK() EOF()

DBSETFI LTER()

Establishes a filter condition for a work area.
Synt ax
DBSETFI LTER(<bCondi ti on>, [<cCondition>]) --> N L
Argunent s
<bCondi ti on> Code bl ock expression for filtered eval uation.

<cConditi on> Optional character expression of code bl ock.

Ret ur ns
DBSETFI LTER() always returns NIL.
Descri ption

This function nasks a database so that only those records that nmeet the
condition prescribed by the expression in the code block <bCondition> and
literally expressed as <cCondition> are visible. [If <cCondition> is not passed to
this function,then the DBFILTER() function will return an enpty string show ng no
filter in that work area which in fact,would be not correct.

Exanpl es
FUNCTI ON Mai n()
USE Tests NEW
DBSETFI LTER({|| Tests->ld <100 }, "Tests->ld <100")
DBGOTOP()
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant.
Files
Li brary is rdd

See Al so:

DBFI LTER) DBCLEARFI LTER()

DBSTRUCT()

Creates a nultidinensional array of a database structure.

Synt ax

DBSTRUCT() --> aStruct

Ret ur ns
DBSTRUCT() returns an array pointer to database structure
Descri ption

This function returns a multidimensional array.This array has array pointers

to other arrays, each of which contains the characteristic of a field in the active
work area. The I enght of this array is based in the nunber of fields in that
particular work area.ln other words, LEN(DBSTRUCT()) is equal to the val ue obtained
from FCOUNT(). Each subscript position

Exanpl es

FUNCTI ON Mai n()

LOCAL aStru, x

USE Tests NEW

aSt ru: =DBSTRUCT()

FOR x: =1 TO LEN(aStru)
? aStru[x, 1]

NEXT

USE

RETURN NI L

St at us

Ready
Conpl i ance

This function is CA-Cipper conpliant
Files

Library is rdd Header is DbStruct.ch

See Al so:
AFI ELDS

DBUNL OCK()

Unl ock a record or release a file | ock

Synt ax

DBUNLOCK() --> NIL
Ret ur ns

DBUNLOCK() always returns NI L.
Descri ption

This function releases the file or record lock in the currently selected or
aliased work area.lt will not unlock an associated lock in a related databases.

Exanpl es

nld: =10
USE Testld | NDEX Testld NEW
| F Test | d->(DBSEEK(nl d))

I F Test!ld->(RLOCK())

DBDELETE()
ELSE
DBUNL OCK()
ENDI F
ENDI F
USE
St at us
Ready
Conpl i ance
This function is CA-Clipper conpatible.
Files
Library is rdd
See Al so:

DBUNLOCKALL() FLOCK() RLOCK()

DBUNL OCKALL()

Unl ocks all records and releases all file locks in all work areas.
Synt ax
DBUNLOCKALL() --> NIL
Ret ur ns
DBUNLOCKALL() always returns NI L.
Descri ption
This function will renpve all file and record locks in all work area.
Exanpl es
nl d: =10
USE Tests | NDEX Testld NEW
USE Testsl | NDEX Tests NEW
| F Test | d->(DBSEEK(nl d))

I F Test!ld->(RLOCK())
DBDELETE()

ELSE
DBUNL OCKALL()

ENDI F

USE
St at us

Ready
Conpl i ance

This function is CA Cipper conpliant
Fil es

Library is rdd

See Al so:
DBUNLOCK() FLOCK() RLOCK()

DBUSEAREA()

Opens a work area and uses a database file.

Synt ax

DBUSEAREA([<I NewArea>], [<cDriver>], <cName>, [<xcAlias>],
[<l Shared>], [<lIReadonly>]) --> NL

Argunent s

<| NewArea> A optional |ogical expression for the new work area

<cDriver> Dat abase driver nane

<cName> Fil e Nane

<xcAl i as> Ali as nane

<l Shar ed> Shar ed/ excl usi ve status fl ag

<l Readonly> Read-wite status flag.

Ret ur ns
DBUSEAREA() always returns NI L.
Descri ption

This function opens an existing database named <cName> in the current work

area. If <INewArea> is set to a logical true (.T.) value, then the database
<cNane> wi Il be opened in the next avail able and unused work area. The default

val ue of <l NewArea> is a logical false (.F.). |If used, <cDriver> is the name of the
dat abase driver associated with the file <cNanme> that is opened. The default for
this will be the value of DBSETDR VER().

| F used, <xcAlias> contains the alias nane for that work area, If not
specified, the root nane of the database specified in <cNane> will be wused.

If <l Shared> is set to a logical true (.T.) value, the database that is

specified in <cNane> will be opened by the user EXCLUSIVELY. Thus locking it from
all other nodes or users on the network. If <l Shared> is set to a |logical false
(.F.) value, then the database will be in SHARED node. |If <l Shared> is not passed,
then the function will turn to the internal setting of SET EXCLUSIVE to determ ne a

setting.
If <l ReadOnly> is specified, the file will be set to READ ONLY node. |If it is
not specified, the file will he opened in normal read-wite node.
Exanpl es
DBUSEAREA(. T., , "Tests")
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Fil es
Library is rdd
See Al so:

DBCLOSEAREA() DBSETDRI VER() SELECT() SET()

DBZAP()

Renove all records fromthe current database file

Synt ax

__DbZap() --> NL
Ret ur ns

__Dbzap() will always return NL
Descri ption

_ Dbzap() is a database conmand that permanently renoves all records

from

files open in the current work area. This includes the current database file,
index files, and associated neno file. Disk space previously occupied by the ZAPped

files is released to the operating system

__Dbzap() performs the same operation as DELETE ALL foll owed by PACK but is

al nost i nst ant aneous.

To ZAP in a network environnent, the current database file nust be
EXCLUSI VEI y.

Thi s exanpl e denmonstrates a typical ZAP operation in a network
envi ronnent :

USE Sal es EXCLUSI VE NEW
I F I NETERR()
SET I NDEX TO Sal es, Branch, Sal esman
__dbZAP()
CLCSE Sal es
ELSE
? "Zap operation failed"
BREAK
ENDI F

St at us

Ready
Conpl i ance

This function is CA Cipper conpliant
Files

Library is rdd

USEd

ORDBAGEXT()

Returns the Order Bag extension
Synt ax
ORDBAGEXT() --> cBagExt
Argunent s

Ret ur ns
<cBagExt > The Rdd extension nane.
Descri ption

This function return th character nane of the RDD extension for the order
bag. This is determ ned by the active RDD for the selected work area.

This function replaces the Indexord() function.

Exanpl es
USE Tests NEW VI A " DBFNTX"
? ORDBAGEXT() /1l Returns .ntx
DBCL OSEAREA()
USE Tests NEW VI A " DBFCDX"
? ORDBAGEXT() /1l Returns .cdx
DBCL OSEAREA()
St at us
Started
Conpl i ance
This function is CA Cipper conpliant
Pl at f or ns
Al l
Files
Library is rdd
See Al so:

LNDEXEXT() ORDBAGNAME

ORDBAGNANE()

Returns the Order Bag Nane.
Synt ax
ORDBAGNAME(<nOr der> | <cOrder Nane>) --> cOrder BagNane
Argunent s
<nOrder> A nuneric value representing the Order bag nunber.

<cOrderNane> The character nane of the Order Bag.

Ret ur ns
ORDBAGNAME() returns the Order bag nane
Descri ption

This function returns the name of the order bag for the specified work area.

If <nOrder> is specidied,it will represent the position in the order list of the
target order.If <cOrderName> is specified, it will represent the nane of the target
order.In essence,it will tell the nane of the database (if That Rdd is in use) for
a given index nane or index order nunber.|f <cOrderName> is not specified or
<nOrder>is 0, the Current active order will be used.

Exanpl es

USE Tests VI A "DBFCDX" NEW
Set index to TESTs

ORDBAGNAME(" TeNane") /1 Returns: Customer
ORDBAGNAME(" TeLast") /1l Returns: Customer
ORDBAGNAME("teZip") /1 Returns: Custoner

Set Order to Tag TeName
? OrderBagNane() //Return Custumer

Tests
See Exanpl es
St at us
Started
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ns
Al l
Files
Library is rdd
See Al so:

L NDEXORD() ORDBAGEXT() ALl AS()

ORDCONDSET()

Set the Condition and scope for an order

Synt ax

ORDCONSET([<cFor Condi ti on>],
<bFor Condi ti on>],
<lA'l>],

<bWhi | eCondi ti on>],
<bEval >],

<nl nterval >],
<nStart>],

<nNext >],

<nRecor d>],

<l Rest >],

<| Descend>],

<| Addi tive>],

<l Current>],

<l Cust on®],

<l NoOptim ze>])

Argunent s

<cForCondition> is a string that specifies the FOR condition for the order

<bFor Condition> is a code block that defines a FOR condition that each record
within the scope must neet in order to be processed. If a record does not neet the
specified condition,it is ignored and the next record is processed. Duplicate keys
val ues are not added to the index file when a FOR condition is Used.

Ret ur ns

Descri ption

St at us

Started
ORDCONDSET() is CA-dipper conpliant

Fil es
Library is rdd

ORDCREATE()

Create an Order in an Order Bag

Synt ax

ORDCREATE(<cOr der BagNane>, [<cOr der Nanme>], <cExpKey>,
[<bExpKey>], [<IUnique>]) --> NL

Argunent s
<cOr der BagNane> Nane of the file that contains one or nore O ders.
<cOrder Name> Nane of the order to be created.
<cExpKey> Key value for order for each record in the current work area

<bExpKey> Code bl ock that evaluates to a key for the order for each record
in the work area.

<l Uni que> Toggl e the unique status of the index.

Ret ur ns
ORDCREATE() always returns NI L.
Descri ption

This function creates an order for the current work area.lt is simlar to the
DBCREATEI NDEX() except that this function allows different orders based on the RDD
in effect. The nane of the file <cOrderBagNane> or the nane of the order
<cOrderNanme> are technically both considered to be "optional" except that at |east
one of two mnust exist in order to create the order

The paraneter <cExpKey> is the index key expression;typically in a .DBF
driver,the maxi mum | ength of the key is 255 characters.

I f <bExpKey> is not specified,then the code block is create by macro
expandi ng the val ue of <cExpKey>.

If <l Unique>is not specified,then the current internal setting of SET UN QUE
ON or OFF will be observed.

The active RDD driver determ nes the capacity in the order for a specific
order bag.

If the name <cOrderBagName> is found in the order bag can contain a single
order,the the name <cOrderBagNanme> is erased and a new order is added to the order
list in the current or specified work area.On the other hand,if it can contain
multiples tags and if <cOrderBagNane> does not already exist in the order list,then
it is added.lt is does exist,then the <cOrderBagNane> replaces the former nane in
the order list in the current or specified work area.

Exanpl es
USE TESTS VI A "DBFNDX" NEW
ORDCREATE("FNAME",, "Tests->f Name")
USE TEsts VI A "DBFCDX" NEW
ORDCREATE(, "I Nane", "tests->| Nane")
Tests
See exanpl es
St at us
Started
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ns

All

Files
Library is rdd
See Al so:

ARRAY ORDNANE() ORDSETFOCUS()

ORDDESTROY()

Renove an Order from an Order Bag

Synt ax

ORDDESTROY(<cOr der Nane> [, <cOrderBagNane>]) --> NL
Argunent s
<cOrder Name> Nanme of the order to renpve
<cOrder BagNane> Nane of the order bag from which order id to be renoved
Ret ur ns
ORDDESTROY() always returns NI L.
Descri ption
This function attenpts to renove the order named <cOrderNane> fromthe file
containing the order bag nane <cOrderBagNane>. |f <cOrderBagNane> is not
specified,then the name of the file will be based on the value of the ORDNAME()
function.If the extension is not included with the name of the order file,then the

extension will be obtained fromthe default extension of the current and active
RDD.

The DBFNTX driver do not support mnultiple order bags;therefore,there cannot
be an order to "destroy" froma bag. This function only works for those drivers
with support nmultiple orders bags (e.q. DBFCDX and RDDADS drivers).

Exanpl es

USE TEsts VI A "DBFCDX' NEW
ORDdestroy("I Name", "tests")

Tests
See exanpl es
St at us
Started
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ns
All
Fil es
Library is rdd
See Al so:

ORDCREATE

ORDFOR()

Return the FOR expression of an O der
Synt ax
ORDFOR(<xOrder >[, <cOrderBagNane>]) --> cFor Exp

<xOr der > It the name of the target order,or the nuneric position of the
order.

<cOrder BagNane> Nane of the order bag.

Ret ur ns
ORDFOR() returns a expression containing the FOR condition for an order.
Descri ption

This function returns a character string that is the expression for the FOR
condition for the specified order. The order may be specified if <xOder>is the
nane of the order. However, <xOrder> may be an nuneric which represent the position
in the order list of the desired Order.

Exanpl es
USE Tests NEWvia _DBFCDX
I NDEX ON Tests->Id ;
TO TESTS ;
FOR Tests->Id > 100
ORDFOR("Tests") /1l Returns: Tests->Id > 100
Tests
See exanpl es
St at us
Started
Conpl i ance

This function is Ca-Cipper conpliant with one exception. |If the <xOrder>
paranter is not specified or <xOder>is 0, the current active order is used.

Pl at f or ns

Al l
Files
Library is rdd
See Al so:

ORDKEY() ORDCREATE() ORDNANE() ORDNUVBER()

ORDKEY()

Return the key expression of an O der
Synt ax
ORDKEY(<cOrder Name> | <nOrder> [, <cOrderBagNane>]) --> cExpKey
Argunent s

<xOr der > It the name of the target order,or the nuneric position of the
or der.

<cOrder BagName> Nane of the order bag.

Ret ur ns
<cExpKey> Returns a character string, cExpKey.
Descri ption

ORDKEY() is an Order managenent function that returns a character expression,
cExpKey, that represents the key expression of the specified O der.

You nay specify the Order by nanme or with a nunber that represents its
position in the Order List. Using the Order name is the preferred nmnethod.

The active RDD determ nes the Order capacity of an Order Bag. The default
DBFNTX and the DBFNDX drivers only support single-Oder Bags, while other RDDs may
support multiple-Oder Bags (e.g., the DBFCDX and DBFMDX drivers).

Exanpl es

USE Custonmer NEWvia _DBFCDX
I NDEX ON Customer->Acct

TO Custoner ;

FOR Cust oner->Acct > "AZzZ777"
I ndex on Custuner->ld to Cusid

ORDKEY("Custoner") /1 Returns: Custoner->Acct
Set order to 2
ORDKEY() /1 Returns: Custumer->ld
St at us
Started
Conpl i ance
This function is Ca-Clipper conpliant with one exception. If the <xOrder>

paranter is not specified or <xOder>is 0, the current active order is used.
Pl at f or ns
Al l
Files
Li brary is rdd
See Al so:

ORDEOR() ORDNAME() ORDNUVBER() ORDKEY/()

ORDL| STADIX)

Add Orders to the Order List

Synt ax

ORDLI STADD(<cOr der BagNane>
[, <cOrderNane>]) --> NL

Argunent s

<cOrderBagNane> is the name of a disk file containing one or nore Orders.

You may specify <cOrderBagNanme> as the filenane with or without the pathname or
appropriate extension. |If you do not include the extension as part of

<cOr der BagNane> HARBOUR uses the default extension of the current RDD.

<cOrderNane> the nane of the specific Order fromthe Order Bag to be added
to the Order List of the current work area. |If you do not specify <cOrderName>,
all orders in the Order Bag are added to the Order List of the current work area.

Ret ur ns
ORDLI STADD() always returns NI L.
Descri ption

ORDLI STADD() is an Order nanagenent function that adds the contents of an

Order Bag , or a single Order in an Oder Bag, to the Oder List. This function
| ets you extend the Order List without issuing a SET | NDEX command that, first,
clears all the active Orders fromthe O der List.

Any Orders already associated with the work area continue to be active. |If the
newl y opened Order Bag contains the only Order associated with the work area, it
becones the controlling Order; otherwise, the controlling Order renmains unchanged.

After the new Orders are opened, the work area is positioned to the first
| ogical record in the controlling O der.

ORDLI STADD() is simlar to the SET | NDEX command or the I NDEX clause of the
USE conmmand, except that it does not clear the Oder List prior to adding the new
order (s).

ORDLI STADD() supersedes the DBSETI NDEX() function.

The active RDD determ nes the Order capacity of an Order Bag. The default

DBFNTX and the DBFNDX drivers only support single-Oder Bags, while other RDDs may
support multiple-Oder Bags (e.g., the DBFCDX and DBPX drivers). Wen using RDDs
that support nultiple Oder Bags, you nust explicitly SET ORDER (or ORDSETFOCUS())

to the desired controlling Oder. |If you do not specify a controlling Oder, the
data file will be viewed in natural Order.
Exanpl es

In this exanmpl e Custoner.cdx contains three orders, CuAcct,
CuNane, and CuZi p. ORDLISTADD() opens Custoner.cdx but only uses the
order nanmed CuAcct:

USE Custoner VIA "DBFCDX" NEW
ORDLI STADD("Customer", "CuAcct")

Tests

St at us
Started
All
Files
Library is rdd
See Al so:

ORDL| STCLEAR()

Cl ear the current der List
Synt ax
ORDLI STCLEAR() --> NIL
Argunent s

Ret ur ns
ORDLI STCLEAR() al ways returns NI L.
Descri ption
ORDLI STCLEAR() is an Order managenent function that renoves all Orders from
the Order List for the current or aliased work area. Wen you are done, the Order
List is enpty.
Thi s function supersedes the functi on DBCLEARI NDEX() .

USE Sal es NEW
SET | NDEX TO SaRegi on, SaRep, SaCode

< statenents >
ORDLI STCLEAR() /1l Coses all the current indexes
Tests

St at us
Started
Al'l
Fil es
Li brary is rdd
See Al so:
ARRAY

ORDL| STREBUI LX)

Rebuild all Orders in the Oder List of the current work area
Synt ax
ORDLI STREBUI LD() --> NI L
Argunent s

Ret ur ns
ORDLI STREBUI LD() always returns NI L.
Descri ption

ORDLI STREBUI LD() is an Order managenent function that rebuilds all the orders
in the current or aliased O der List.

To only rebuild a single Oder use the functi on ORDCREATE().

Unl i ke ORDCREATE(), this function rebuilds all Oders in the Order List. It is
equi val ent to RElI NDEX.

USE Custoner NEW

SET | NDEX TO CuAcct, CuNane, CuZip

ORDLI STREBUI LD() /| Causes CuAcct, CuName, CuZip to
/1 be rebuilt

Tests
St at us
Started
Al |
Files
Library is rdd
See Al so:

ORDCREATE

ORDNANME()

Return the nane of an Order in the Order List

Synt ax

ORDNAME(<nOr der >[, <cOr der BagNane> --> cOr der Nane
Argunent s

<nOrder> is an integer that identifies the position in the Oder List of the
target Order whose database name is sought.

<cOrderBagNane> is the name of a disk file containing one or nore Orders.

You may specify <cOrderBagName> as the filenane with or without the pathname or
appropriate extension. |If you do not include the extension as part of

<xcOr der BagName> HARBOUR uses the default extension of the current RDD.

Ret ur ns

ORDNAME() returns the nane of the specified Order in the current Order List
or the specified Oder Bag if opened in the Current Order |ist.

Descri ption

ORDNAME() is an Order managenent function that returns the name of the
specified Order in the current Order List.

If <cOrderBagNane> is an Order Bag that has been enptied into the current
Order List, only those Oders in the Order List that correspond to <cOr der BagNane>
Order Bag are searched.

The active RDD determ nes the Order capacity of an Order Bag. The default
DBFNTX and the DBFNDX drivers only support single-Oder Bags, while other RDDs may
support multiple-Oder Bags (e.g., the DBFCDX and DBPX drivers).

Exanpl es

This exanple retrieves the name of an Order using its position
in the order |ist:

USE Custoner NEW
SET | NDEX TO CuAcct, CuNane, CuZip
ORDNAME(2) /1 Returns: CuNane

This exanple retrieves the nane of an Order given its position
within a specific Oder Bag in the Oder List:

USE Custonmer NEW
SET | NDEX TO Tenp, Custoner
/1 Assume Custoner contains CuAcct, CuNane, CuZip

ORDNAME(2, "Custoner") /1 Returns: CuNane
Tests
St at us
Started
All
Fil es
Library is rdd
See Al so:

ORDEOR() ORDKEY() ORDNUVBER()

ORDNUVBER()

Return the position of an Order in the current O-der List

Synt ax

ORDNUMBER(<cOr der Nane> [, <cOrder BagNane>]) --> nOrder No
Argunent s

<cOrderName> the nane of the specific Order whose position in the Order List
i s sought.

<cOrderBagNane> is the name of a disk file containing one or nore Orders.

You may specify <cOrderBagName> as the filenane with or without the pathname or
appropriate extension. |If you do not include the extension as part of

<cOr der BagNane> HARBOUR uses the default extension of the current RDD.

Ret ur ns
the Order List.

Descri ption
ORDNUMBER() is an Order managenent function that lets you determnine the
position in the current Order List of the specified Order. ORDNUMBER() searches
the Order List in the current work area and returns the position of the first Order
that mat ches <cOrder Nanme>. If <cOrderBagName> is the name of an Order Bag newy

enptied into the current Order List, only those orders in the Order List that have
been enptied from <cOrder BagNane> are sear ched.

If <cOrderName> is not found ORDNUMBER() raises a recoverable runtine error.
The active RDD determ nes the Order capacity of an Order Bag. The default
DBFNTX driver only supports single-Order Bags, while other RDDs may support
mul tiple-Order Bags (e.g., the DBFCDX and DBPX drivers).

Exanpl es

USE Custoner VI A "DBFNTX" NEW
SET | NDEX TO CuAcct, CuNane, CuZip

ORDNUMBER(" CuName") /'l Returns: 2
Tests
St at us
Started
Al
Files
Li brary is rdd
See Al so:

| NDEXOR)

ORDSETFOCUS()

Set focus to an Order in an Order List

Synt ax

ORDSETFOCUS([<cOr der Nanme> | <nOr der >]
[, <cOrderBagNanme>]) --> cPrevOr der Nanel nFocus

<cOrderNane> is the nane of the selected Order, a |ogical ordering of a
dat abase. ORDSETFOCUS() ignhores any invalid values of <cOrderNane>.

<nOrder> is a nunber representing the position in the Oder List of the
sel ected Order.

<cOrderBagNane> is the name of a disk file containing one or nore Orders.

You may specify <cOrderBagNanme> as the filename with or w thout the pathnanme or
appropriate extension. |If you do not include the extension as part of

<cOr der BagNane> HARBOUR uses the default extension of the current RDD.

Ret ur ns
ORDSETFOCUS() returns the Order Nane of the previous controlling Oder.
Descri ption

ORDSETFOCUS() is an Order managenent function that returns the Order Nane of
the previous controlling Order and optionally sets the focus to an new O der.

If you do not specify <cOrderNane> or <nOrder>, the name of the currently
controlling order is returned and the controlling order remains unchanged.

All Oders in an Oder List are properly updated no matter what <cO der Nane>
is the controlling Order. After a change of controlling Oders, the record
pointer still points to the same record.

The active RDD determ nes the Order capacity of an Order Bag. The default
DBFNTX driver only supports single-Order Bags, while other RDDs may support
mul ti ple-Order Bags (e.g., the DBFCDX and DBPX drivers).

ORDSETFOCUS() supersedes | NDEXORD() .
Exanpl es

USE Customer VI A "DBFNTX' NEW

SET | NDEX TO CuAcct, CuName, CuZip

? ORDSETFOCUS(" CuNane") /1 Displays: "CuAcct"
? ORDSETFOCUS() /1 Displays: "CuName"

St at us
Started
All

Files

Library is rdd

| NDEXEXT()

Returns the file extension of the index nmodul e used in an application

Synt ax

| NDEXEXT() --> <cExtension>

Argunent s
Ret ur ns
<cExt ensi on> Current driver file extension
Descri ption
This function returns a string that tells what indexes are to be used or wll
be created in the conpiled application.The default value is ".NIX'. This is
controled by the particul ar database driver that is linked with the application,.
Exanpl es
I F 1 NDEXEXT() ==". NTX"
? "Current driver being used is DBFNTX"
Endi f
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ns
Al l
Files

Li brary is rdd
See Al so:

I NDEXKEY() | NDEXORI

| NDEXKEY()

Yi el ds the key expression of a specified index file.
Synt ax
| NDEXKEY(<nOr der >) --> <cl ndexKey>
Argunent s
<nOr der > I ndex order nunber
Ret ur ns
<cl ndexKey> The index key
Descri ption

This function returns a character string stored in the header of the index
file

The index key is displayed for an index file that is designated by

<nOrder>,its position in the USE...INDEX or SET I NDEX TO conmand in the currently
sel ected or designated work area.lf there is no corresnponding index key at the
specified order position,a NULL byte will be returned.

Exanpl es

USE TESTS NEW | NDEX TEST1
2 | NDEXKEY(1)

St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ns
All
Fil es
Library is rdd
See Al so:

| NDEXOR

| NDEXORD)

Returns the numeric position of the controlling index.

Synt ax
I NDEXORD() --> <nPosition>
Argunent s
Ret ur ns
<nPosi ti on> O dinal position of a controling index
Descri ption

The | NDEXORD() function returns the numeric position of the current

controlling index in the selected or designated work area. A returned value of 0
indicated that no active index is controlling the database,which therefore is in
the natural order.

Exanpl es

USE TESTS NEW | NDEX TEST1
I F 1 NDEXORD() >0
? "Current order is ", | NDEXORD()

Endi f
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ns
Al l
Files
Library is rdd
See Al so:

| NDEXKEY

AFI ELDS()

Fills referenced arrays with database field informtion
Synt ax
AFi el ds(<aNanes>[, <aTypes>] [, <aLen>][, <aDecs>]) --> <nFi el ds>
Argunent s
<aNanes> Array of field nanes
<aTypes> Array of field nanes
<alLens> Array of field nanes

<aDecs> Array of field nanes

Ret ur ns
<nFi el ds> MNunber od fields in a database or work area
Descri ption
This function will fill a series of arrays with field nanes,field types,field

| enghts, and nunber of field decimal positions for the currently selected or
designed database. Each array parallels the different descriptors of a file's
structure. The first array will consist of the nanes of the fields in the current
work area.All other arrays are optional and will be filled with the correnspondi ng
data. This function will return zero if no paraneters are specified or if no

dat abase is avaliable in the current work area. & herwi se, the nunber of fields or
the I enght of the shortest array argunent, wtchever is smaller, will be returned.

Exanpl es

FUNCTI ON Mai n()
LOCAL aNanes: ={}, aTypes: ={}, aLens: ={}, aDecs: ={}, nFi el ds: =0

USE Test

dbGoTop()
nFi el ds: =aFi el ds(aNanes, aTypes, aLens, aDecs)

? "Nunber of fields", nFields
RETURN NI L
St at us
Ready
Conpl i ance
AFI ELDS() is fully CA-Cipper conpliant.
Files
Library is rdd

ALl AS(

Ret ur ns tze alias nane of a work area

Synt ax

Al ias([<nWor kArea>]) --> <cWrkArea>
Argunent s

<nWor kArea> Nunber of a work area
Ret ur ns

<cWor kArea> Nane of alias
Descri ption

This function returns the alias of the work area indicated by <nWrkArea> |If
<nWor kArea> i s not provided, the alias of the current work area is returned.

Exanpl es
FUNCTI ON Mai n()

USE Test
select O
qQut (I F(Al
Test - >(qQut
qQut (Al'i as(

ias()=="","No Name", Alias()))
(13N)ia8())

RETURN NI L
St at us
Ready
Conpl i ance
ALI AS() is fully CA-dipper conpliant.
Files
Library is rdd
See Al so:

DBE()

BCFg . _ o
Test for the beggining-of-file condition
Synt ax
BOF() --> <I Begi n>
Ret ur ns
BOF() Logical true (.T.) or false (.F.)
Descri ption

This function determnes if the beggining of the file marker has been

reached. If so, the function will return a logical true (.T.); otherwise, a
logical false(.F.) will be returned. By default, BOF() will apply to the currently
sel ected database unless the function is preceded by an alias

Exanpl es

FUNCTI ON Mai n()
USE Tests NEW
DBGOTOR()
? "ls EOf ()", EOF()
DBGOBOTTOM)
? "ls Eof ()", EOF()
USE

RETURN NI L

St at us
Ready
Conpl i ance
BOF() is fully CA-dipper conpliant.
Files
Library is rdd
See Al so:

ECOF() FOUND() LASTREC()

ZAP

Renpve all records fromthe current database file

Synt ax
ZAP

Descri ption
This command rempves all of the records fromthe database in the current work
area. This operation al so updates any index file in wuse at the time of this
operation.ln addition, this conmand renoves all itens within an associ ated nmeno
file. In a network environent,any file that is about to be ZAPped nmust be used
excl usi vel y.

Exanpl es
USE Tests NEW i ndex Tests
ZAP
USE
St at us
Ready
Conpl i ance

This command is CA dipper conpliant
See Al so:

ARRAY PACKARRAY!

DELETED()

Tests the record' s deletion flag.

Synt ax

DELETED() --> | Del et ed
Ret ur ns

DELETED() return a logical true (.T.) or false (.F.).
Descri ption

This function returns a logical true (.T.) is the current record in the
sel ected or designated work area ha ben narked for deletion.If not, the function
will return a logical false (.F.).

Exanpl es

FUNCTI ON Mai n()

USE Test New

DBGOT(()

DBDELETE()

? "lIs Record Del eted", Test->(DELETED())
DBRECALL()

USE

RETURN NI L

St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files
Library is rdd
See Al so:

DBDELETE()

EOF()

Test gor end-of -file condition.

Synt ax
EO() --> <l End>
Ret ur ns
<|End> A logical true (.T.) or false (.F.)
Descri ption
This function determines if the end-of-file marker has been reached. If it

has, the function will return a logical true (.T.); otherwise a l|logical false
(.F.) will be returnd

Exanpl es

FUNCTI ON Mai n()
USE Tests NEW
DBGOTOP()
? "I's Eof ()", EOF()
DBGOBOTTOM)
? "l's Eof ()", EOF()
USE

RETURN NI L

St at us
Ready
Conpl i ance
EOF() is fully CA-dipper conpliant.
Files
Library is rdd
See Al so:

BOF(). FOUND() LASTREC()

FCOUNT()

Counts the nunber of fields in an active dat abase.

Synt ax

FCOUNT() --> nFields

Ret ur ns
<nFi el ds> Return the nunber of fields
Descri ption
This function returns the nunber of fields in the current or designated work
area.|lf no database is open in this work area, the function will return O.
Exanpl es

FUNCTI ON Mai n()
USE Tests NEW
? "Thi s dat abase have ", Tests->(FCOUNT()), "Fi el ds"

USE
RETURN Ni |
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files

Li brary is rdd
See Al so:

Fl EL DNAVE TYPE()

FI ELDGET()

ot ains the value of a specified field

Synt ax

FI ELDGET(<nFi el d>) --> Val ueField
Argunent s

<nField> 1s the nunmeric field position
Ret ur ns

<Val ueFi el d> Any expression
Descri ption

This function returns the value of the field at the <nField>th location in
the sel ected or designed work area.lf the value in <nField> does not correspond to
n avaliable field position in this work area, the function wll return a NIL data

type.
Exanpl es

FUNCTI ON Mai n()
USE Test NEW
? Test->(FieldGet(1))

USE

RETURN NI L
St at us

Ready
Conpl i ance

This function is CA-Cipper Conpliant.
Fil es

Li brary is rdd
See Al so:

Fl ELDPUT()

FI ELDNAVE()

Return the nane of a field at a nuneric field | ocation.

Synt ax

FI ELDNAME/ FI ELD(<nPosi tion>) --> cFi el dNane

Argunent s
<nPosition> Field order in the database.
Ret ur ns
<cFi el dName> returns the field nane.
Descri ption
This function return the nane of the field at the <nPosition>th position. |If

the nuneric value passed to this function does not correspond to an existing field
in the designated or selected work area,this function wll return a NULL byte.

Exanpl es

FUNCTI ON Mai n()
LOCAL x
USE Tests NEW
FOR x := 1 to Tests->(FCOUNT())
? "Field Nanme", Fi el dNanme(x)

NEXT
USE
RETURN Ni |
St at us
Ready
Conpl i ance
This function is CA-Clipper conpatible.
Files
Library is rdd
See Al so:

DBSTRUCT() FCOUNT() LEN() VALTYPE()

FI ELDPOS(

Return the ordinal position of a field.
Synt ax
FI ELDPCS(<cFi el dNane>) --> nFi el dPos
Argunent s
<cFi el dNanme> Name of a field.
Ret ur ns
<nFi el dPos> is ordinal position of the field.
Descri ption
This function return the ordinal position of the specified field <cField> in
the current or aliased work arealf there isn't field under the name of <cField>
8r of no database is open in the selected work area, the func- tion will return a
Exanpl es
FUNCTI ON Mai n()

USE Test NEW
2 Test->(FI ELDPOS("1D"))

USE

RETURN NI L
St at us

Ready
Conpl i ance

This function is CA-Cipper conpliant.
Files

Li brary is rdd
See Al so:

Fl ELDGET FI ELDPUT()

FI ELDPUT()

Set the value of a field variable

Synt ax
FI ELDPUT(<nFi el d>, <expAssi gn>) --> Val ueAssi gned

Argunent s
<nField> The field nunmeric position
<expAssi gn> Expression to be assigned to the specified field

Ret ur ns
<Val ueAssi gned> Any expression

Descri ption
This function assings the value in <expAssing> to the <nField>th field in the
current or designated work area.|f the operation is successful,the return value of

the function will be the same value assigned to the specified field.If the
operation is not successful, the function will return a NIL data type

Exanpl es
USE Tests New
FI ELDPUT(1, "M . Jones")
USE
St at us
Ready
Conpl i ance
This function is CA-Cipper conpatible.
Files
Li brary is rdd
See Al so:

Fl ELDGET

Fq_cj(j(ﬁ?le

Locks a

Synt ax

FLOCK() --> | Success

Ret ur ns
<l Success> A true (.T.) value, if the | ock was successful;otherw se fal se
(.F.)

Descri ption

This function returns a logical true (.T.0if afile lock is attenpted and is
successfully placed on the current or designated database.This function will also
unl ock all records |ocks placed by the same network station

Exanpl es
USE Tests New
| F FLOCK()
SUM Test s- >Amount
ENDI F
USE
St at us
Ready
Conpl i ance
This function is CA-Clipper conpatible
Files
Library is rdd
See Al so:

RLOCK

FOUND()

Determ ne the success of a previous search operation.
Synt ax
FOUND() --> | Success
Argunent s

Ret ur ns
<l Success> A logical true (.T.) is successful;otherwi se, false (.F.)
Descri ption
This function is used to test if the previous SEEK, LOCATE, CONTI NUE, or FIND
operation was successful.Each wk area has its own FOUND() flag,so that a FOUND()
condition may be tested in unsel ected work areas by using an alias.
Exanpl es
nl d: =100
USE Tests NEW I NDEX Tests
SEEK nl d
I F FOUND()
? Tests->Name
ENDI F
USE
St at us
Ready
Conpl i ance
This function is CA-Cipper conpatible
Files
Li brary is rdd

See Al so:
EOF()

HEADER()

Return the length of a database file header
Synt ax
HEADER() --> nBytes
Ret ur ns
<nBytes> The numeric size of a database file header in bytes
Descri ption

This function returns the nunber of bytes in the header of the selected
dat abase ot the database in the designated work area.

If used in conjunction with the LASTREC(), RECSI ZE() and DI SKSPACE()
functions,this functions is capable of inplenenting a backup and restore routine.

Exanpl es
USE Tests New
? Header ()
St at us
Ready
Conpl i ance
This function is CA-Cipper conpatible
Files

Li brary is rdd
See Al so:

DI SKSPACE() | ASTREC() RECSI ZE()

LASTREC()

Returns the nunber of records in an active work area or database.
Synt ax
LASTREC() | RECCOUNT()* --> nRecords
Ret ur ns
<nRecords > The nunber of records
Descri ption
This function returns the nunber of records present in the database in the
sel ected or designated work area.lf no records are present the value of this

function will be 0.Additionaly,if no database is in use in the selected or
designated work area,this function will return a 0 value as well.

Exanpl es

USE Tests NEW
? LASTREC(), RECCOUNT()

St at us
Ready
Conpl i ance
This function is CA Clipper conpatible
Pl at f or ns
Al'l
Files
Li brary is rdd
See Al so:

EOF()

LUPDATE()

Yi el ds the date the database was | ast updat ed.

Synt ax
LUPDATE() --> dMdification
Argunent s
Ret ur ns
<dMbodi fication> The date of the |last nodification.
Descri ption
This function returns the date recorded by the OS when the selected or
desi gnat ed database was last witten to disk.This function will only work for
t hose database files in USE
Exanpl es

Function Main

Use Tests New
? Lupdate() // 04/25/2000

Use
Return Nil
St at us
Ready
Conpl i ance
This function is CA Cipper conpliant
Pl at f or ns
Al'l
Files

Li brary is rdd
See Al so:

Fl EL DNAVE LASTREC() RECSI ZE()

NETERR()

Tests the success of a network function

Synt ax

NETERR([< NewError>]) --> | Error

Argunent s

<INewkrror> |s a |ogical Expression.
Ret ur ns

<IError> A value based on the success of a network operation or function.
Descri ption

This function return a logical true (.T.) is a USE, APPEND BLANK, or a

USE. .. EXCLUSI VE comrmand is issue and fails in a network enviroment. |In the case of
USE and USE. .. EXCLUSI VE conmands, a NETERR() value of .T. would be returned if

anot her node of the network has the exclusive use of a file.And the case of the
APPEND BLANK command, NETERR() will return a logical true (.T.) if the file or
record is |ocked by another node or the value of LASTREC() has been advanced The
val ue of NETERR() may be changed via the value of <INewkrror>. This allow the
run-time error-handling systemto control the way certains errors are handl ed.

Exanpl es
USE TEST NEW I ndex Test
If I'NetErr()
Seek Test - >Nanme="HARBOUR"
I f Found()
? Test->Nane
Endi f
Endi f
USE
St at us
Ready
Conpl i ance
This function is CA Cipper conpliant
Files
Library is rdd
See Al so:

FLOCK RLOCK

RECCOUNT()

Counts the nunber of records in a database.

Synt ax

RECCOUNT()* | LASTREC() --> nRecords
Argunent s

Ret ur ns
<nRecor ds> The nunber of records
Descri ption

This function returns the nunber of records present in the database in the
sel ected or designated work area.lf no records are present the value of this
function will be 0.Additionaly,if no database is in use in the selected or
designated work area,this function will return a 0 value as well.

Exanpl es

Use Test NEW

USE Har bour NEW

? Reccount ()

? Test->(RECCOUNT())

CLOSE ALL
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Files
Library is rdd
See Al so:

ECE() | ASTREC() RECNQ() DBGOBOTTOM)

RECNQ(

Ret ur ns tze current record nunber or identity.

Synt ax
RECNQ() --> ldentity
Argunent s

Ret ur ns
RECNQ() The record nunber or indentity
Descri ption
This function returns the position of the record pointer in the currently
sel ected ot designated work area. |If the database file is enpty and if the RDD is
the traditional .DBF file,the value of this function will be 1.
Exanpl es
USE Tests NEW
DBGOTOP()
RECN(() /1l Returns 1
DBGOT((50)
RECNQ() /1 Returns 50
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Files
Library is rdd

See Al so:

DBGOTA() pBGOTOP() DBGOBOTTOM) LASTREC() EOF() BOF()

RECS| ZE()

Returns the size of a single record in an active database.
Synt ax
RECSI ZE() --> nBytes
Argunent s

Ret ur ns
<nBytes> The record size.
Descri ption
This function returns the nunber os bytes used by a single record in the

currently selected or designated database file.If no database is in use in this
work area,the return value fromthis function wll be O.

Exanpl es
USE Tests NEW
DBGOTOP()
RECSI ZE() /1l Returns 1
DBGOTQ(50)
RECSI ZE()
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Fil es
Library is rdd

See Al so:

DI SKSPACE() F| EL DNAME() HEADER() LASTREC()

RLOCK()

Lock a record in a work area
Synt ax
RLOCK() --> | Success
Argunent s

Ret ur ns

RLOCK() True (.T.) if record lock is successful; otherwise, it returns false
(.F.).

Descri ption

This function returns a logical true (.T.) if an attenpt to lock a specific

record in a selected or designated work area is successful. It will yield a fal se
(.F.) if either the file or the desired record is currently |locked. A record that
is locked remains | ocked until another RLOCK() is issued or until an UNLOCK command
is executed. On a Network environment the follow conmand need that the record is

| ocked:

@..CET
DELETE (single record)
RECALL (single record)
REPLACE (single record)
Exanpl es
nl d: =10
USE Testld | NDEX Testld NEW

| F Test | d->(DBSEEK(nl d))
I F Test1d->(RLOCK())

DBDELETE()
ENDI F
ENDI F
USE
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Files
Library is rdd
See Al so:

FLOCK

SELECT()

Returns the work area number for a specified alias.

Synt ax

SELECT([<cAlias>]) --> nWrkArea

Argunent s
<cAlias> 1is the target work area alias nane.

Ret ur ns
SELECT() returns the work area numnber.

Descri ption
This function returns the work area nunber for the specified alias nane
<cAlias>.|If no paraneter is specified,the current work area will be the return
val ue of the function.

Exanpl es

USE TESTS NEW
USE NAMES NEW
cd dAr ea: =SELECT(" NAMES")

sel ect TEST

LI ST

SELECT cd dArea
St at us

Ready

Conpl i ance

This function is Ca-Cipper conpliant
Files

Li brary is rdd
See Al so:

ALI AS() USED()

USED()

Checks whether a database is in use in a work area

Synt ax

USED() --> | Dbf Open
Argunent s

Ret ur ns
<| Dbf Open> True is a database is Used; ot herw se Fal se
Descri ption

This function returns a logical true (.T.) if a database file is in USE in
the current or designated work area. If no alias is specified along with this
function , it will default to the currently selected work area.

Exanpl es

Use TESTS NEW

USE Nanes New

? USEIX) /[l .T.

? TESTS->(USED()) //.t.
CLCSE

? USEDX) [// .F.

Sel ect TESTS

? USEDX) //.T.

St at us
Ready
Conpl i ance
This function is Ca-clipper Conpliant
Files
Library is rdd
See Al so:

ALLAS() sELECT

PACK

Renpve records marked for deletion from a dat abase

Synt ax
PACK

Descri ption
This command renmpoves records that were marked for deletion fromthe currently
sel ect ed dat abase. This conmand does not pack the contents of a neno field;those
files nust be packed via | owlevel fuctions.

Al'l open index files will be automatically reindexed once PACK command has
conpleted its operation.On conpletion,the record pointer is placed on the first
record in the database.

Exanpl es
USE Tests NEWIi ndex Tests
DBGOTQ(10)
DELETE NEXT 10
PACK
USE
St at us
Ready
Conpl i ance

This command is CA dipper conpliant
See Al so:

DBEVAL() ARRAY() DELETED() ZAPARRAY()

OVERVI EW

HARBOUR Read ne
Descri ption

The Har bour project

R I R kO R S kR I O

* This file contains information on obtaining, installing, and using *

* Harbour. Please read it *conpl etel y* before asking for help. *
ER R I I I R R R R R I I I R R R R R I I I I R R R I I R R R I I R R R R I I I I R R O I I O I

Harbour is a free inplenentation of an xBase | anguage conpiler. It is designed to
be source code conpatible with the CA-dipper(r) conpiler. That neans that if

you' ve got sone code that would conpile using CA-Cipper(r) then it should conpile
under Harbour. The Harbour-Project web page is:

htt p: // www. Har bour - Pr oj ect . or g/

Status and other information is always available fromthe web site. There is a
Harbour mailing list. Harbour is still at a very early stage of devel opnent, so
the mailing list is very nmuch a Developers only list, although every body is
wel conme to join in the discussions.

We would like you to join the Harbour devel opnent team |f you are interested you
may suscribe to our mailing list and start contributing to this free public
proj ect.

Pl ease feel free to report all questions, ideas, suggestions, fixes, code, etc.
you may need and want. Wth the help of all of you, the Harbour conpiler and
runtime libraries will becone a reality very soon

What this distribution contains

This distribution is a Source code only distribution. It does not contain any
executable files. Executable versions of Harbour are available from the web site.
Execut abl e versi ons of Harbour DO NOT create runable prograns. Harbour at the
monent produces C output code, which nust be conpiled with the Harbour Virtua
Machi ne and the support libraries in order to create a functioning program

Pl ease test running Harbour against your Cipper source code and report any

probl ems that m ght occur.

Very inportant: The preprocessor functionality is now worKking.

Install ation

1. Unzip with Harbour zip file using pkunzip or equivalent.

E. G pkunzip -d build72.zip

This will create Harbour/ directory and all the relevant sub directories.

2. Conpil e Harbour using your C conpiler. Make files for different platforns are
included in the <WHERE ARE THEY?> directory.

--- COPYRI GHT ---

VWhat copyright information do we have

<=~ LICENCE ---

I nformation about the License for usage of Harbour is available in the file
LI CENCE. TXT (when we have a license)

--- DI SCLAI MER ---

Partici pants of The Harbour Project assunme no responsibility for errors or
om ssions in these material s.

THESE MATERI ALS ARE PROVI DED "AS |'S" W THOUT WARRANTY OF ANY KI ND, ElI THER
EXPRESS OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO, THE | MPLI ED WARRANTI ES OF

MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPOSE, OR NON- | NFRI NGEMENT.

Partici pants of The Harbour Project further do not warrant the accuracy or

conpl eteness of the code, information, text, output or any other items contained
within these materials. Participants of The Harbour Project shall not be liable for
any special, direct, indirect, incidental, or consequential damages, including
without limtation, |ost revenues or |ost profits, which may result fromthe use or
m s-use of these materials.

The information in The Harbour Project is subject to change w thout notice and
does not represent any future commtment by the participants of The Harbour
Pr oj ect.

The Har bour Project

See Al so:

Li cense

SETCENTURY()

Set the Current Century

Synt ax
__ SETCENTURY([<I Flag> | <cOnOFf>]) --> | PreviousVal ue

Argunent s
setting (4-digit years) .F. or "OFF" to disable the century setting (2-digit
years)

Ret ur ns

Files

Library is rtl

SET()

Changes or eval uated environmental settings

Synt ax

Set (<nSet> [, <xNewSetting> [, <xOption>]]) --> xPreviousSetting

Argunent s

<nSet > Set Number

<xNewSetti ng> Any expression to assing a value to the seting

<xOption> Logical expression

<nSet > <xNewSet ti ng> <xOpti on>

_SET_ALTERNATE <| Flag> | <cOnOf f >

file has been opened or created wth _SET _ALTFILE. If disabled, which is the
default, QOUT() and QQOUT() only wite to the screen (and/or to the PRINTFILE).
Defaults to disabl ed.

_SET_ALTFI LE <cFi | eNanme> <l Addi tive>

<| Additive> is TRUE and the file already exists, the file is opened and positioned
at end of file. Gtherwise, the file is created. If a file is already opened, it is
closed before the newfile is opened or created (even if it is the same file). The
default file extension is ".txt". There is no default file name. Call with an enpty
string to close the file.

_SET_AUTOPEN <IFlag> | <cOnOFf>
_SET_AUTORDER <IFlag> | <cOnOFf>
_SET_AUTCSHARE <IFlag> | <cOnOif >

_SET_BELL <IFlag> | <cOnOFf>
when a CET validation fails. Disabled by default.
_SET_CANCEL <IFlag> | <cOnCOff>

program When disabl ed, both keystrokes can be read by INKEY(). Note: SET KEY has
precedence over SET CANCEL.

_SET_COLOR <cCol or Set >

"<st andar d>, <enhanced>, <bor der >, <background>, <unsel ected>". Each color pair uses
the format " <foreground>/ <background>". The col or codes are space or "N' for

bl ack, "B" for blue, "G' for green, "BG' for Cyan, "R' for red, "RB" for magenta,
"GR' for brown, "W for white, "N+" for gray, "B+" for bright blue, "G+ for
bright green, "BG+" for bright cyan, "R+" for bright red, "RB+" for bright magenta,

"GR+" for yellow, and "W" for bright white. Special codes are "I" for inverse
video, "U' for underline on a nonochrome nonitor (blue on a color nonitor), and
"X for blank. The default color is "WNNWN N NW.

_SET_CONFI RM <IFlag> | <cOnOFf>

default, typing past the end wll |eave a GET.

_SET_CONSOLE <IFlag> | <cOnOFf>

di sabl ed, screen output is suppressed (Note: This setting does not affect OUTSTI()
or QUTERR()).

_SET_CURSOR <nCur sor Type>

the screen cursor is hidden.

_SET_DATEFORMAT <cDat eFor nat >

to American ("nmmdd/yy"). Qther formats include ANSI ("yy.mmdd"), British

("dd/mmyy"), French ("dd/miyy"), German ("dd.mMmyy"), Italian ("dd-mmyy"),
Japan ("yy/nmm dd"), and USA ("nn+dd yy"). SET CENTURY nodifies the date format. SET
"s h

CENTURY ON replaces the " with "YYYY'. SET CENTURY OFF replaces the "y"s with
"YY".
_SET_DEBUG <| St at us>

the default, AIt+D can be read by INKEY(). (Al so affected by AlItD(1) and Al tD(0))
_SET_DECI MALS <nNunber O Deci mal s>

when SET FIXED is ON. Defaults to 2. If SET FIXED is OFF, then SET DECI MALS is
only used to determi ne the nunber of decimal digits to use after using EXP(),
LOH), SQRT(), or division. Other math operations may adjust the nunber of decinma
digits that the result wll display. Note: This never affects the precision of a
nunber. Only the display format is affected.

_SET_DEFAULT <cDef aul tDi rectory>
to current directory (bl ank).
_SET_DELETED <I Flag> | <cOnOFf>
del eted records will be ignored.

_SET DELI MCHARS <cDel i miters>

_SET_DELI M TERS <IFlag> | <cOnOFf >
delimters are used.
_SET _DEVI CE <cDevi ceNane>

to the printer device or file set by SET PRI NTFILE. Wen set to anything el se,
all output is sent to the screen. Defaults to "SCREEN'.

_SET_ECF <IFlag> | <cOnOFf>

FALSE, then CHR(26) does not get witten when using COPY TO DELIM TED, COPY TO
SDF, or when closing any of the various text files that are created using various
SET values. [This is a Harbour extension]

_SET_EPOCH <nYear >

2-digit year is greater than or equal to the year part of the epoch, the century
part of the epoch is added to the year. Wen a 2-digit year is |ess than the year
part of the epoch, the century part of the epoch is increnmented and added to the
year. The default epoch is 1900, which converts all 2-digit years to 19xx.
Example: If the epoch is set to 1950, 2-digit years in the range from50 to 99 get
converted to 19xx and 2-digit years in the range 00 to 49 get converted to 20xx.

_SET_ESCAPE <I Flag> | <cOnCff>

pressing Esc during a READ is ignhored, unless the Esc key has been assigned to a
function using SET KEY.

_SET_EVENTMASK <nEvent Codes>

events. INKEY _LDOMW allows the |eft nouse button down click. INKEY_LUP allows the
| eft nouse button up click. I NKEY_RDOMN allows the right nouse button down click

I NKEY_RUP allows the right nouse button up clock. | NKEY_KEYBOARD allows keyboard
keystrokes INKEY_ALL allows all of the preceding events. Events may be conbi ned
(e.g., using |INKEY_LDOWN + INKEY_ RUP will allow left mouse button down clicks and
right mouse button up clicks). The default is | NKEY_KEYBOARD

_SET_EXACT <IFlag> | <cOhOF f >

checking for equality. When disabled, which is the default, all string

conparisons other than "==" treat two strings as equal if the right hand string is
"" or if the right hand string is shorter than or the same length as the I|eft hand
string and all of the characters in the right hand string match the correspondi ng
characters in the left hand string.

_SET_EXCLUSI VE <IFlag> | <cOnOF f >

mode. When di sabled, all database files are opened in shared node. Note: The

EXCLUSI VE and SHARED cl auses of the USE conmmand can be wused to override this
setting.

_SET_EXIT <I| Flag> | <cOnOFf>

enabl es themas exit keys, and false (.F.) disables them Used internally by the
ReadExi t () function.

_SET_EXTRA <IFlag> | <cOnhOF f >

_SET_EXTRAFI LE <cFi | eNane> <l Addi tive>

<| Additive> is TRUE and the file already exists, the fi
at end of file. Oherwise, the file is created. If a fi
cl osed before the newfile is opened or created (even i
default file extension is ".prn". There is no default f
string to close the file.

I s opened and positioned
I s already opened, it is
f it is the same file). The
ile name. Call with an enpty

e i
e i

_SET_FI XED <IFlag> | <cOnOFf >

decimal digits set by SET DECI MALS, unless a PICTURE cl ause is used. Wen

di sabl ed, which is the default, the nunber of decinmal digits that are displayed
depends upon a variety of factors. See _SET DECI MALS for nore.

SET| NSERT <IFlag> | <cOnOFf>

which is the default, <characters typed in a GET or MEMOEDI T overwite. Note: This
setting can al so be toggl ed between on and off by pressing the Insert key during a
GET or MEMCEDI T.

_SET_I NTENSI TY <IFlag> | <cOnOFf >

enhanced col or setting. Wien disabled, GETs and PROWTs are displayed using the
standard col or setting.

_SET_LANGUAGE <clLanguagel D>
ext ensi on]
_SET_MARG N <nCol utms>

reflects the printer's colum position including the nmargin (e.g., SET MMARGA N TO 5
foll owed by DEVPCS(5, 10) nmakes PCOL() return 15).

_SET_MBLOCKSI ZE <nMenpBl ockSi ze>

_SET_MCENTER <I| Flag> | <cOnOFf>

default, display PROWTS at colum position 0 on the MESSAGE row.

_SET_MESSAGE <nRow>

PROVPTs are displayed on the set row Note: It is not possible to display pronpts

on the top-nost screen row, because row O is reserved for the SCOREBOARD, i f
enabl ed.

_SET_MFI LEEXT <cMenoFi | eExt >
_SET_OPTI M ZE <IFlag> | <cOnOFf>
_SET_PATH <cDirectories>

| ocated in the DEFAULT directory. Defaults to no path (""). Directories nust be
separated by a senicolon (e.g., "C \DATA; C\MRE").

_SET_PRI NTER <I| Flag> | <cOnOFf>

file has been opened or created with SET ALTFILE. If disabled, which is the
default, QOUT() and QQOUT() only wite to the screen (and/or to the ALTFILE).

_SET_PRI NTFI LE <cFi | eNane> <l Addi tive>

<| Additive> is TRUE and the file already exists, the file is opened and positioned

at end of file. Oherwise, the file is created. If a file is already opened, it is
cl osed before the newfile is opened or created (even if it is the same file). The
default file extension is ".prn". The default file nane is "PRN', which maps to the
default printer device. Call wth an enmpty string to close the file.
_SET_SCOREBOARD <l Flag> | <cOnOff >

screen row 0. Wen disabled, READ and MEMOEDI T st atus nmessages are suppressed.

_SET_SCROLLBREAK <I|Flag> | <cOnOf>

_SET_SOFTSEEK <I| Flag> | <cOnOFf>

that is higher than the sought after key or to LASTREC() + 1 if there is no higher
key. \When disabled, which is the default, a SEEK that fails wll position the
record pointer to LASTREC() +1.

_SET_STRICTREAD <IFlag> | <cOnOf>

_SET_TYPEAHEAD <nKeySt r okes>

and the maxi numis 4096.

_SET_UNI QUE <IFlag> | <cOnOf f>
i ndexes are allowed duplicate keys.

_SET_VIDEOVODE ~ <nVal ue>

_SET_WRAP <IFlag> | <cOnOF f >

and fromthe first position to the last. Wen disabled, which is the default,
there is a hard stop at the first and | ast positions.

Ret ur ns
SET() The current or previous setting
Files

Library is rtl

_Set Function()
Assign a character string to a function key

Synt ax
__Set Function(<nFuncti onKey>,
Argunent s

[<cString>]) --> NIL

<nFunctionKey> is a nunber in the range 1..40 that represent the function
key to be assigned.

<cString> is a character string to set. If
key is going to be set to NIL rel easing by
SETKEY() for that function

the function
__SetFunction() or

is not specified,
that any previous

Ret ur ns
__SetFunction() always return NIL.
Descri ption

__SetFunction() assign a character string with a function key, when this

function key is pressed, the keyboard is stuffed with this character string.
__SetFunction() has the effect of clearing any SETKEY() previously set to the sane
function nunber and vice versa.

hFunct i onKey

Key to be set

i 12 F1 .. F12

13 .. 20 Shift-F3 .. shift-F10
21 .. 30 Ctrl-F1 .. Crl-F10
31 .. 40 Alt-F1 .. Alt-F10

SET FUNCTI ON conmand is preprocessed into
conpile tinme.

Exanpl es

/1l Set F1 with a string
CLS

__SetFunction(1, "I
cTest := SPACE(20)
@10, 0 SAY "type sonething or
READ

? cTest

__SetFunction() function during

Am Lazy" + CHR(13))

F1 for lazy node " GET cTest

St at us
Ready
Conpl i ance

Har bour use 11 and 12 to represent F11 and F12, while CA-Cipper use
12 to represent Shift-F1 and Shift-F2

11 and

Pl at f or ns
All
Files
Library is rtl
See Al so:
INKEY() SETKEY() __KEYBOARD() SET KEY

SET FUNCTI ON

Assign a character string to a function key

Synt ax

SET FUNCTI ON <nFuncti onKey> TO [<cString>]

Argunent s

<nFunctionKey> is a nunber in the range 1..40 that represent the function

key to be assigned.

<cString> is a character string to set.

If is not specified, the function

key is going to be set to NIL releasing by that any previous Set Function or

SETKEY() for that function
Descri ption

Set Function assign a character string with a function key, when this
function key is pressed, the keyboard is stuffed with this character string. Set
Function has the effect of clearing any SETKEY() previously set to the sane

function nunber and vice versa.

hFunct i onKey

Key to be set

1 .. 12 F1 .. F12

13 .. 20 Shift-F3 .. Shift-F10
P1 .. 30 Ctrl-F1 .. Crl-F10
31 .. 40 Alt-F1 .. Alt-F10

SET FUNCTI ON conmand i s preprocessed into __ Set Function() function during

conpile tine.

Exanpl es
/1l Set F1 with a string
CLS
Set Function 1 to "I AmLazy" + CHR(13)

cTest := SPACE(20)

@10, 0 SAY "type sonething or F1 for |lazy node " GET cTest

READ
? cTest

St at us
Ready
Conpl i ance

Har bour use 11 and 12 to represent F11 and F12, while CA-Cipper use 11 and

12 to represent Shift-F1 and Shift-F2

Pl at f or ns
Al l
See Al so:

INKEY() SETKEY() __KEYBOARD()

SETKEY()

Assign an action block to a key
Synt ax
SETKEY(<anKey> [, <bAction> [, <bCondition>1]])
Argunent s
<anKey> is either a nuneric key value, or an array of such val ues
<bAction> is an optional code-block to be assigned

<bCondition> is an optional condition code-bl ock

Ret ur ns
Descri ption
The Set Key() function returns the current code-block assigned to a key when
called with only the key value. |If the action block (and optionally the condition

bl ock) are passed, the current block is returned, and the new code bl ock and
condition block are stored. A group of keys may be assigned the sane code

bl ock/ condition block by using an array of key values in place on the first
par amet er .

Exanpl es

| ocal bd dF10 := setKey(K F10, {|| Yahoo() })
... Il some other processing

Set Key(K _F10, bd dF10)

... Il some other processing

bBl ock : = Set Key(K_SPACE)

if bBlock '= NL ...

/1 make F10 exit current get, but only if in a get - ignores other
/1 wait-states such as nenus, achoices, etc..
Set Key(K F10, {|| GetActive():State := GE WRITE },;
{I|] GetActive() '=NL})

Tests

None defi nabl e

St at us
Ready
Conpl i ance
SETKEY() is nostly CA-Cipper conpliant. The only difference is the addition

of the condition code-bl ock paraneter, allow ng set-keys to be conditionally
turned off or on. This condition-block cannot be returned once set - see

Set KeyGet ()
Files
Library is rtl
See Al so:

HB_SETKEYSAVE()

HB Set KeyCet ()

Determi ne a set-key code bl ock & condition-bl ock
Synt ax
HB_SETKEYGET(<nKey> [, <bConditionByRef>])
Argunent s
<anKey> is an nuneric key val ue
<bCondi ti onByRef > is an optional return-paraneter

Ret ur ns

Descri ption

The HB_Set KeyCet () function returns the current code-block assigned to a key,
and optionally assignes the condition-block to the return-paraneter

Exanpl es
| ocal bd dF10, bd dF10Cond
bA dF10 : = HB Set KeyGet (K _F10, @Qd dF10Cond)

... Il some other processing
Set Key(K_F10, bd dF10, bd dF10Cond)

Tests

See test code above

St at us
Ready
Conpl i ance
HB_SETKEYGET() is a new function and hence not CA-Clipper conpliant.
Files
Library is rtl
See Al so:

SETKEY() HB SETKEYSAVE() HB_Set KeyCheck()

HB SETKEYSAVE()

Returns a copy of internal set-key list, optionally overwiting
Synt ax

HB_SETKEYSAVE([<O dKeys>])
Argunent s

<O dKeys> is an optional set-key list froma previous call to
HB_Set KeySave(), or NIL to clear current set-key list

Ret ur ns

Descri ption
HB Set KeySave() is designed to act like the set() function which returns the
current state of an environment setting, and optionally assigning a new value. In

this case, the "environment setting” is the internal set-key list, and the optiona
new value is either a value returned froma previous call to SetKeySave() - to
restore that list, or the value of NIL to clear the current list.

Exanpl es
| ocal aKeys := HB Set KeySave(NIL) // rempoves all current set=keys
... Il sonme other processing
HB_Set KeySave(aKeys)
Tests
None definabl e

St at us
Ready
Conpl i ance
HB_SETKEYSAVE() is new.
Files
Library is rtl
See Al so:

SETKEY()

HB Set KeyCheck()

I npli ments common hot -Key activation code

Synt ax
HB_Set KeyCheck(<nKey> [, <pl>][, <p2>][, <p3>1])
Argunent s
<nKey> 1is a nuneric key value to be tested code-block, if executed
<pl>..<p3> are optional paraneters that will be passed to the code-bl ock
Ret ur ns

False |If there is a hot-key association (before checking any condition): - if
there is a condition-block, it is passed one paraneter - <nKey> - when the hot-key
code-block is called, it is passed 1 to 4 paraneters, depending on the paraneters
passed to HB_Set KeyCheck(). Any paraneters so passed are directly passed to the
code-bl ock, with an additional parameter being <nKey>

Descri ption

HB_Set KeyCheck() is intended as a common interface to the SetKey()
functionality for such functions as ACHO CE(), DBEDI T(), MEMOEDI T(), ACCEPT,
I NPUT, READ, and WAI'T

Exanpl es

/1 within ReadModal ()
i f HB SetKeyCheck(K ALT X, GetActive())
. /1 some other processing
endi f
/1 within TBrowse handl er
case HB Set KeyCheck(nlnkey, oTBrowse)
return
case nlnKey == K _ESC
/1l some other processing

Tests
None defi nabl e

St at us
Ready
Conpl i ance
HB_SETKEYCHECK() is new.
Files
Library is rtl
See Al so:

SETKEY HB SETKEYSAVE()

SET KEY

Assign an action block to a key

Synt ax

SET KEY <anKey> to p<bAction>] [when <bCondition>1])
Argunent s
<anKey> is either a nuneric key value, or an array of such val ues
<bAction> is an optional code-block to be assigned
<bCondition> is an optional condition code-bl ock
Descri ption

The Set Key Command function is translated to the SetKey() function wtch
returns the current code-block assigned to a key when called with only the key
value. |If the action block (and optionally the condition bl ock) are passed, the
current block is returned, and the new code bl ock and condition bl ock are stored.
A group of keys nmay be assigned the same code bl ock/condition block by using an
array of key values in place on the first parameter

Exanpl es

| ocal bd dF10 := setKey(K F10, {|| Yahoo() })
... Il some other processing

Set Key K F10 to bd dF10)

... Il sonme other processing

bBl ock : = Set Key(K_SPACE)

if bBlock '= NL ...

/1 make F10 exit current get, but only if in a get - ignores other
/1 wait-states such as nenus, achoices, etc..
Set Key(K F10, {|| GetActive():State := CE WRITE },;
{I|] GetActive() '=NL})

Tests

None defi nabl e

St at us
Ready

Conpl i ance
SET KEY is nostly CA-Clipper conpliant. The only difference is the addition
of the condition code-bl ock paraneter, allow ng set-keys to be conditionally
turned off or on. This condition-block cannot be returned once set - see
Set KeyGet ()

See Al so:

HB SETKEYSAVE()

SETTYPEAHEAD)

Sets the typeahead buffer to given size.

Synt ax

SETTYPEAHEAD(<nSi ze>) --> <nPrevi ousSi ze>
Argunent s

<nSize> is a valid typeahead si ze.
Ret ur ns

<nPrevi ousSi ze> The previous state of _SET TYPEAHEAD
Descri ption

This function sets the typeahead buffer to a valid given size as is Set(
_SET_TYPEAHEAD) where used.

Exanpl es

/1 Sets typeahead to 12
Set Typeahead(12)

St at us

Ready
Conpl i ance

SETTYPEAHEAD() is fully CA-dipper conpliant.
Files

Library is rtl
See Al so:

ARRAY() | NPUT()

XHELP&%
Looks if a Help() user defined function exist.

Synt ax
__XHELP() --> <xVal ue>
Argunent s

Ret ur ns

Descri ption
This is an internal undocunmented Cipper function, which will try to call the

user defined function HELP() if it's defined in the current application. This is
the default SetKey() handler for the F1 key.

St at us

Ready
Conpl i ance

__ XHELP() is fully CA-dipper conpliant.
Files

Library is rtl

SET DEFAULT

Establ i shes the Harbour search drive and directory.
Synt ax
SET DEFAULT TO [<cPat h>]
Argunent s
<cPath> Drive and/or path.
Descri ption
Thi s command changes the drive and directory used for reading and witting

dat abase, i ndex, menory, and alternate files.Specifying no parameters with this
command will default the operation to the current logged drive and directory.

Exanpl es

SET DEFAULT to c:\TEMP

St at us

Ready
Conpl i ance
This command is Ca-dipper Conpliant.
See Al so:

SET PATH cuURDI R() SET()

SET WRAP

Toggl e wrappi ng the PROMPTs in a nenu.

Synt ax
SET WRAP on | OFF | (<IWap>

Argunent s
<| Wap> Logical expression for toggle

Descri ption
Thi s command toggles the highlighted bars in a @.. PROVWT command to wap
around in a bottomto-top and top-to-bottom manner.If the value of the | ogical
expression <IWap>is a logical false (.F.), the wapping node is set
OFF; otherwise,it is set ON

Exanpl es

See Tests/nenutest.prg

St at us
Ready
Conpl i ance
This command is Ca-Cd ipper Conpliant.
See Al so:

@..PROVPT NeNU TO

SET MESSAGE

Ext abl i shes a nmessage row for @..PROVPT command

Synt ax

SET MESSAGE TO [<nRow> [CENTER]]

Argunent s
<nRow> Row nunber to display the nessage
Descri ption

This command is designed to work in conjuntion with the MENU TO and

@ .. PROWT conmands. Wth this command, a row nunber between 0 and MAXRON) nay be
specified in <nRow>. This establishes the row on wtch any nessage associated with
an @..PROVPT command wi || apear.

If the value of <nRow> is 0,all nessages will be supressed. Al messaged wl|

be left-justifies unless the CENTER clause is wused.ln this case,the individual
messages in each @..PROVWT comand wll be centered at the designated row (unless
<nRow> is 0). Al nessages are independent;therefor,the screen area is cleared out
by the centered nmessage will vary based on the |l ength of each individual nessage.

Speci fying no paranmeters with this command set the row value to 0, wtch
suppresses all messages output. The British spelling of CENTRE is al so support ed.

Exanpl es

See Tests/nenutest.prg

St at us

Ready
Conpl i ance

This command is Ca-Cd ipper Conpliant.
See Al so:

SET(). SET WRAP@..PROVPTMENU TO

SET PATH

Specifies a search path for opening files

Synt ax
SET PATH TO [<cPat h>]

Argunent s
<cPath> Search path for files

Descri ption
Thi s command specifies the search path for files required by nbost conmands
and functions not found in the current drive and directory. This pertains
primarily, but not exclusively, to databases,indexes, and nmeno files,as well as to
menory, | abel s, and reports files. The search hirarchy is: 1 Current drive and
directory,2 The SET DEFAULT path;3 The SET PATH pat h.

Exanpl es

SET PATH TO c:\ Har bour\ Test

St at us

Ready
Conpl i ance

This command is Ca-dipper Conpliant.
See Al so:

SET DEFAULT cuRDI R() SET()

SET | NTENSI TY
Toggl es the enhaced di splay of PROWT s and CETs.

Synt ax
SET INTENSITY ON | off | (<lInte>)
Argunent s
<l Inte> Logical expression for toggle comrand
Descri ption
This command set the field input color and @..PROVWT nenu color to either
hi ghl i ghted (inverse video) or nornmal color. The default condition is ON
(highlighted).
Exanpl es
SET I NTENSI TY ON
St at us
Ready
Conpl i ance
This command is Ca-dipper Conpliant.
See Al so:

@..Cet @, PROVPT@..SAYSET()

SET ALTERNATE

Toggl e and echos output to an alternate file

Synt ax

SET ALTERNATE to <cFile> [ADDI TI VE]
SET ALTERNATE on | OFF | (<l Alter>)

Argunent s

<cFile> Nane of alternate file.

<| Alter> Logical expression for toggle
Descri ption

Thi s command toggl es and output console information to the alternate file

<cFi | e>, provided that the conmand is toggled on or the condition <l Ater>is set
to alogical true (.T.). If <cFile> does not has a file extension, .TXT will be
assuned. The file nane may optionally have a drive letter and/or directory path.If
none is speficied, the current drive and directory will be used. |If the ALTERNATE
file is created but no ALTERNATE ON command is issued,nothing will be echoed to the
file. 1f ADDITIVE clause is used,then the information will be appended to the
existing alternate file.Oherwise,a newfile will be created wth the specified
nane (or an existing one will be overwitten) and the information will be appended
to the file. The default is to create a newfile. A SET ALTERNATE TO command wi | |
close the alternate file

Exanpl es

SET ALTERNATE TO test. txt
SET ALTERNATE ON

? ' Har bour’
? III SII
? " Power"

SET ALTERNATE TO
SET ALTERNATE OFF

St at us

Ready
Conpl i ance

This command is Ca-Cdipper Conpliant.
See Al so:

ARRAY SET PRI NTERSET CONSOLESET()

SET CENTURY

Toggle the century digits in all dates display
Synt ax
SET CENTURY on | OFF | (<l Cent>)
Argunent s
<l Cent> Logical expression for toggle
Descri ption
This command all ows the input and display of dates with the century prefix.It
will be in the standart MM DD YYYY format unl ess specified by the SET DATE command
or SET() function.If <lICent>is a logical true (.T.),the cormmand will be set
on; ot herwi se, the command will be set off
Exanpl es
SET CENTURY ON
? DATE()
SET CENTURY OFF
St at us
Ready
Conpl i ance
This command is Ca-dipper conpliant
See Al so:

SET DATE SET EPOCHCTOD() DATE() DTOC() SET()

SET DATE

Assings a date format or chooses a predefined date data set.

Synt ax

SET DATE FORMAT [Tl <cFor mat >
SET DATE [TO] [ANSI / BRITISH / FRENCH / GERVAN / | TALIAN / JAPAN
/ USA / AVERI CAN|

Argunent s
<cFormat > Keyword for date format
Descri ption
This command sets the date format for function display purposes. |If

speci fi ed, <cFormat > may be a custom zed date format in which the letters d,mand y

may be used to desing a date format. The default s an AVMERI CAN date

format; specifying no paraneters will set the date format to AMERI CAN.Below is a

table of the varius predefined dates formats.

Synt ax Dat e For mat
ANS| y. mm dd
BRI Tl SH dd/ m yy
FRENCH dd/ md yy
GERVAN dd. mm yy
TALI AN dd- mm yy
) APAN y. nm dd
USA e dd- yy
AVERI CAN i dd/ yy
Exanpl es
SET DATE JAPAN
? DATE()
SET DATE GERVAN
? Date()
Tests
See tests/dates. prg
St at us
Ready
Conpl i ance
This command is Ca-dipper conpliant
See Al so:

SET DATE SET EPOCHCTOD() DATE() DTOC() SET()

SET EPOCH

Specifie a base year for interpreting dates
Synt ax
SET EPCCH TO <nEpoch>
Argunent s
<nEpoch> Base Century.
Descri ption

This command sets the base year value for dates that have only two digits. The
default setting is 1900. Dates between 01/01/0100 and 12/31/2999 are fully

support ed.
Exanpl es
SET EPCCH TO 2000
St at us
Ready
Conpl i ance
This command is Ca-dipper conpliant
See Al so:

SET DATE gSET CENTURYCTOD() DATE() DTOC() SET()

SET FI XED

Set the nunber of decimal position to be displayed

Synt ax

SET FI XED on | OFF | (<IFixed>)
Argunent s

<l Fi xed> Logical expression for toggle

Descri ption

This command activates a systemw de fixed placenent of decimals places shown
for all nurmeric outputs.If the value of <IFixed>is a logical true (.T.), Fl XED

will be turned ON;otherwise it will be

turned OFF.

When SET DECI MALS OFF is used, the followrules aply to the nunber of decinal

pl aced di spl ayed.

IAddi tion

[Same as operand with the greatest nunber of decinal digits

Subract i on

[Sane as operand with the greatest nunber of decinmal digits

MUl ti plication

ISum of operand decimal digits

Di vi si on

Det er mi ned by SET DECI MAL TO

Exponent i al

Det er mi ned by SET DECI MAL TO

L O) Det er mi ned by SET DECI MAL TO

EXP() Det er mi ned by SET DECI MAL TO

ISQRT() Det er ni ned by SET DECI MAL TO

AL() Det er mi ned by SET DECI MAL TO
Exanpl es

SET FI XED ON
? 25141251/ 362
SET FI XED OFF
St at us
Ready
Conpl i ance

This command is Ca-dipper conpliant
See Al so:

SET DECIMALS Exp() LOG() SQRT() VAL() SET()

SET PRI NTER

Toggl es the printer and controls the printer device

Synt ax

SET PRI NTER on | OFF
SET PRI NTER (<I Pri nt er >)
SET PRI NTER TO [<cPrinter>] [ADDI Tl VE]

Argunent s

<l Fi xed> Logi cal condition by which to toggle the printer <cPrinter> A
devi ce nane or an alternate nane

Descri ption

This command can direct all output that is not controled by the @..SAY

command and t he DEVPOS() and DEVOUT() functions to the printer.If specified,the
condition <IPrinter> toggles the printer ONif a logical true (.T.) and OFF if a
logical false (.F.).If no argunment is specified in the cormand, the alternate file
(if one is open) is closed, or the device is reselected and the PRINTER option is
turned OFF.

If a device is specified in <cPrinter>, the outpur will be directed to that
device instead of to the PRINTER A specified device may be a literal string or a
variable, as long as the variable is enclosed in parentheses. For a network, do not
use a trailing colon when redirecting to a device.

If an alternate file is specified, <cPrinter> becones the nane of a file that
will contain the output.If no file extension is specified an extension of.PRN will
be defaulted to.

If the ADDITIVE clause is specified,the information will be appended to the
end of the specified output file.Oherwise, a newfile will be created with the
specified nanme (or an existing file will first be cleared) and the information wll
then be appended to the file. The default is to create a new file.
Exanpl es
SET PRI NTER ON
SET PRI NTER TO LPT1
? 25141251/ 362
SET PRI NTER . F.

St at us
Ready
Conpl i ance
This command is Ca-Cd ipper conpliant
See Al so:

SET DEVICE SET CONSOLEARRAY() SET()

SET CONSOLE

Toggl e the consol e displ ay

Synt ax

SET CONSOLE ON | off | (<l Consol e>)

Argunent s
<l Consol e> Logical expression for toggle conrand

Descri ption
This command turns the screen display either off or on for all screens
?Lﬁgl?gnéther then direct output via the @..SAY conmands or the <-> DEVOUT()

If <IConsole >is alogical true (.T.),the console will be turned
ON; ot herwi se, the console will be turned off.

Exanpl es

SET consol e on

? DATE()

SET consol e of f

? date()
St at us

Ready

Conpl i ance

This command is Ca-dipper conpliant

See Al so:

SET DEVICE sgT()

SET DECI MALS

Toggl e the consol e displ ay
Synt ax
SET DECI MALS TO [<nDeci nal >]
Argunent s
<nDeci mal > Nunmber of decimals places
Descri ption
Thi s command establishes the nunber of deci mal places that Harbour will
display in mathemati cal cal cul ations, functions, menory variables, and
fields.lssuing no parameter with this command will the default nunber of decimals
to O0.For decimals to be seen,the SET FI XED ON command nust be acti vat ed.
Exanpl es
SET FI XED ON
? 25141251/ 362
SET DECI MALS TO 10
? 214514, 214/ 6325
St at us
Ready
Conpl i ance

This command is Ca-dipper conpliant
See Al so:

SET FI XED SET()

SET DEVI CE

Directs all @..SAY output to a device.

Synt ax

SET DEVICE TO [printer | SCREEN]
Argunent s

Descri ption

Thi s command det ermni nes whether the output fromthe @..SAY command and the
DEVPOS() and DEVOUT() function will be displayed on the printer.

When the device is set to the PRINTER the SET MARG N val ue adjusts the

position of the columm val ues accordingly. Al so,an automatic page eject will be
i ssued when the current printhead positionis Iless than the last printed

row Finally,if used in conjunction with the @..CET conmands, the values for the
GETs will all be ignored.

Exanpl es

SET DEVI CE TO SCRENN
? 25141251/ 362

SET DEVI CE TO PRI NTER
SET PRI NTER TO LPT1

? 214514. 214/ 6325

SET PRI NTER OFF

SET DEVI CE TO SCREEN

St at us
Ready
Conpl i ance
This command is Ca-dipper conpliant
See Al so:

@_..SAY SET PRI NTERARRAY() SET()

SET BELL

Toggl e the bell to sound once a GET has been conpl et ed.
Synt ax
SET BELL on | OFF | (<IBell>)
Argunent s
<IBell> Logical expression for toggle comrand
Descri ption

This command toggles the bell to sound whenever a character is entered into
the |l ast character positionof a GET,of if an invalid data type is entered into a
GET.

If <IBell >is alogical true (.T.),the bell will be turned ON, otherw se, the
belle will be turned off.

Exanpl es
SET BEEL ON

cDumy: =space(20)
? 3,2 get cDummy

Read
SET bel | off
St at us
Ready
Conpl i ance
This command is Ca-dipper conpliant
See Al so:

SET()

| SALPHA(

Checks i f Ie?tm)st character in a string is an al phabetic character

Synt ax
| SALPHA(<cString>) --> | Al pha

Argunent s
<cString> Any character string

Ret ur ns

Descri ption
This function return a logical true (.T.) if the first character in <cString>
is an al phabetic character.If not, the function will return a logical false (.F.).

Exanpl es
QUT("isalpha("hello') =", isalpha('"hello))
QQUT("isal pha('12345") =", isalpha('12345))

St at us
Ready

Conpl i ance
This function is CA-Cipper conpliant

Pl at f or ns
All

Files
Library is rtl

See Al so:

ISDIG T() | SLOWER() | SUPPER() LOAER() UPPER()

| SDI G T(

Checks i f Ie?tm)st character is a digit character

Synt ax

ISDIA T(<cString>) -->1Digit
Argunent s

<cString> Any character string
Ret ur ns
Descri ption

This function takes the caracter string <cString> and checks to see if the
| eftnost character is a digit,from1l to 9.1f so, the function will return a

logical true (.T.);otherwise, it will return a logical false (.F.).
Exanpl es

? 1SDIA T('12345") [..

? 1SDIA T('abcde') /1 . F.
St at us

Ready
Conpl i ance

This function is CA-Cipper conpliant
Pl at f or ns

Al'l
Files

Library is rtl
See Al so:

L SALPHA() | SLOAER() | SUPPER() LOAER() UPPER()

| SUPPER(

Checks i f Ie?tm)st character is an uppercased letter.
Synt ax
| SUPPER(<cString>) --> | Upper
Argunent s
<cString> Any character string
Ret ur ns

Descri ption
This function takes the caracter string <cString> and checks to see if the

| eftnost character is a uppercased letter.If so, the function will return a
logical true (.T.);otherwse, it will return a logical false (.F.).

Exanpl es
? 1 SUPPER(' Abcde') I
? 1 SUPPER(' abcde') /1 .F.
St at us
Ready
Conpl i ance
This function is CA-Cipper conpliant
Pl at f or ns
Al'l
Files
Library is rtl
See Al so:

I SALPHA() | S| OWER() | SDI GI T() LOWER() UPPER()

| SLOVER(

Checks i f Ie?tm)st character is an | owercased letter.
Synt ax
| SLONER(<cString>) --> | Lower
Argunent s
<cString> Any character string
Ret ur ns

Descri ption

This function takes the caracter string <cString> and checks to see if the
| eftnbst character is a |lowercased letter.If so, the function will return a

logical true (.T.);otherwise, it will return a logical false (.F.).
Exanpl es

? islower('ABCde') Il . F

? islower('aBCde') /1. T.
St at us

Ready
Conpl i ance

This function is CA-Cipper conpliant
Pl at f or ns

Al'l
Files

Library is rtl
See Al so:

L SALPHA() | sDI & T() | SUPPER() LOAER() UPPER()

LTRI

Rem)veM eadi ng spaces froma string
Synt ax
LTRIM <cString>) --> cReturn
Argunent s
<cString> Character expression with | eading spaces
Ret ur ns
LTRIM) returns a copy of the original string with | eadi ng spaces renoved.
Descri ption
This function trins the | eadi ng space bl ank
Exanpl es
? LTRRM "HELLO ")

St at us
Ready
Conpl i ance
This functions is CA-CLI PPER conpati bl e
Pl at f or ns
All
Fil es
Library is rtl
See Al so:

TRIM) RTRIM)ALLTRI M)

AT()

Locates the position of a substring in a main string.
Synt ax
AT(<cSearch>, <cString> [<nStart>], [<nEnd>]) --> nPos

Argunent s

<cSearch> Substring to search for

<cString> Main string

<nStart> First position to search in cString, by default 1

<nEnd> End posistion to search, by default cString [ength
Ret ur ns

AT() return the starting position of the first occurrence of the substring
in the main string

Descri ption

This function searches the string <cString> for the characters in the first
string <cSearch>. |If the substring is not contained within the second
expression,the function will return 0. The third and fourth paranmeters lets you
indicate a starting and end offset to search in.

Exanpl es
QQUT("at('cde', '"abcdefgfedcba) ="'" +
at('cde', 'abcsefgfedcha) + "'")

St at us
Ready

Conpl i ance

This function is sensitive to HB_ C52 STRICT settings during the conpilation
of source/rtl/at.c

<nStart> and <nEnd> are Harbour extensions and do not exist if HB C52 STRICT
is defined. In that case, the whole string is searched.

Pl at f or s
Al |
Files
Library is rtl
See Al so:

RAT()

RAT

Searches for a substring fromthe right side of a string.

Synt ax
RAT(<cSearch>, <cString>) --> nPos

Argunent s
<cSearch> Substring to search for
<cString> Main string

Ret ur ns
RAT() return the |ocation of beginnig position.

Descri ption
This function searches througt <cString> for the first existence of
<cSear ch>. The search operation is perfornmed fromthe right side of <cString>to

the left. If the function is unable to find any occurence of <cSearch> in
<cString> the return value is O.

Exanpl es
QQUT("rat('cde', 'abcdefgfedcha') ="'" +;
rat('cde', 'abcsefgfedchba) + "'")
St at us
Ready
Conpl i ance
WIl not work with a search string > 64 KB on sone platforns
Pl at f or ns
All
Files
Library is rtl
See Al so:

AT() SUBSTR() RI GHT()

LEFT()

Extract the |l eftnost substring of a character expression

Synt ax

LEFT(<cString> <nLen>) --> cReturn
Argunent s
<cString> Miin character to be parsed

<nLen> Nunber of bytes to return beggining at the | eftnost position

Ret ur ns
<cRet ur n> Substring of eval uation
Descri ption
This functions returns the | eftnbst <nLen> characters of <cString> It is
equivalent to the follow ng expression: <fixed> SUBSTR(<cString> 1, <nLen>)
T;{gl?ﬁgztions returns the | eftmost <nLen> characters of <cString> It is equivalent to the
Exanpl es
? LEFT('HELLO HARBOUR , 5) /1 HELLO
St at us
Ready
Conpl i ance
This functions is CA CLIPPER conpati bl e
Pl at f or ns
Al l
Files

Library is rtl
See Al so:

SUBSTR() RI GHT() AT() RAT()

Rl GHT(

Extract tze ri ght most substring of a character expression
Synt ax
Rl GHT(<cString> <nLen>) --> cReturn
Argunent s
<cString> Character expression to be parsed
<nLen> Nunber of bytes to return beggining at the rightnost position

Ret ur ns

<cRet ur n> Substring of eval uation

Descri ption
This functions returns the rightnost <nLen> characters of <cString> It is
equi valent to the follow ng expressions: <fixed> SUBSTR(<cString> - <nLen>)
SUBSTR(<cString> LEN(<cString>) - <nLen> + 1, <nLen>) </fixed>
This functions returns the rightnost <nLen> characters of <cString> It is equivalent to tl
Exanpl es
? RIGHT(' HELLO HARBOUR , 5) /1 RBOUR
St at us
Ready
Conpl i ance
This functions is CA CLIPPER conpati bl e
Pl at f or ns
Al l
Files

Library is rtl
See Al so:

SUBSTR() | EFT() AT() RAT()

SUBSTR()

Returns a substring froma main string
Synt ax
SUBSTR(<cString>, <nStart>, [<nLen>]) --> cReturn
Argunent s
<cString> Character expression to be parsed
<nStart> Start position

<nLen> Nunber of characters to return

Ret ur ns
<cReturn> Substring of eval uation
Descri ption

This functions returns a character string forned from<cString> starting at
the position of <nStart> and continuing on for a |enght of <nLen> characters. |If
<nLen> is not specified, the value wll be all renmining characters fromthe
position of <nStart>.

The val ue of <nStart> nay be negative. If it is, the direction of operation
is reversed froma default of left-to-right to right-to-left for the nunber of

characters specified in <nStart>. If the nunber of characters from<nStart> to the

end of the string is less than <nLen> the rest are ignored.

Exanpl es

? SUBSTR(' HELLO HARBOUR , 7, 4) /1 HARB

? SUBSTR(' HELLO HARBOUR ,-3, 3) /1 OUR

? SUBSTR(' HELLO HARBOUR , 7) /1 HARBOUR
St at us

Ready
Conpl i ance

This functions is CA-Cipper conpatible with the execption that CA-d i pper
will generate an error if the passed string is longer than 64Kb, and Harbour on
some plataformis not limt by this size.

Pl at f or ns
Al l
Fil es

Library is rtl
See Al so:

LEFT AT() Rl GHT

STR()

Convert a nuneric expression to a character string.

Synt ax

STR(<nNunber>, [<nLength>],

Argunent s
<nNumber >
<nLength> 1is the length of the character string to return,
digits, deciml point, and sign.
<nDeci nal s> is the nunber of deci mal
Ret ur ns
STR() returns <nNunber> fornatted as a character string.

| ength and deci nal
according to the follow ng rules:

[<nDeci mal s>])

--> cNunber

pl aces to return.

argunents are not specified, STR()

is the nunmeric expression to be converted to a character string.

i ncl udi ng deci nmal

If the optiona
returns the character string

Expr essi on

Ret urn Val ue Length

Fi el d Variabl e

Fi el d |1 ength plus decinmals

[Expr essi ons/ constant s

M ni mum of 10 digits plus decimals

AL()

M ni mum of 3 digits

MONTH() / DAY() B digits
IYEAR() b digits
RECNQ() 7 digits
Descri ption
STR() is a numeric conversion function that converts nuneric values to

character strings. It
strings. STR() has
nunbers from nuneric val ues,

character data.

STR() is like TRANSFORM),
using a mask instead of
The inverse of STR() is VAL(),
* |f <nLength> is |ess
STR() returns asterisks

* |f <nLength> is |ess
deci mal

nunber of deci mal places.

* |f <nLength> is specified but <nDecinals>is omtted (no

than the nunber of deci nal
portion of the returned string,

is commonly used to concatenate numeric
appl i cations displ aying
and creating index keys that conbi ne nuneric and

nunbers, cr

which formats nuneric val ues as character
| ength and deci ma

whi ch converts character nunbers to

than the nunber of whole nunber digits in
i nstead of the nunber.

Har bour

the return value is rounded to an integer

Exanpl es

? STR(10, 6, 2) // " 10.00"

? STR(-10, 8, 2°) // " -10.00"
Tests

see the regression test suit for conprehensive tests.

St at us
Ready

digits
rounds the nunber to the avail abl e

_ val ues to character
eating codes such as part

strings

speci fications.

nuneri cs.

<nNunber >,

required for the

deci mal pl aces),

Conpl i ance

CA-d i pper conpati bl e.
Files

Library is rtl

See Al so:
STRZERQ() TRANSFORM) VAL()

STRZERY()

Convert a nuneric expression to a character string, zero padded.
Synt ax
STRZERQ(<nNunber >, [<nLength>], [<nDecinmals>]) --> cNunber
Argunent s
<nNunber> is the nuneric expression to be converted to a character string.

<nLength> 1is the Ilength of the character string to return, including decinal
digits, deciml point, and sign.

<nDecimal s> is the nunber of decimal places to return.
Ret ur ns
STRZERQ() returns <nNunber> formatted as a character string. |f the

optional |ength and deci mal argunents are not specified, STRZERQ() returns the
character string according to the follow ng rul es:

Expr essi on Ret urn Val ue Length

Fi el d Variabl e Fi el d |1 ength plus decinmals

[Expr essi ons/ constant s M ni mum of 10 digits plus decimals
AL() M ni mum of 3 digits

IMONTH() / DAY() B digits

IYEAR() b digits

RECNQ() 7 digits

Descri ption

STRZERQ() is a nuneric conversion function that converts nuneric values to
character strings. It is commonly used to concatenate nuneric values to character
strings. STRZERQ() has applications displaying nunbers, creating codes such as part
nunbers fromnuneric values, and creating I ndex keys that conbi ne nunmeric and
character data.

STRZERQ() is |like TRANSFORM), which formats nuneric values as character
strings using a mask instead of |ength and decimal specifications.

The inverse of STRZERQ() is VAL(), which converts character nunbers to
nuneri cs.

* |f <nLength> is |ess than the nunber of whole nunber digits in <nNunber>,
STR() returns asterisks instead of the nunber.

* |f <nLength> is |less than the nunber of decinmal digits required for the
deci mal portion of the returned string, Harbour rounds the nunber to the avail able
nunber of deci mal places.

* |f <nLength> is specified but <nDecinmals> is omtted (no decinmal places),
the return value is rounded to an integer

Exanpl es

? STRZERQ(10, 6, 2) // "010.00"
? STRZERQ(-10, 8, 2) // "-0010.00"

Tests

see the regression test suit for conprehensive tests.

St at us

Ready
Conpl i ance

CA-d i pper compatible (it was part of the sanples).
Fil es

Library is rtl

See Al so:
STR()

HB_VALTOSTR()

Converts any scalar type to a string.
Synt ax
HB VALTOSTR(<xValue>) --> cString
Argunent s
<xVal ue> is any scal ar argunent.
Ret ur ns
<cString> A string representation of <xValue> using default conversions.
Descri ption
HB_VALTOSTR can be used to convert any scalar value to a string.
Exanpl es
? HB_VALTOSTR(4)
? HB_VALTOSTR("String")
Tests
HB VALTOSTR(4) == " 4"
HB VALTOSTR(4.0/ 2) ==" 2. 00"
HB_VALTOSTR("String") == "String"
HB_VALTOSTR(CTOD("01/01/2001")) == "01/01/01"
HB_ VALTOSTR(NIL) == "N L"

HB_VALTOSTR(.F.) == ".F.
HB_VALTOSTR(. T.)

N N N))))

St at us

Ready
Conpl i ance

HB_VALTOSTR() is a Harbour enhancenent.
Files

Library is rtl

See Al so:
STR()

LEN()

Returns size of a string or size of an array.
Synt ax
LEN(<cString> | <aArray>) --> <nlLength>
Argunent s
<acString> is a character string or the array to check.

Ret ur ns

Descri ption

This function returns the string length or the size of an array. If it is
used with a nultidinmensional array it returns the size of the first dinmension.

Exanpl es

? LEN("Harbour") /
? LEN({ "One", "Two" }) /

~—
N~

Test s

function Test()
LOCAL cName := ""
ACCEPT "Enter your nane: " TO cNane
? LEN(cNane)

return nil

St at us
Ready

Conpl i ance
LEN() is fully CA-dipper conpliant.

Files
Library is rtl

See Al so:

EMPTY() RTRI M) LTRI M) AADD() ASI ZE()

EMPTY()

Checks ig the passed argunent is enpty.

Synt ax

EMPTY(<xExp>) --> |IsEmpty
Argunent s

<xExp> 1is any valid expression.
Ret ur ns

false (.F.).
Descri ption

This function checks if an expression has enpty value and returns a | ogical
i ndi cating whether it the expression is enpty or not.

Exanpl es
? EMPTY("1'm not enpty") Il . F

Tests
FUNCTI ON Test ()
? EMPTY(NIL) /1. T.
? EMPTY(0) /1. T
? EMPTY(.F.) Il .T.
? EMPTY("") /1. T.
? EMPTY(1) Il .F.
?2 EMPTY(.T.) Il .F.
? EMPTY("snile") Il .E.
? EMPTY(Date()) Il . F.
RETURN NI L
St at us
Ready
Conpl i ance
EMPTY() is fully CA-Cipper conpliant.
Files

Library is rtl
See Al so:

LEN()

DESCEND()

Inverts an expression of string, |ogical, date or nuneric type.

Synt ax

DESCEND(<xExp>) --> xExplnverted
Argunent s

<xExp> 1is any valid expression.
Ret ur ns
Descri ption

Thi s function converts an expression in his inverted form It is wuseful to
bui | d descendi ng i ndexes.

Exanpl es
/1l Seek for Smith in a descendi ng i ndex
SEEK DESCEND("SM TH')

Tests

DATA->(DBSEEK(DESCEND("SM TH')))
will seek "SMTH' into a descendi ng i ndex.

St at us
Ready
Conpl i ance
DESCEND() is fully CA-dipper compliant.
Files
Library is rtl
See Al so:

ARRAY ARRAY

HB_ANSI TOCE

Convert a wi ndows aracter to a Dos based character

Synt ax
HB_ANSI TOOEM <cString>) --> cDosString

Argunent s
<cString> Wndows ansi string to convert to DOS oem String

Ret ur ns
<cDosString> Dos based string

Descri ption
This function converts each character in <cString>to the corresponding
character in the M5-DOS (CEM character set. The character expression <cString>

shoul d contain characters fromthe ANSI character set. If a character in <cString>
doesn't have a WMs-DOS equivalent, the character is converted to a simlar M- DOS

character.
Exanpl es
? HB_CEMIOANSI (" Harbour™)
St at us
Ready
Conpl i ance
This function is a Harbour extension
Pl at f or ms
This functions work only on Wndows Pl ataform
Fil es

Library is rtl
See Al so:
HB_OEMIQANSI ()

HB_OEMTOANSI (

Convert a DOS(CEM (Zhar acter to a WNDOA5 (ANSI) based character
Synt ax
HB_OEMIOANSI (<cString>) --> cDosString
Argunent s
<cString> DOS (CEM string to convert to WNDOAS (ANSI) String
Ret ur ns
<cDosString> WNDOA5S based string
Descri ption
Thi s function converts each character in <cString>to the corresponding
character in the Wndows (ANSI) character set. The character expression <cString>

shoul d contain characters fromthe OEMcharacter set. If a character in <cString>
doesn't have a ANSI equivalent, the character is renmmis the sane.

Exanpl es
? HB_OEMIQANSI (" Harbour")

St at us
Ready
Conpl i ance
This function is a Harbour extension
Pl at f or ns
This functions work only on Wndows Pl ataform
Files
Library is rtl
See Al so:

HB_ANSI TOOEM)

L ONER

Uni versaﬁ ?y | ower cases a character string expression.
Synt ax
LONER(<cString>) --> cLowerString
Argunent s
<cString> Any character expression.
Ret ur ns
<cLower String> Lowercased value of <cString>
Descri ption
Thi s function converts any character expression passes as <cString> to its

| ower cased representation. Any nonal phabetic character withing <cString> wll
remai n unchanged.

Exanpl es
? LONAER("HARBOUR') /1 harbour
? LOAER("Hello AIl™) /1 hello all
St at us
Ready
Conpl i ance
This function is CA-Cipper conpatible
Pl at f or ns
ALL
Fil es
Library is rtl
See Al so:

UPPER | SLOWER() | SUPPER()

UPPER()

Converts a character expression to uppercase format

Synt ax

UPPER(<cString>) --> cUpperString
Argunent s

<cString> Any character expression
Ret ur ns

<cUpper String> Uppercased val ue of <cString>
Descri ption

This function converts all al pha characters in <cString> to upper case val ues
and returns that formatted character expression.

Exanpl es

? UPPER("harbour") /1 HARBOUR
? UPPER("Harbour") /1 HARBOUR
St at us
Ready
Conpl i ance
This function is CA-Clipper conpatible
Pl at f or ns
Al'l
Files

Library is rtl
See Al so:

LOVER | SUPPER() | SLONER()

CHR()

Converts an ASCI| value to it character val ue

Synt ax

CHR(<nAsciiNum») --> cReturn
Argunent s

<nAscii Nunm> Any ASCI| character code.
Ret ur ns

<cReturn> Character expression of that ASCI| val ue
Descri ption

This function returns the ASCI| character code for <nAscii Nume. The nunber
expressed nmust be an interger value within the range of 0 to 255 inclusive. The
CHR() function will send the character returned to whatever device is presently

set.
The CHR() function may be used for printing special codes as well as nornal
and graphics character codes.
Exanpl es
? CHR(32)
? chr(215)
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ns
All
Files
Library is rtl
See Al so:

ASC() | NKEY()

ASK()

Returns the ASCI| val ue of a character
Synt ax
ASC(<cCharacter>) --> nAscNunber
Argunent s
<cCharacter> Any character expression
Ret ur ns
<nAscNunber> ASCI| val ue
Descri ption

This function return the ASCI|I value of the |leftnpbst character of any
character expression passed as <cCharacter >.

Exanpl es
? ASC("A")
? ASC("1)
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpliant
Pl at f or ms
All
Fil es

Library is rtl
See Al so:

CHR()

PADC()

Centers an expression for a given width
Synt ax
PADC(<xVal >, <nWdth>, <cFill>) --> cString
Argunent s
<xVal > A Nunber, Character or Date value to pad

<nWdth> Wdth of output string

<cFill> Character to fill in the string
Ret ur ns

<cString> The Center string of <xVal >
Descri ption

This function takes an date, number or character expression <xVal> and

attenpt to center the expression within a string of a given width expressed as
<nW dt h>. The default character used to pad either side of <xVal> will be a blank

space. This character nmay be explicitly specified the value of <cFill>.

If the lenght of <xVal> is |longer then <nWdth>,this function will truncate
the string <xVal> fromthe |leftnost side to the | enght of <nWdth>.
Exanpl es

? PADC(' Harbour', 20)
? PADC(34.5142, 20)
? PADC(Date(), 35)

Tests

See Exanpl es
St at us

Ready
Conpl i ance

This function is Ca-Cipper conpilant
Pl at f or ns

All
Fil es

Library is rtl

See Al so:

ALLTRIM) pADL () PADR()

PADL ()

Left-justifies an expression for a given width
Synt ax
PADL(<xVal >, <nWdth>, <cFill>) --> cString
Argunent s
<xVal > An nunber, Character or date to pad

<nWdth> Wdth of output string

<cFill> Character to fill in the string
Ret ur ns

<cString> The left-justifies string of <xVal >
Descri ption

This function takes an date, nunber, or character expression <xVal> and attenpt
to left-justify it within a string of a given width expressed as <nWdth>. The

default character used to pad left side of <xVal> will be an bl ank

space; however,this character may be explicitly specified the value of <cFill>.

If the lenght of <xVal> is |longer then <nWdth>,this function will
the string <xVal> fromthe |leftnost side to the | enght of <nWdth>.

Exanpl es

? PADL('Harbour', 20)
? PADL(34.5142, 20)
? PADL(Date(), 35)

Tests

See exanpl es
St at us

Ready
Conpl i ance

This function is Ca-Cipper conpilant
Pl at f or ns

All
Fil es

Library is rtl

See Al so:

ALLTRIM) pa PADR

PADR()

Ri ght-justifies an expression for a given width
Synt ax
PADR(<xVal >, <nWdth>, <cFill>) --> cString
Argunent s
<xVal > A Nunber, Character or Date value to pad

<nWdth> Wdth of output string

<cFill> Character to fill in the string
Ret ur ns

<cString> The right-justifies string of <xVal >
Descri ption

This function takes an date, nunber, or character expression <xVal> and attenpt
to right-justify it within a string of a given width expressed as <nWdt h>. The

default character used to pad right side of <xVal> will be an bl ank

space; however,this character may be explicitly specified the value of <cFill>.

If the lenght of <xVal> is |longer then <nWdth>,this function will
the string <xVal> fromthe |leftnost side to the | enght of <nWdth>.

Exanpl es

? PADR('Harbour', 20)
? PADR(34.5142, 20)
? PADR(Date(), 35)

Tests

See exanpl es
St at us

Ready
Conpl i ance

This function is Ca-Cipper conpilant
Pl at f or ns

All
Fil es

Library is rtl

See Al so:

ALLTRIM) pa PADL

ALLTRI M)

Renoves | eading and trailing blank spaces froma string

Synt ax

ALLTRIM <cString>) --> cExpression
Argunent s

<cString> Any character string
Ret ur ns

<cExpression> An string will all blank spaces renmpoved from <cStri ng>
Descri ption

This function returns the string <cExpression> will all leading and trailing

bl ank spaces renoved.
Exanpl es

? ALLTRIM "HELLO HARBOUR')

? ALLTRIM " HELLO HARBOUR')

? ALLTRIM "HELLO HARBOUR ")

? ALLTRIM " HELLO HARBOUR ")
Tests

See Exanpl es
St at us

Ready
Conpl i ance

This function is Ca-Cipper conpilant
Pl at f or ms

All
Fil es

Library is rtl
See Al so:

LTRIM) RTRIM) TR M)

RTRI M)

Renove trailing spaces froma string.
Synt ax
RTRI M <cExpression>) --> cString
Argunent s
<cExpression> Any character expression
Ret ur ns
<cString> A formated string with out any bl ank spaced.
Descri ption
This function returns the value of <cString> with any trailing blank renoved.

This function is indentical to RTRIM) and the opposite of LTRIM). Together
with LTRIM),this function equated to the ALLTRIM) functi on.

Exanpl es
? RTRRM "HELLO') /[l "HELLO'
? RTRRM "") /"
? RTREM "UA ") [l "UA"
? RTRIM " UA") I/ " UA
Test s
See Exanpl es
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpilant
Pl at f or ns
Al |
Fil es

Library is rtl
See Al so:

ALLTRIM) LTRIM) TR M)

TRI M)

Renove trailing spaces froma string.

Synt ax

TRI M <cExpressi on>) --> cString
Argunent s

<cExpression> Any character expression
Ret ur ns

<cString> A formated string with out any bl ank spaced.
Descri ption
This function returns the value of <cString> with any trailing blank renoved.

This function is indentical to RTRIM) and the opposite of LTRIM). Together
with LTRIM),this function equated to the ALLTRIM) functi on.

Exanpl es
? TRIM "HELLO') /1 "HELLO'
2 TRRM "") oo
?2 TRRM "UA ") /1 "UA"
2 TRRM " UA") /oA
Tests
See Exanpl es
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpilant
Pl at f or ns
Al
Files
Library is rtl
See Al so:

RTREM)) | TRIM)ALLTRI M)

REPLI CATE()

Repeats a single character expression
Synt ax
REPLI CATE(<cString>, <nSize>) --> cReplicateString
Argunent s
<cString> Character string to be replicated
<nSi ze> Nunber of times to replicate <cString>
Ret ur ns

<cReplicateString> A character expression containg the <cString> fill
character.

Descri ption
This function returns a string conposed of <nSize> repetitions of
<cString>. The lenght of the character string returned by this functionis limted
to the nmenory avali abl e.
A value of 0 for <nSize> will return a NULL string.

Exanpl es

? REPLICATE('a', 10) /| aaaaaaaaaa
? REPLI CATE('b', 100000)

Tests

See Exanpl es
St at us

Ready
Conpl i ance

This function is Ca-Clipper conpliant in all aspects, with the exception
don't have the Cipper 64Kb string | ength.

Pl at f or s
Al |
Files
Library is rtl
See Al so:

SPACE() pADC() PADL () PADR()

SPACE()

Returns a string of blank spaces

Synt ax

SPACE(<nSize>) --> cString

Argunent s
<nSi ze> The |l enght of the string
Ret ur ns
<cString> A string containing blank spaces
Descri ption
This function returns a string consisting of <nSize> blank spaces. |If the
val ue of <nSize> is 0, a NULL string ("") will be returned.

This function is useful to declare the lenght of a character nenory variable.

Exanpl es

FUNC MAI N

LOCAL cBigString

LOCAL cFirst

LOCAL cString : = Space(20) /]l Create an characte menory vari abl e
/1 with | enght 20

~ —~

? len(cString) /1 20
cBi gString: =space(100000) /] create a menory variable with 100000
/

bl ank spaces

~ —~

? len(cBigString)
Use Tests New
cFirst: = makeenpty(1)
? len(cFirst)

Return Nil

Functi on MakeEnpty(xFi el d)
LOCAL nRecord
LOCAL xRet Val ue

If lenpty(alias())
nRecor d: =recno()
dbgot 0(0)
if valtype(xField)=="C
xFi el d: = ascan(dbstruct (), {]| aFi el ds| aFi el ds[1] ==upper (xfield)})
el se
default xField to O
if xField < 1 .or. xField>fcount()
xfield:=0
endi f
endi f
if I'(xfield ==0)
xRet val ue: =f i el dget (xfi el d)
endi f
dbgot o(nrecord)
endi f
return(xRetval ue)

Tests

See exanpl es
St at us

Ready
Conpl i ance

This function is Ca-Clipper conpliant in all aspects, with the exception

don't have the Cipper 64Kb string |ength.
Pl at f or ns
Al l

Fil es
Library is rtl
See Al so:

PADC() pADL() PADR() REPLI CATE()

VAL()

Convert a nunber froma character type to nuneric

Synt ax

VAL(<cNunmber>) --> nNunber
Argunent s

<cNumber> Any valid character string of nunbers
Ret ur ns

<nNunber> The nuneric value of <cNunber>
Descri ption

This function converts any nunber previosly defined as an character
expressi on <cNunber> into a nuneric expression

This functions is the oppose of the STR() function
Exanpl es
? VAL('31421') // 31421
Tests
See regression test
St at us
Ready
Conpl i ance
This function is Ca-Cipper conpatible
Pl at f or ns
All
Files
Library is rtl
See Al so:

STR(). TRANSFORM)

STRTRAN(

Transl ate squtring valuw with a main string

Synt ax

STRTRAN(<cString> <cLocString> [<cRepString>], [<nPos>],
[<nCccurences>]) --> cReturn

Argunent s
<cString> The main string to search
<cLocString> The string to locate in the main string
<cRepString> The string to replace the <cLocString>
<nPos> The first occurence to be repl aced

<nCccurences> Nunber of occurence to repl ace

Ret ur ns
<cRet ur n> Formated string
Descri ption

Thi s function searches for any occurence of <cLocString> in <cString> and
replacesit with <cRepString>.1f <cRepString> is not specified, a NULL byte wll
repl ace <cLocString>.

If <nPos> is used,its value defines the first occurence to be replaced. The

default value is 1. Additionally,if used,the value of <nGCccurences> tell the
function how many occurrences of <cLocString> in <cString> are to the replaced. The
default of <nCccurences> is all occurrences.

Exanpl es

? STRTRAN("Harbour Power™, " ", " ") /1 Harbour Power

/'l Harbour Power The future of xBase

? STRTRAN("Harbour Power The Future of xBase", " ", " " ,, 2)
Tests

See regression test
St at us

Ready

Conpl i ance

WIl not work with a search string of > 64 KB on some pl atforns

Pl at f or ns

Al
Files
Libraty is rtl
See Al so:

SUBSTR() AT()

TRANSFORM)

Formats a val ue based on a specific picture tenplate.

Synt ax

TRANSFORM <xExpressi on>, <cTenplate>) --> cFornated

Argunent s
<xExpr essi on>

<cTenpl at e>

Ret ur ns
<cFor mat ed>
Descri ption

Any expression to be formated.

Character string with picture tenplate

Formatted expression in character format

This function returns <xExpression> in the format of the picture expression

passed to the

Their are two
a tenpl ate st

format of <xExpression> should be. These

function as <cTenpl at e>.

components that can make up <cTenplate> : a function string and
ring. Function strings are those functions that globally tell what the

character precede by the @synbol.

There are a ¢
tenplate stri

- First, a si
tenplate stri

functions are represented by a single

ouple of rules to follow when using function strings and

ngs:

ngl e space nust fall between the function tenmplate and the
ng if they are used in conjunction with one another

- Second,if both conponents make up the val ue of <cTenplate> the function

string must precede the tenplate string. G herw se,the

with out the tenplate string and vice versa

function string nmay appear

The tabl e bel ow shows the possible function strings avaliable with the

TRANSFORM) f

uncti on.

aB Left justify the string within the format.
ac ssue a CR after format is nunbers are positive.
@ Put dates in SET DATE format.
e3 Put dates in BRITISH format.
Q. Vbke a zero padded string out of the nunber.
AR nsert nontenpl ate characters.
axX ssue a DB after format is nunbers are negative.
@4 Di spl ay any zero as bl ank spaces.
@) Quot es around negative nunbers
@ Convert al pha characters to uppercased format.
The second part of <cTenplate> consists of the format string. Each character
in the string nmay be formated based on using the follow characters as tenplate
markers for the string.
AN, X, 9, # Any data type
L [Shows | ogical as "T* or "F"
Y [Shows | ogical as "" or "N
Convert to uppercase
5 Dol ar sing in place of |eading spaces in nuneric expression

IAst eri sks in place of |eading spaces in nuneric expression

Conmas position

Deci mal point position

Exanpl es

LOCAL cString := "This is harbour'

LOCAL nNunber := 9923.34
LOCAL nNunber1 := -95842. 00
LOCAL | Value := . T

LOCAL dDate : = DATE()

? "working with String'
? "Current String is", cString
? "Al'l uppercased", TRANSFORM cString, "@")
? "Date 1s", ddate
? "Date is ", TRANSFORM ddate, "@")
? TRANSFORM nNunber, "@ 99999999") // "009923. 34"
? TRANSFORM O , '@ 9999) [/ "0000"
Tests
See regression Test
St at us
Ready
Conpl i ance

The @ function tenplate is a FOXPRQO Xbase Extension
Pl at f or ns
All
Fil es
Library is rtl
See Al so:
@..SAY peEvouTPI CT

HBC ass()

HBCl ass() is used in the creation of all classes

Synt ax

oC ass := HBC ass(): New("TMyCl ass")
-Or-
HBC ass() is usually accessed by defining a class with the commands
defined in hbclass. h:
CLASS HBGet List// Calls HBC ass() to create the HBGetList class
ENDCLASS

Argunent s

Ret ur ns
create the classes you define.
Descri ption
HBCl ass is a class that ... The class nethods are as foll ows:
New() Create a new instance of the class
Exanpl es

FUNCTI ON Test Obj ect ()
| ocal oObj ect

oObj ect := HBO ass(): Newm "TWMyd ass")
obj ect : End()

RETURN Ni |

St at us
Ready
Conpl i ance

oject Oriented syntax in Harbour is conpatible with CA-CLIPPER But C i pper

only allowed creation of objects froma few standard classes, and did not let the
programmer create new classes. In Harbour, you can create your own

cl asses--conplete with Methods, Instance Variables, Cass Variables and
Inheritance. Entire applications can be designed and coded in Cbject Oriented

style.
Pl at f or ns

All
Files

Library is rtl
See Al so:

__obj HasDat a() ARRAY() CLASS

~_XSaveScreen()
Save whol e screen image and coordinate to an internal buffer

Synt ax
__XSaveScreen() --> N L
Argunent s

Ret ur ns
__XSaveScreen() always return NIL.
Descri ption
__XSaveScreen() save the inmage of the whole screen into an internal buffer
it also save current cursor position. The information could |later be restored by
__XRestScreen(). Each call to __XSaveScreen() overwite the internal buffer

SAVE SCREEN command is preprocessed into _ XSaveScreen() function during
compile time. Note that SAVE SCREEN TO is preprocessed into SAVESCREEN() function

__XSaveScreen() is a conpatibility function, it is superseded by SAVESCREEN()
whi ch allow you to save part or all the screen into a variable.

Exanpl es
/'l save the screen, display list of files than restore the screen
SAVE SCREEN
DR *.*
VAI T
RESTORE SCREEN
St at us
Ready
Conpl i ance
__XSaveScreen() works exactly like CA-Cipper's __ XSaveScreen()
Pl at f or ns
__XSaveScreen() is part of the GI APl, and supported only by some platforns.
Files
Library is rtl
See Al so:

RESTORE SCREEN ARRAY() ARRAY()

SAVE SCREEN

Save whol e screen inmage and coordinate to an internal buffer
Synt ax
SAVE SCREEN
Argunent s

Ret ur ns

Descri ption
SAVE SCREEN save the image of the whole screen into an internal buffer, it
al so save current cursor position. The information could |ater be restored by REST
SCREEN. Each call to SAVE SCREEN overwite the internal buffer

SAVE SCREEN command i s preprocessed into _ XSaveScreen() function during
conpile tinme. Note that SAVE SCREEN TO is preprocessed into SAVESCREEN() function

Exanpl es

/1l save the screen, display list of files than restore the screen

SAVE SCREEN

DIR *.*

VAI T

RESTORE SCREEN
St at us

Ready

Conpl i ance

__XSaveScreen() works exactly like CA-Cipper's __XSaveScreen()
Pl at f or ns

__XSaveScreen() is part of the GI APlI, and supported only by some platfornmns.

See Al so:

RESTORE SCREEN XRest Screen() XSaveScr een()

~XRest Screen()
Restore screen image and coordinate froman internal buffer

Synt ax
__XRest Screen() --> N L
Argunent s

Ret ur ns
__XRest Screen() always return NIL.

Descri ption
__XRest Screen() restore saved image of the whole screen froman interna
buffer that was saved by _ XSaveScreen(), it also restore cursor position. After a
call to _ XRestScreen() the internal buffer is cleared
RESTORE SCREEN command is preprocessed into _ XRest Screen() function during
conpile tine. Note that RESTORE SCREEN FROM is preprocessed into RESTSCREEN()
function.

__XRestScreen() is a conpatibility function, it is superseded by RESTSCREEN()
which allow you to restore the screen froma vari abl e.

Exanpl es
/1l save the screen, display list of files than restore the screen
SAVE SCREEN
DR *. *
VAI T
RESTORE SCREEN
St at us
Ready
Conpl i ance
__XRest Screen() works exactly like CA-Cipper's __ XRestScreen()
Pl at f or ns
__XRest Screen() is part of the GI APl, and supported only by some platfornmns.
Files
Library is rtl

See Al so:

—XRest Screen() gSAVE SCREEN XSaveScreen()

RESTORE SCREEN

Restore screen i mage and coordi nate froman internal buffer
Synt ax
RESTORE SCREEN
Argunent s

Ret ur ns

Descri ption

Rest Screen restore saved i mage of the whole screen froman internal buffer
that was saved by Save Screen, it also restore cursor position. After a call to
Rest Screen the internal buffer is cleared.

RESTORE SCREEN command i s preprocessed into _ XRest Screen() function during
conpile tinme. Note that RESTORE SCREEN FROM i s preprocessed into RESTSCREEN()
functi on.
Exanpl es
/'l save the screen, display list of files than restore the screen
SAVE SCREEN
DR *.*
VAT
RESTORE SCREEN
St at us
Ready
Conpl i ance
Rest Screen() works exactly like CA-Cipper's Rest Screen
Pl at f or ms
Rest Screen is part of the GI' APl, and supported only by sonme platforns.

See Al so:

XRest Screen() SAVE SCREEN _XSaveScreen()

ALERT()

Di splay a dialog box with a nessage

Synt ax

ALERT(<xMessage>, [<aOptions>], [<cCol orNornmp], [<nDelay>]) --> nChoice or NL

Argunent s
<xMessage> Message to display in the dialog box. can be of any Harbour
type. |If <xMessage> is an array of Character strings, each el enent would be
displayed in a new line. If <xMessage> is a Character string, you could split the
message to several lines by placing a semicolon (;) in the desired pl aces.

<aOptions> Array with avail abl e response. Each el enent shoul d be Character
string. If omtted, default is { "Ck" }.

<cCol orNorn> Color string to paint the dialog box with. If omtted, default
color is "W/ R".

<nDel ay> Nunber of seconds to wait to user response before abort. Default
value is 0, that wait forever.

Ret ur ns

ALERT() return Nuneric value representing option nunber chosen. If ESC was
pressed, return value is zero. The return value is NIL if ALERT() is called with
no paraneters, or if <xMessage> type is not Character and HB_C52_ STRICT opti on was
used. |If <nDel ay> seconds had passed wi thout user response, the return value is 1.

Descri ption

ALERT() display sinple dialog box on screen and | et the user select one
option. The user can nove the highlight bar using arrow keys or TAB key. To sel ect
an option the user can press ENTER, SPACE or the first letter of the option.

If the programis executed with the //NOALERT command line switch, nothing is
displayed and it sinply returns NIL. This switch could be overridden with
__NONQALERT() .

If the GI systemis linked in, ALERT() display the nmessage using the full
screen I/O system if not, the information is printed to the standard output using
QUTSTD() .

Exanpl es
LOCAL cMessage, aOptions, nChoice

/1 harnl ess nmessage

cMessage : = "Maj or Database Corruption Detected!;" + ;
"(deadline in few hours);;" +
"where DO you want to go today?"

/1 define response option
aptions := { "&", "www. jobs.cont, "Oops" }

/1 show nessage and |l et end user select panic |evel
nChoi ce : = ALERT(cMessage, aOptions)
DO CASE
CASE nChoi ce ==
/1 do nothing, blame it on sone one el se
CASE nChoi ce ==
? "Please call hone and tell themyou' re gonn'a be |ate

CASE nChoi ce ==
/1 make sure your resume is up to date
CASE nChoi ce ==
? "Qops node is not working in this version”
ENDCASE
St at us
Ready
Conpl i ance

This function is sensitive to HB_C52_STRICT settings during the conpilation

of source/rtl/alert.prg

defined: <xMessage> accept Character values only and return NL if
ot her types are passed.

undefi ned: <xMessage> could be any type, and internally converted to
Character string. If type is Array, nulti-line nmessage is displayed.

defined: Only the first four valid <aOptions> are taken.
undefi ned: <aQptions> could contain as many as needed opti ons.

I f HB COWPAT _C53 was define during conpilation of source/rtl/alert.prg the
Left-Mouse button could be used to select an option.

The interpretation of the //NOALERT command line switch is done only if
HB_C52_UNDOC was define during conpilation of source/rtl/alert.prg

<cCol orNorm> is a Harbour extension, or at |east un-docunmented in Cipper 5.2
NG,

<nDel ay> i s a Harbour extension.
Files
Library is rtl
See Al so:

@..PROVPT \ENU TOOUTSTD() _ NONOALERT()

NONOAL ERT()

Override //NOALERT command |ine switch

Synt ax

__NONOALERT() --> NIL
Argunent s
Ret ur ns

__ _NONQALERT() always return NIL.
Descri ption

The // NOALERT command |ine switch cause Clipper to ignore calls to the
ALERT() function, this function override this behavior and always display ALERT()
di al og box.

Exanpl es

/1l make sure alert are been displayed
__NONQALERT()

St at us

Ready
Files

Library is rtl
Conpl i ance

__NONQALERT() is an undocunented CA-Cipper function and exist only if
HB_C52_UNDOC was defined during the conpilation of source/rtl/alert.prg

HB_OSNEWLI NE()

Returns the new ine character(s) to use with the current OS
Synt ax
HB_OSNewLine() --> cString

Ret ur ns
<cString> A character string containing the character or characters required
to nove the screen cursor or print head to the start of a new line. The string
will hold either CHR(10) or CHR(13) + CHR(10).

Descri ption
Returns a character string containing the character or characters required to
move the screen cursor or print head to the start of a newline for the operating

systemthat the programis running on (or thinks it is running on, if an OS
emul ator is being used).

Exanpl es

/1l Get the newline character(s) for the current OS using defaults.
STATI C s_cNewLi ne

s_cNewLine : = HB_OSNewli ne()
Qut Std("Hello World!'" + s_cNewline)

Tests

val type(HB _OSNewLine()) == "C
LEN(HB_OSNewLi ne()) ==
St at us
Ready
Conpl i ance
This is an add-on Operating System Tool function.
Pl at f or ms
Under OS_UNI X COWVPATI BLE operating systemthe return value is the Line-Feed
(Ox0a) character CHR(10), with other operating systenms (like DOS) the return value
is the Carriage-Return plus Line-Feed (0x0d 0x0a) characters CHR(13)+CHR(10).
Fil es
Library is rtl
See Al so:

GS(). QUTSTD() QUTERR()

hb_Col or | ndex()

Extract one color froma full dipper colorspec string.
Synt ax
hb_Col or I ndex(<cCol or Spec>, <nlndex>)
Argunent s
<cCol orSpec> is a Oipper color list

<nl ndex> 1is the position of the color itemto be extracted, the first
position is the zero.

Ret ur ns

Descri ption

Cli pper has a color spec string, which has nore than one color init,
separated with conmas. This function is able to extract a given itemfromthis
list. You may use the manifest constants defined in color.ch to extract conmon
Cli pper col ors.

Exanpl es

? hb_Colorindex("WN, NW, CLR ENHANCED) // "N W
Tests

see the regression test suit for conprehensive tests.
St at us

Ready
Conpl i ance

Was not part of CA-Clipper
Fil es

Library is rtl
See Al so:
ARRAY

DEVOUTPI CT()

Di splays a value to a device using a picture tenplate
Synt ax
DEVOUTPI CT(<xExp>, <cPicture>, [<cColorString>]) --> NL
Argunent s
<xExp> 1is any valid expression.
<cPicture> is any picture transformati on that TRANSFORM) can use.

<cColorString> is an optional string that specifies a screen color to use in
pl ace of the default col or when the output goes to the screen.

Ret ur ns

Descri ption

Qut puts any expression using a picture transformation instead of using the
default transformation for the type of expression.

Exanpl es

/1 Qutput a negative dollar anpbunt using debit notation.
DEVOUTPI CT(-1.25, "@%$ 99,999.99)

Test s
@3,1 SAY -1.25 PICTURE "@%$ 99, 999. 99"

will display "$(1.25)" starting on row four, colum two of the
current device (without the double quotation marks, of course).

St at us
Ready
Conpl i ance

DEVOUTPICT() is nostly CA-Cipper conpliant. Any differences are due to
enhancenents in the Harbour TRANSFORM) over CA-C i pper.

Fil es
Library is rtl
See Al so:

ARRAY() TRANSFORM)

| NPUT()

Stops application
Synt ax
__INPUT(<cMessage>) --> <cString>
Argunent s
<cMessage> is any valid expression.
Ret ur ns

Descri ption

This function waits for a console input and returns macroed expression
ent er ed.

St at us

Started
Conpl i ance

__INPUT() is fully CA-dipper conmpliant.
Files

Library is rtl

See Al so:
_WAIT() ARRAY

Text Save()
Redirect console output to printer or file and save old settings

Synt ax

__TextSave(<cFile>) --> NL

Argunent s
<cFile> is either "PRINTER' (note the uppercase) in which console output is
SET to PRINTER, or a nane of a text file with a default ".txt" extension, that is
used to redirect consol e output.

Ret ur ns

__TextSave() always return NIL.
Descri ption
__TextSave() is used in the preprocessing of the TEXT TO command to redirect

the consol e output while saving old settings that can be restored |ater by
__TextRestore().

St at us
Ready
Conpl i ance
__Text Save() is an Undocunented CA-dipper function
Pl at f or ns
ALL
Files
Library is rtl
See Al so:

SET() SET ALTERNATESET PRI NTERARRAY() _Text Restore()

_Text Restore()
Restore consol e output settings as saved by __ Text Save()

Synt ax
__TextRestore() --> NL
Argunent s

Ret ur ns
__TextRestore() always return NIL.
Descri ption

__TextRestore() is used in the preprocessing of the TEXT TO command to
restore consol e output settings that were previously saved by _ Text Save().

St at us
Ready
Conpl i ance
__TextRestore() is an Undocunented CA-C i pper function
Pl at f or ns
Al l
Files
Library is rtl
See Al so:

SET() SET ALTERNATESET PRI NTERARRAY() __Text Save()

VI T()

Stops the application until a key is pressed.
Synt ax
__WAIT(<cMessage>) --> <cKey>
Argunent s
<cMessage> is a string.

Ret ur ns

Descri ption

This function stops the application until a key is pressed. The key nust be
in the range 32..255. Control keys are not processed.

Exanpl es

/1 Wait for a key stroke
__Wait("Press a key to continue")

Tests
do while cKey !'="Q
cKey := _Wait("Press 'Q to continue")
end do
St at us
Ready
Conpl i ance
_ WAIT() is fully CA-Clipper conpliant.
Fil es

Library is rtl
See Al so:

ARRAY() | NPUT()

QUTSTDY)

Wite a list of values to the standard output device

Synt ax

OUTSTD(<xExp,...>) --> NIL

Argunent s
<xExp,...> is a list of expressions to display. Expressions are any m xture
of Harbour data types.

Ret ur ns
QUTSTD() always returns NI L.

Descri ption

QUTSTD() wite one or nore values into the standard output device. Character

and Meno values are printed as is, Dates are printed according to the SET DATE
FORMAT, Nuneric values are converted to strings, Logical values are printed as . T.
or .F., NIL are printed as N L, values of any other kind are printed as enpty
string. There is one space separating each two values. Note that Numeric val ue can
take varying | ength when converted into string depending on its source (see STR()
for detail).

QUTSTDY) is simlar to QQOQUT() with the different that QQOUT() send its

output to the Harbour consol e stream which can or can not be redirected according
with the screen driver, and OUTSTD() send its output to the standard output device
(STDOUT) and can be redirected.

Exanpl es
QUTSTD("Hell 0") /1l Result: Hello
QUTSTD(1, .T., NL, "A")
QUTSTD("B") /1 Result: 1.T. NIL AB
St at us
Ready
Conpl i ance
QUTSTD() works exactly as in CA-dipper
Files

Library is rtl
See Al so:

ARRAY() ARRAY() ARRAY() DEVOUTPI CT() ARRAY() ARRAY() OUTERR() ARRAY() ARRAY() STR()

OUTERR()

Wite a list of values to the standard error device

Synt ax

OUTERR(<xExp,...>) --> NIL

Argunent s
<xExp,...> is a list of expressions to display. Expressions are any m xture
of Harbour data types.

Ret ur ns
QUTERR() always returns NI L.

Descri ption

OUTERR() wite one or nore values into the standard error device. Character

and Meno values are printed as is, Dates are printed according to the SET DATE
FORMAT, Nuneric values are converted to strings, Logical values are printed as . T.
or .F., NIL are printed as N L, values of any other kind are printed as enpty
string. There is one space separating each two values. Note that Numeric val ue can
take varying | ength when converted into string depending on its source (see STR()
for detail).

There is an undocunented CA-Clipper comrand line switch //STDERR which can

set the file handle to wite output from QUTERR(). If not specified the default
STDERR i s used, //STDERR or //STDERR O set QUTERR() to output to the sane file
handl e as QUTSTD(), //STDERR n set output to file handle n. Like other undocunented
features this switch is available only if source/rtl/console.c was conpiled with
the HB_C52_UNDOCC fl ag.

Exanpl es

/1l wite error log infornmation
OUTERR(DATE(), TIME(), "Core neltdown detected")

St at us
Ready

Conpl i ance
QUTERR() works exactly as in CA-dipper

Files
Library is rtl

See Al so:

ARRAY() ARRAY() ARRAY() DEVOUTPI CT() ARRAY() ARRAY() QUTSTD() ARRAY() ARRAY() STR()

EJECT

I ssue an command to advance the printer to the top of the form

Synt ax

EJECT
Argunent s

Descri ption

This command issue an formfeed command to the printer.If the printer is not
properly hooked up to the conputer,an error will not be generated and the command
wi ||l be ignored.

Once conpl eted, the val ues of PRON) and PCOL(),the row and colum indicators
to the printer,will be set to 0. Their val ues, however, nay be nmani pul ated before or
after ussuing an EJECT by using the DEVPOS() function.

On compile time this command is translated into _ EJECT() function.
Exanpl es

Use Cientes New
Set Device to Printer
Cur Pos: =0
Wi | e ! Eof ()
? dientes->none, dientes->endereco
Cur pos++
i f Curpos >59
Cur pos: =0
Ej ect
Endi f
Enddo
Set Device to Screen
Use

Test s
See exanpl es
St at us
Ready
Conpl i ance
This command is Ca-Cdipper conpliant
Pl at f or ns
All
See Al so:

ARRAY SET PRI NTERARRAY() ARRAY()

CaL()

Returns the current screen colum position
Synt ax
COL() --> nPosition
Argunent s

Ret ur ns
<nPosi ti on> Current col um position
Descri ption

This function returns the current cursor colum position. The value for this
function can range between 0 and MAXCOL().

Exanpl es
2 Col ()
St at us
Ready
Conpl i ance
This Functions is Ca-dipper conpliant
Pl at f or ns
Al'l
Files
Library is rtl
See Al so:

ROW) MAXROW) MAXCOL ()

Returns the current screen row position
Synt ax
RON) --> nPosition
Argunent s

Ret ur ns
<nPosi ti on> Current screen row position
Descri ption

This function returns the current cursor row | ocation. The value for this
function can range between 0 and MAXCOL().

Exanpl es
? Row()
St at us
Ready
Conpl i ance
This Functions is Ca-dipper conpliant
Pl at f or ns
Al'l
Files
Library is rtl
See Al so:

COL() MAXROW) MAXCOL()

MAXCOL()

Returns the maxi nun nunber of columms in the current video node
Synt ax
MAXCOL() --> nPosition
Argunent s

Ret ur ns
<nPosi ti on> The maxi mun nunber of colums possible in current video node
Descri ption

This function returns the current cursor colum position. The value for this
function can range between 0 and MAXCOL().

Exanpl es
? MAXCol ()

St at us
Ready

Conpl i ance
This Functions is Ca-dipper conpliant.

Pl at f or ns
It works in all platformw th sone remarks: Under Linux and OS/2 the nunber of
col ums aval i abl e depends of the current Term nal screen size.Under Wn32, the
return value of MAXCOL() function is only affected if called after an SETMODE()
function

Files
Library is rtl

See Al so:
ROAL) vAXROW) COL()

MAXROW()

Returns the current screen row position
Synt ax
MAXROA() --> nPosition
Argunent s

Ret ur ns
<nPosi ti on> The maxi mun nunber of rows possible in current video node
Descri ption

This function returns the current cursor row | ocation. The value for this
function can range between 0 and MAXCOL().

Exanpl es
? MAXROW()

St at us
Ready

Conpl i ance
This Functions is Ca-dipper conpliant

Pl at f or ns
It works in all platformw th sone remarks: Under Linux and OS/2 the nunber of
col ums aval i abl e depends of the current Term nal screen size.Under Wn32, the
return val ue of MAXRON) function is only affected if called after an SETMODE()
function

Files
Library is rtl

See Al so:
COL(). ROW) MAXCOL()

READVAR(

Return vari aZ)I e nanme of current GET or MENU
Synt ax

READVAR([<cVarNanme>]) --> cd dVar Nane
Argunent s

<cVarNane> is a new variable name to set.

Ret ur ns

READVAR() return the old variable name. If no variable previously was set,
READVAR() return "".

Descri ption

READVAR() is set inside a READ or MENU TO conmand to hold the uppercase nane

of the GET / MENU TO variable, and re-set back to old value when those conmands
finished. You should not norrmally set a variable nane but rather use it to retrieve
the name of a GET variable when executing a VALID or WHEN cl ause, or during SET KEY
execution and you are inside a READ or MENU TO

Exanpl es
/1 display a nenu, press F1 to view the MENU TO vari abl e nane
S
1, 10 PROWPT "bl ood sucking insect that infect beds "
2, 10 PROWPT "germ virus infection "
3, 10 PROWT "defect; snag; (source of) malfunctioning"
4, 10 PROWT "smal |l hidden m crophone "
6, 10 SAY "(Press F1 for a hint)"
SET KEY 28 TO ShowVar
MENU TO What | s_Bug
PROCEDURE ShowVar
ALERT(READVAR()) /1 WHAT IS BUG in red ALERT() box
St at us
Ready
Conpl i ance

READVAR() works exactly like CA-Clipper's READKEY(), note however, that the
<cVar Nane> paraneter is not docunmented and used internally by CA-dipper.

Pl at f or s
Al |
Files
Library is rtl
See Al so:

@..CGet @..PROWTMENU TOARRAY()SET KEY At Pronpt () MenuTo()

LABEL FORM

Di spl ays labels to the screen or an alternate device

Synt ax

LABEL FORM <cLabel Name> [TO PRINTER] [TO FILE <cFil e>] [<cScope>]
[WHI LE <bWhile>] [FOR <bFor>] [SAMPLE] [NOCONSCLE]

Argunent s
<cLabel Name> Name of |abel file
<cFil e> Nanme of an alternate file
<cScope> Expression of a scoping condition
<bWhi | e> VWHI LE condi tion
<bFor > FOR condition

Descri ption

This command all ows | abels to be printed based on the format outlined in LBL
file specified as <cLabel Name>. By default, output wll go to the screen however
this output may be rerouted with either the TO PRINTER or the TO FI LE cl ause.

If the TO FILE clause is specified, the name of the ASCII text file
containing the generated | abels will be <cFile>

If no file extension is specified a . TXT extension is added. <cScope> is the

scope condition for this command. Valid scopes include NEXT <expN> (nunber of
records to be displayed, where <expN> is the nunber of records), RECORD <expN> (a
specific record to be printed), REST (all records starting fromthe current record
position,and ALL (all records). The default is ALL

Both | ogi cal expression may work ill conjunction with one another where

<bFor> is the |l ogical expression for the FOR condition (for records to be

di spl ayed whitin a given value range) and <bWiile> for the WH LE condition (for
records to be displayed until they fail to neet the condition).

If the SAMPLE cl ause is specified, test |labels will be generated.

I f the NOCONSOLE cl ause is specified,the console will be turned off while
this command i s bei ng execut ed.

This command follows the search criteria outlined in the SET PATH TO conmmrand.
The path may be specified, along, with (the drive letter, in <cLabel Name>

Exanpl es
FUNCTI ON MAI N()

USE Test New
LABEL FORM EE

USE
RETURN NI L
St at us
Ready
Conpl i ance
This command is CA-dipper conpliant.
Pl at f or ns
ALL
Files

Library is rtl
See Al so:

REPORT FORM

REPORT FORM

Di splay a report

Synt ax

REPORT FORM <cReportNanme> [TO PRINTER] [TO FI LE <cFil e>] [<cScope>]
[WHI LE <bWhile>] [FOR <bFor>]
[PLAI N | HEADI NG <cHeadi ng>] [NOCEJECT] [SUMVARY]

[NOCONSCLE]
Argunent s
<cReport Name> Nane of report file
<cFil e> Nanme of alternate file
<cScope> Scope.
<bWhi | e> Logi cal expression of WH LE condition
<bFor > Logi cal expression of FOR condition
<cHeadi ng> Report headi ng
Ret ur ns
Descri ption

This command prints out the report naned <cReportNane>, which is a standard

FRMfile. The file extension is not required because FRM will be assuned. The SET
PATH TO and SET DEFAULT TO conmands affect the search for the file <cReportNane>;
unl ess a drive and path are specified in <cReportNanme> REPORT will search the path
specified in the SET PATH command if it cannot find the report formin the current

directory.

The output of the report will be offset based on the setting of the SET
MARG N TO val ue.

By default, output will go to the console; however, it may be controlled via
either the TO PRINTER or TO FILE clause. If the output is to go to the file,

nane of the alternate file is specified in <cFile> Unless specified in <cFile>,

the default file extension will be TXT.

<cScope> is the scope for this command. Valid scopes include NEXT <expN>

(where <expN> is the nunber of records), RECORD <expN> (a specific record to be

di spl ayed), REST (all records fromthe «current record position), and ALL (al
records). The default is ALL.

Both | ogi cal expressions may work in conjuntion with one another, where
<bFor> is the logical expression for the FOR condition (for records to be

di spl ayed within a given range) and <bWhile> for the WH LE condition (for records

to be displayed until the condition fails).

If the PLAIN clause is specified, date and page nunbers are suppressed. In

addition, there is no automatic page breaking, and the report title and col um

headi ngs appear only once at the top of the form

If the HEADI NG cl ause is used, <cHeading> is displayed on the first title of

each report page. The val ue of <cHeading> is evaluated only once before executing
the report; varying the values of <cHeading> is not allowed. The PLAIN cl ause will

take precedence over the HEADI NG clause if both are included

If the NOEJECT clause is used, the initial page eject on the report wll not

be issued when the output clause TO PRINTER is specified. Qherw se, this clause

has no effect.

If the SUMARY C ause is specified, the report will contain only groups,

subgroups, and grand total information. The detailed title iteminformation wll

be i gnored.

If the NOCONSOLE cl ause is specified,output to the console will be turned off
while this command is being executed.

Exanpl es

FUNCTI ON() MAIN
USE Test New
Report FORM EE
USE
RETURN NI L
St at us
Ready
Conpl i ance
This Command is CA-dipper conpliant.
Pl at f or ns
ALL
Files
Library is rtl
See Al so:

LABEL FORM

MVPUBLI C()

Thi's function creates a PUBLIC vari abl e
Synt ax
__MVPUBLI C(<vari abl e_nane>)
Argunent s

<variable_name> = either a string that contains the variable's nanme or an
one-di nensi onal array of strings with variable names No skeleton are all owed here.

Ret ur ns

Descri ption
This function can be called either by the harbour conpiler or by user. The
conpi l er always passes the itemof |IT_SYMBOL type that stores the nane of
variable. |If a variable with the same nane exists already then the new variable is
not created - the previous value remains unchanged. |[If it is first variable with
this name then the variable is initialized with .T. val ue.

Exanpl es

None Aval i abl e

St at us

Ready
Conpl i ance

This function is a Harbour extension
Files

Library is vm

MVPRI VATE()

Thi's function creates a PRI VATE vari abl e
Synt ax
__MWPRI VATE(<vari abl e_nane>)
Argunent s

<variable_name> = either a string that contains the variable's nanme or an
one-di nensi onal array of strings with variable names No skeleton are all owed here.

Ret ur ns

Descri ption
This function can be called either by the harbour conpiler or by user. The
conpi l er always passes the itemof |IT_SYMBOL type that stores the nane of
variable. |If a variable with the sanme nane exists already then the value of old

variable is hidden until the new variable is released. The new variable is always
initialized to NIL val ue.

Exanpl es

None Aval i abl e

St at us

Ready
Conpl i ance

This function is a Harbour extension
Files

Library is vm

MVXREL EASE()

This function rel eases val ue stored in PRI VATE or

Synt ax

__ MVXRELEASE(<vari abl e_nane>)

Argunent s

<vari abl e_nane>
one-di nmensi ona

Ret ur ns

Descri ption

This function rel eases values stored in nenory vari abl e.
rather it should be placed i nto RELEASE command.
variable is a PRI VATE vari abl e then previously hidden
becomes visible after exit fromthe

called directly,

If you access

rel eased variable w thout any side effects.

It releases variable even if this variable was created in different

Exanpl es

PROCEDURE MAI N()
PRI VATE nPrivate

mPrivate
? nmPrivate
Test ()

? nPrivate

RETURN

PROCEDURE Test ()
PRI VATE nPrivat e

nPrivate
? nmPrivate
RELEASE nPrivate
? nmPrivate
mPrivate

RETURN

St at us
Ready

: ="PRI VATE from MAI N()"
/1 PRI VATE from MAI N()

/ | PRI VATE from MAI N()

:="PRI VATE from Test ()"

/ | PRI VATE from TEST()
/1N L

:="Again in Test()"

This function is a Harbour extension

Fil es

Library is vm

PUBLI C vari abl e

either a string that contains the variable' s name or an
array of strings with variabl e nanes

No skel eton are all owed here.

I't shouldn't
If the rel eased
variable with the same name
procedure where rel eased variabl e was created
the rel eased variable in the same function/procedure where it

created the the NIL value is returned. You can however assign a new value to

pr ocedur e

MVREL EASE()

This function rel eases PRI VATE vari abl es

Synt ax

__ MVRELEASE(<skel eton>, <include_exclude flag>)
Argunent s

<skeleton> = string that contains the wildcard mask for variables' nanes

that will be released. Supported wildcards: '*' and '?" <include_exclude_flag> =
| ogi cal value that specifies if variables that match passed skel eton shoul d be
either included in deletion (if .T.) or excluded fromdeletion (if .F.)

Ret ur ns

Descri ption

This function rel eases values stored in nenory variables. It shouldn't be

called directly, it should be placed into RELEASE ALL command. |If the rel eased
variable is a PRI VATE variable then previously hidden variable with the same nane
becones visible after exit fromthe procedure where rel eased variabl e was creat ed.
If you access the released variable in the same function/procedure where it was
created the the NIL value is returned. You can however assign a new value to

rel eased variable w thout any side effects. PUBLIC variables are not changed by
this function.

Exanpl es

None Aval i abl e

St at us

Ready
Conpl i ance

This function is a Harbour extension
Files

Library is vm

MVSCOPE()

[T variable exists then returns its scope.

Synt ax

__ MWSCOPE(<cVar Nane>)

Argunent s
<cVarNane> = a string with a variable nane to check

Ret ur ns
=variable is not declared (not found in synmbol table) HB M/ _UNKNOMNW =if
vari abl e doesn't exist (but found in synbol table) HB MV_ERROR =if

i nformati on cannot be obtained (rmenory error or argunment error) HB WM_PUBLIC

=for public variables HB MW _ PRI VATE GLOBAL =for private vari abl es decl ared

outside of current function/procedure HB WM _PRIVATE LOCAL =for private variabl es
declared in current function/procedure

Exanpl es

PROCEDURE MAI N()
PUBLI C nPubl i c
PRI VATE nPri vat ed oba

Cal I Proc()
? __nmvScope("nPrivatelLocal") /1 HB_MWV_UNKNOMN

RETURN

PROCEDURE Cal | Proc()
PRI VATE nPri vat eLoca

? __mvScope("nmPublic") /1 HB_W_PUBLI C

? __nvScope("nPrivated obal ") /| HB_MW_PRI VATE_GLOBAL
? __nmvScope("nPrivatelLocal") / | HB_MW_PRI VATE_LOCAL
? __mvScope("nFindWe") /1 HB_M_NOT_FOUND

IF(__mvScope("nPublic") > HB.MW_ERROR)
? "Variable exists"

ELSE
? "Variable not created yet"

ENDI F

RETURN

St at us

Ready
This function is a Harbour Extension

Fil es
Library is vm
See Al so:
ARRAY

MVCLEAR()

Thi's function rel eases all PRI VATE and PUBLI C vari abl es
Synt ax
__ MCLEAR()
Argunent s

Ret ur ns

Descri ption
This function rel eases all PRI VATE and PUBLIC variables. It is used to
i mpl ement CLEAR MEMORY statenent. The menory occupied by all visible variables are
released - any attenpt to access the variable will result in a runtinme error. You

have to reuse PRI VATE or PUBLIC statenent to create again the variable that was
cleared by this function.

St at us
Ready
Conpl i ance
This function is a Harbour extension
Files
Library is vm
See Al so:
__MVPUBLI C()

MVDBG NFQY)

This function returns the information about the variables for debugger

Synt ax

__MWDBA NFQ(<nScope> [, <nPosition> [, @cVarNanme>]])
Argunent s

<nScope> = the scope of variables for which an information is asked

Supported val ues (defined in hbmenvar.ch) HB MW_PUBLIC HB MW_PRIVATE (or any
other value) <nPosition> = the position of asked variable on the |ist of variables
with specified scope - it should start fromposition 1 <cVarName> = the value is
filled with a variable name if passed by reference and <nPosition> is specified

Ret ur ns

Descri ption
This function retrieves the information about nenvar variables. It returns
ei ther the nunber of variables with given scope (when the first argunent is passed
only) or a value of variable identified by its position in the variables' I|ist
(when second argunent is passed). It also returns the nane of a variable if

optional third argunent s passed by reference.

If requested variabl e doesn't exist (requested position is greater then the
nunber of defined variables) then NIL value is returned and variable nane is set
to "o

The dynamic synbols table is used to find a PUBLIC variable then the PUBLIC
vari abl es are always sorted al phabetically. The PRI VATE variables are sorted in
the creation order.

Note: Due to dynam c nature of menvar variables there is no guarantee that

successive calls to retrieve the value of <Nth> PUBLIC variable will return the
val ue of the sane vari abl e.
Exanpl es

#i ncl ude <hbnenvar. ch>
LOCAL nCount, i, xValue, cNane

nCount = nvDBGA NFQ(HB_MV_PUBLI C)

FOR i:=1 TO nCount
xVal ue =__nvDBA NFQ(HB_MW_PUBLIC, i, @Nane)
? i, cName, xVal ue

NEXT

#i ncl ude <hbnenvar.ch>
PROCEDURE MAI N()

? "PUBLIC=", _ _nmvDBG NFO HB_MV_PUBLI C)

? ' PRIVATE=', _ nvDBG NFO{ HB_MV_PRI VATE)
PUBLI C cPublic: =" cPublic in MAIN
2 'PUBLIC=', __ nmvDBG NFO{ HB_M_PUBLI C)

? 'PRIVATE=', _ _nvDBG NFQ(HB_MV_PRI VATE)
PRI VATE cPrivate:='cPrivate in MAIN
? ' PUBLI C=', myDBA NFOQU HB_ W _PUBLI C)

? 'PRIVATE=', _ nmvDBA NFQU HB_MV_PRI VATE)
Count Menvar s()

? '"Back in Main'
? "PUBLIC='", _ nvDBA NFO HB MV_PUBLI C)

? 'PRIVATE=', _ nvDBG NFQ(HB_MV_PRI VATE)

RETURN

PROCEDURE Count Memvar s()

LOCAL i, nCnt, xVal, cNane
PUBLI C ccPublic:="ccPublic'
PRI VATE ccPrivate: ="' ccPrivate'

? '"In Count Menvars'
? 'PUBLI C=', myDBA NFQ(HB_MW_PUBLI C)

? "PRIVATE=', _ mvDBG NFQ(HB_MW_PRI VATE)
PRI VATE cPublic: =" cPublic'
? "PUBLIC='", _ nvDBA NFO HB MV _PUBLI C)

? ' PRIVATE=', _ nvDBG NFQ{ HB_MV_PRI VATE)
ncnt = nvDBG NFQ(HB_M_PRI VATE) +1

FOR i:=1 TO nCnt

xVal =__ nvDBGA NFQU HB_MW_PRI VATE, i, @Nane)
?i, '=, cNanme, xVal
NEXT

nCnt = nvDBG NFQ{ HB_MV_PUBLIC) +1

FOR i:=1 TO nCnt
xVal = nvDBGA NFQU HB W _PUBLIC, i, @Nane)
?i, '=, cName, xVal

NEXT

RETURN

St at us

Ready
Conpl i ance

This function should be called fromthe debugger only.
Files

Library is vm

MVEXI ST()

Determine if a given nane is a PUBLIC or PRI VATE nenory vari abl e

Synt ax

__ MVEXI ST(<cVarNane>) --> <|Vari abl eExi st>
Argunent s

<cVar Nane> - string that specifies the name of variable to check
Ret ur ns

__ MVEXIST() return TRUE (.T.) if a MEMWAR named <cVar Nanme> exi st.
Descri ption

This function determne if a PUBLIC or PRI VATE variable with the nane
<cVar Nanme> exi st or not.

Exanpl es

LOCAL TheLoca
STATIC TheStatic
PUBLI C ThePublic
PRI VATE ThePri vate

? __ MEXIST("NotExist") Il .F
? __MWEX ST("TheLocal ") Il .F
? _ MWEXIST("TheStatic") Il .F
? __ MWEXI ST("ThePublic") /. T
? __MEXI ST("ThePrivate") . T
St at us
Ready
Conpl i ance
This function is a Harbour extension
Fil es

Library is vm
See Al so:

ARRAY() ARRAY() ARRAY()

MVGET ()

This function returns value of nenory variable

Synt ax

__ MWVCET(<cVarName>) --> <xVar>

Argunent s

<cVarNane> - string that specifies the nane of variable
Ret ur ns

<xVar> The val ue of variable
Descri ption

This function returns the value of PRIVATE or PUBLIC variable if this
vari abl e exists otherwise it generates a runtinme error. The variable is specified
by its nane passed as the function paraneter

Exanpl es
FUNCTI ON MEMVARBLOCK(cMemvar)

RETURN {| x| Il F(PCOUNT()==0, __MCET(cMenvar),;
_ MWPUT(cMenvar, x)) }

St at us
Ready
Conpl i ance
This function is a Harbour extension
Files
Library is vm
See Al so:

MVPUT

MVPUT ()

This function set the value of nenory variable

Synt ax

__ MWVCET(<cVarName> [, <xValue>]) --> <xVal ue>
Argunent s
<cVar Nane> - string that specifies the name of variable <xValue> - a value
of any type that will be set - if it is not specified then NIL is assuned
Ret ur ns
<xVal ue> A val ue assigned to the given variabl e.
Descri ption

This function sets the value of PRI VATE or PUBLIC variable if this variable
exists otherwise it generates a runtine error. The variable is specified by its

nane passed as the function paraneter. |If a value is not specified then the NIL is
assuned
Exanpl es
FUNCTI ON MEMVARBLOCK(cMenvar)
RETURN {| x| Il F(PCOUNT()==0, __ MGET(cMenvar), ;
__ MWPUT(cMenvar, x)) }
St at us
Ready
Conpl i ance
This function is a Harbour extension
Files

Library is vm
See Al so:
MVPUT

MEMVARBL OCK(

Returns a codeblocz that sets/gets a value of nmenvar variable

Synt ax

MEMVARBLOCK(<cMemvar Nane>) --> <bBl ock>
Argunent s

<cMenvar Nane> - a string that contains the nane of variable
Ret ur ns

<bBl ock> a codebl ock that sets/get the value of variable
Descri ption

This function returns a codebl ock that sets/gets the value of PRI VATE or

PUBLI C vari abl e. When this codebl ock is evaluated w thout any paraneters passed
then it returns the current value of given variable. If the second parameter is
passed for the codebl ock evaluation then its value is used to set the new value of
given variable - the passed value is also returned as a value of the codebl ock

eval uati on.

Exanpl es

PROCEDURE MAI N()
LOCAL chSet Get
PUBLI C xPubl i ¢

chSet Get = MEMVARBLOCK("xPublic")
EVAL(cbSet Get, "new val ue")
? "Val ue of xPublic variable", EVAL(cbSet Get)

RETURN
St at us
Ready
Conpl i ance
This function is Ca-Clipper conpatible
Files
Library is rtl
See Al so:

MV/GET MVPUT

FI ELDBLOCK()

Return a code block that sets/gets a value for a given field

Synt ax

FI ELDBLOCK(<cFi el dNane>) --> bFi el dBl ock
Argunent s

<cFiel dNanme> is a string that contain the field nane.
Ret ur ns

FI ELDBLOCK() return a code block that when evaluate could retrieve field
val ue or assigning a new value to the field. If <cFieldName> is not specified or
fromtype other than character, FIELDBLOCK() return NI L.

Descri ption

FI ELDBLOCK() return a code bl ock that sets/gets the value of field. Wen this

code block is evaluated without any paraneters passed then it returns the current
val ue of the given field. If the code block is evaluated with a paraneter, than its
value is used to set a new value to the field, this value is also return by the
block. If the block is evaluate and there is no field with the name <cFi el dName>

in the current work area, the code block return N L.

Note that FIELDBLOCK() works on the current work area, if you need a specific
wor k area code bl ock use FI ELDWBLOCK() i nstead.

Exanpl es
/1 open a file named Test that have a field named "nane"
LOCAL bField
bFiled : = FI ELDBLOCK("nane")
USE Test
? '"Original value of field "nane" :', EVAL(bField)

EVAL(bField, "M X new nane")

? "New value for the field "nane" :', EVAL(bField)
St at us

Ready
Conpl i ance

If the block is evaluate and there is no field with the nane <cFiel dNanme> in
the current work area, the code block return N L.

CA-d i pper woul d rai se BASE/ 1003 error if the field does not exist.
Fil es
Library is rtl
See Al so:

EVAL() F| EL DWBL OCK() MEMVARBL OCK()

FI EL DVBL OCK()

Return a sets/gets code block for field in a given work area

Synt ax

FI ELDWBLOCK(<cFi el dNane>, <nWorkArea>) --> bFi el dBl ock
Argunent s

<cFiel dNanme> is a string that contain the field nane.

<nWor kArea> is the work area nunber in which <cFiel dNane> exi st.
Ret ur ns

FI ELDWBLOCK() return a code bl ock that when evaluate could retrieve field

val ue or assigning a new value for a field in a given work area. |If <cFi el dName>
is not specified or fromtype other than character, or if <nWrkArea> is not
specified or is not nuneric FIELDWLOCK() return NI L.

Descri ption

FI ELDWBLOCK() return a code block that sets/gets the value of field froma

given work area. Wen this code block is evaluated w thout any paraneters passed
then it returns the current value of the given field. If the code block is
evaluated with a paraneter, than its value is used to set a new value to the field,
this value is also return by the block. If the block is evaluate and there is no
field wth the name <cFi el dName> in work area nunber <nWrkArea>, the code bl ock
return NI L.

Exanpl es

LOCAL bField

/1 this block work on the field "name" that exist on work area 2
bFiled := FI ELDBLOCK("nane", 2)

/1 open a file nanmed One in work area 1

/1 that have a field named "name"

SELECT 1

USE One

/1 open a file named Two in work area 2

/1l it also have a field named "nane"

SELECT 2

USE Two

SELECT 1

? "Original nanes: ", One->nane, Two->hane

? "Nanme value for file Two :", EVAL(bField)
EVAL(DbField, "Two has new name")

? "and now. , One->nane, Two->hane

St at us
Ready
Conpl i ance

If the block is evaluate and there is no field with the name <cFiel dName> in
the given work area, the code block return NI L.

CA-d i pper would rai se BASE/ 1003 error if the field does not exist.
Fil es
Library is rtl
See Al so:

EVAL FI EL DBLOCK() MEMVARBL OCK()

TYPE()

Retrieves the type of an expression

Synt ax

TYPE(<cExp>) --> <cRetType>
Argunent s
<cExp> nmust be a character expression

Ret ur ns

<cRet Type> a string indicating the type of the passed expression

<cRet Type> Meani ng

A ar ray

'B" bl ock

'C' string

'D' dat e

"L ogi cal

"M neno

"N huneric

'O obj ect

U NI L, local, or static variable, or not l|inked-in function

' UE" syntax error in the expression or invalid argunents

U function with non-reserved name was requested

Descri ption

This function returns a string which represents the data type of the
argunent. The argunment can be any valid Harbour expression. |If there is a syntax
error in passed expression then "UE" is returned. If there is a call for any
non-reserved Harbour function then "U" is returned (in other words there is no

call for passed UDF function during a data type determnation - this is dipper
conpatible behavior). Additionally if requested user defined function is not
linked into executable then "U' is returned.

The data type of expression is checked by invoking a macro conpiler and by

eval uati on of generated code (if there is no syntax errors). This causes that
TYPE() cannot determine a type of local or static variables - only synbols visible
at runtime can be checked.

Notice the subtle difference between TYPE and VALTYPE functions. VALTYPE()
function doesn't call a nacro conpiler - it sinply checks the type of passed
argunent of any type. TYPE() requires a string argunment with a valid Harbour
expression - the data type of this expression is returned.

Exanpl es
? TYPE("{ 1, 2 }") [lprints "A"
? TYPE("Il F(.T., SUBSTR(' TYPE',2,1), .F.)") [lprints "C
? TYPE("AT('OK', MyUDF())>0") [lprints "uU"
? TYPE("{ 1, 2 }[51") [lprints "UE"
e T
LOCAL c
PRI VATE a: ="A", b:="B"
? TYPE("a + b + c") [lprints: "U ('C variable is a |local one)
e T

LOCAL cFilter := SPACE(60)

ACCEPT "Enter filter expression:" TO cFilter
IF(TYPE(cFilter) $ "CDLMN'))

/1 this is a valid expression

SET FILTER TO &cFilter
ENDI F

St at us
Ready
Conpl i ance

- Inconpatibility with Clipper: In the follow ng code:
PRI VATE | Cond := 0 ? TYPE("IIF(I Cond, "true', MYUDR())")

Clipper will print "UE" - in Harbour the output will be "U"
- if "U" is returned then the syntax of the expression is correct. However
invalid argunents can be passed to function/procedure that will cause runtime
errors during evaluation of expression.
Fil es
Library is rtl
See Al so:

VALTYPE

Retrieves t

VALTYPE
Synt ax

VALTYPE(<xExp>)

Argunent s

<xExp> 1is any valid expression

Ret ur ns

<cRet urnType>

Descri ption

This function returns one character which represents the date type

ar gunent .
Exanpl es

See Test

Test s

&e data type of an expression

--> <cReturnType>

a character indicating the type of the passed expression

function Test()

? Val Type(Array(1)) -->"A"

? Val Type({ 1+1}) -->"

? Val Type("HARBOUR') -->

? Val Type(Date()) --> "

? Val Type(. T.) --

? Val Type(1) -->

? Val Type(TBrowse()) --> "

? Val Type(NL) -->

return nil
St at us
Ready
Conpl i ance
VALTYPE() is fully CA-Clipper conpliant.

Files

Library is rtl

See Al so:

TYPE()

of the

HB_| SBYREF()

Informif the variable is passed by reference.
Synt ax
HB | SBYREF(@Var>) --> <l Varl sByRef >
Argunent s
@Var> is the variable to test passed by reference.
Ret ur ns

<l Varl sByRef> a logical value indicating if the variable is passed by
reference to actual function or procedure.

Descri ption

This function return a logical value indicating if the variable is passed by

reference to actual function or procedure. ATTENTION: The variable to test nust be

passed by reference. |If the variable is not passed by reference, the function
return NIL. This function is based on the formthat Harbour nmanages to the

vari ables for reference. Wien a variable is passed by reference, what receives the
function or procedure is, a pointer to the previous variable, be this the container
variable of the data or a pointer to another variable. The function observes if the
vari abl e passed points to a common variable or to a variable passed by reference.

Exanpl es

See Test

Tests

function Main()
| ocal cvar := "Test local"
private nvar := 0

Test(@Var, @Var, cVar, nVar)
return nil
procedure Test(Argl Arg4d)
? hb_isbyref (@\
? hb_isbyref (@\
? hb_i sbyref(@\r
? hb_isbyref (@\v
return

g2, Arg3,
/
/
/
/

N~ SN NN
mmAA

St at us
Started

Conpl i ance
HB | SBYREF() is an extention of Harbour

Files
Library is rtl

See Al so:
VALTYPE

BASE/ 1003
Attenpt to acces nonexi sting or hidden variabl e
Descri ption
The specified variable was not found.
If it is a database field nake sure that the required database is open.
If it is a private or public variable then you nust first create it using
PRI VATE or PUBLI C st at enent .

Functi ons

St at us
Cl i pper

BASE/ 1068

Invalid type of argunent

Descri ption
The used data is not of |ogical type

Functi ons

St at us
Cl i pper

BASE/ 1068

Bound error in array access

Descri ption
The attenpt to retrieve data fromnon-array val ue

Functi ons

St at us
Cl i pper

BASE/ 1069

Bound error in array access

Descri ption
The attenpt to set data to non-array val ue

Functi ons

St at us
Cl i pper

BASE/ 1078
Invalid type of argunments
Descri ption
The type of conpared argunents do not match

Functi ons

St at us
Cl i pper

BASE/ 1072
Invalid type of argunments
Descri ption
The type of conpared argunents do not match
Functi ons
<>
St at us
Cl i pper

BASE/ 1073
Invalid type of argunments
Descri ption
The type of conpared argunent do not match
Functi ons
<
St at us
Cl i pper

BASE/ 1074
Invalid type of argunments
Descri ption
The type of conpared argunents do not match
Functi ons
<=
St at us
Cl i pper

BASE/ 1075
Invalid type of argunments
Descri ption
The type of conpared argunents do not match
Functi ons
>
St at us
Cl i pper

BASE/ 1076
Invalid type of argunments
Descri ption
The type of conpared argunents do not match
Functi ons
>=
St at us
Cl i pper

BASE/ 1077
Invalid type of argunments
Descri ption

Qperation is not allowed for passed argunment. The argunent is not a |ogical
val ue.

Functi ons

!
St at us
C i pper

BASE/ 1078
Invalid type of argunments
Descri ption
The type of one or both argunments is not a | ogical
Functi ons
. AND.
St at us
Cl i pper

BASE/ 1079
Invalid type of argunments
Descri ption
The type of one or both argunments is not a | ogical
Functi ons
.OR
St at us
Cl i pper

BASE/ 1076
Invalid type of argunments
Descri ption
The val ue of argunent cannot be increnented
Functi ons
++
St at us
Cl i pper

BASE/ 1081
Invalid type of argunments
Descri ption
The plus operation is not allowed for used argunents.
Functi ons
+
St at us
Cl i pper

BASE/ 1082

Invalid type of argunments

Descri ption
The minus operation is not allowed for used argunents.

Functi ons

St at us
Cl i pper

BASE/ 1100
Incorrect type of argunent
Descri ption
The specified argunment is not a string.
Functi ons
RTRRM TRIM
St at us
Cl i pper

BASE/ 1101
Incorrect type of argunent
Descri ption
The specified argunment is not a string.
Functi ons
LTRIM
St at us
Cl i pper

BASE/ 1102
I nvalid argunment passed to function
Descri ption
The first argunent passed to a function is not a string.
Functi ons
UPPER
St at us
Cl i pper

BASE/ 1103
I nvalid argunment passed to function
Descri ption
The first argunent passed to a function is not a string.
Functi ons
LONER
St at us
Cl i pper

BASE/ 1104
Incorrect type of argunent
Descri ption
The specified argunment is not a numeric val ue.
Functi ons
CHR
St at us
Cl i pper

BASE/ 1105
I nvalid argunment passed to function
Descri ption
The argunents passed to a function are of incorrect type.
Functi ons
SPACE
St at us
Cl i pper

BASE/ 1106
I nvalid argunment passed to function
Descri ption
The argunents passed to a function are of incorrect type.
Functi ons
REPLI CATE
St at us
Cl i pper

BASE/ 1107
Incorrect type of argunent
Descri ption
The specified argunment is not a string.
Functi ons
ASC
St at us
Cl i pper

BASE/ 1108
Incorrect type of argunent
Descri ption
The specified argunment is not a string.
Functi ons
AT
St at us
Cl i pper

BASE/ 1076

Invalid type of argunments

St at us
C i pper

BASE/ 1110
I nvalid argunment passed to function
Descri ption
The first argunent passed to a function is not a string.
Functi ons
SUBSTR
St at us
Cl i pper

BASE/ 1110
I nvalid argunment passed to function
Descri ption
The passed argument is neither a string nor an array.
Functi ons
LEN
St at us
Cl i pper

BASE/ 1112
I nvalid argunment passed to function
Descri ption
The argurment (or arguments) passed to a function are of incorrect type
Functi ons
YEAR
St at us
Cl i pper

BASE/ 1113
I nvalid argunment passed to function
Descri ption
The argurment (or arguments) passed to a function are of incorrect type
Functi ons
MONTH
St at us
Cl i pper

BASE/ 1114
I nvalid argunment passed to function
Descri ption
The argurment (or arguments) passed to a function are of incorrect type
Functi ons
DAY
St at us
Cl i pper

BASE/ 1115
I nvalid argunment passed to function
Descri ption
The argurment (or arguments) passed to a function are of incorrect type
Functi ons
DOW
St at us
Cl i pper

BASE/ 1116
I nvalid argunment passed to function
Descri ption
The argurment (or arguments) passed to a function are of incorrect type
Functi ons
CMONTH
St at us
Cl i pper

BASE/ 1117
I nvalid argunment passed to function
Descri ption
The argurment (or arguments) passed to a function is of incorrect type
Functi ons
CDOW
St at us
Cl i pper

BASE/ 1120
I nvalid argunment passed to function
Descri ption
The argurment (or arguments) passed to a function is of incorrect type
Functi ons
DTGS
St at us
Cl i pper

BASE/ 1122
Incorrect type of argunent
Descri ption
The argurment (or arguments) passed to a function is of incorrect type
Functi ons
TRANSFORM
St at us
Cl i pper

BASE/ 1124
Incorrect type of argunent
Descri ption
The first argunent is not a string.
Functi ons
LEFT
St at us
Cl i pper

BASE/ 1126
I nvalid argunment passed to function
Descri ption
The first argunents passed to a function is not a string.
Functi ons
STRTRAN
St at us
Cl i pper

BASE/ 1132

Bound error in array access

Descri ption

The specified index into an array was greater then the nunber of elenents in
the array.

Functi ons

St at us
C i pper

BASE/ 1133

Bound error in array assignent

Descri ption

The specified index into an array was greater then the nunber of elenents in
the array.

Functi ons

St at us
C i pper

BASE/ 1068

Bound error in array el ement assignent

Descri ption

The specified index into an array was greater then the nunber of elenents in
the array.

Functi ons

St at us
C i pper

BASE/ 1085
I nvalid argunment passed to function
Descri ption
The argurment (or argunments) passed to a function is not an nuneric val ue
Functi ons
MOD
St at us
Cl i pper

BASE/ 1089
I nvalid argunment passed to function
Descri ption
The argurment (or argunments) passed to a function is not an nuneric val ue
Functi ons
ABS
St at us
Cl i pper

BASE/ 1090
I nvalid argunment passed to function
Descri ption
The argurment (or argunments) passed to a function is not an nuneric val ue
Functi ons
I NT
St at us
Cl i pper

BASE/ 1092
I nvalid argunment passed to function
Descri ption
The argurment (or argunments) passed to a function is not an nuneric val ue
Functi ons
M N
St at us
Cl i pper

BASE/ 1093
I nvalid argunment passed to function
Descri ption
The argurment (or argunments) passed to a function is not an nuneric val ue
Functi ons
MAX
St at us
Cl i pper

BASE/ 1094
I nvalid argunment passed to function
Descri ption
The argurment (or argunments) passed to a function is not an nuneric val ue
Functi ons
ROUND
St at us
Cl i pper

BASE/ 1095
I nvalid argunment passed to function
Descri ption
The argurment (or argunments) passed to a function is not an nuneric val ue
Functi ons
LOG
St at us
Cl i pper

BASE/ 1096
I nvalid argunment passed to function
Descri ption
The argurment (or argunments) passed to a function is not an nuneric val ue
Functi ons
EXP
St at us
Cl i pper

BASE/ 1097
I nvalid argunment passed to function
Descri ption
The argurment (or argunments) passed to a function is not an nuneric val ue
Functi ons
SQRT
St at us
Cl i pper

BASE/ 1098
I nvalid argunment passed to function
Descri ption
The argurment (or arguments) passed to a function is not a string value
Functi ons
VAL
St at us
Cl i pper

BASE/ 1099
I nvalid argunment passed to function
Descri ption
The argurment (or argunments) passed to a function is not a numeric value
Functi ons
STR
St at us
Cl i pper

BASE/ 2010
I ncorrect arguments type
Descri ption
Passed Run Tine Errors was not strings with filenanes to copy/
Functi ons
__COPYFI LE
Conpl i ance

Har bour specific

BASE/ 2012
File error
Descri ption

An error has occured during the attenpt to open, create or wite during copy
operati on

Functi ons
__COPYFI LE
St at us

C i pper

BASE/ 2017
I nvalid argunment passed to a function
Descri ption

The first argunent is not an array or/and the second argunment is not a code
bl ock

Functi ons
AEVAL
St at us
C i pper

BASE/ 2020
I nvalid argunment passed to function
Descri ption
The passed value is negative. Only values > 0 are all owed.
Functi ons
SET DECI MALS
SET EPCCH
SET MARG N
SET MESSAGE
St at us

Cl i pper

BASE/ 3001
I ncorrect argunent type
Descri ption

The passed argument is not an object. Only data of type OBJECT can be cloned
by this function

Functi ons
OCLONE
St at us

Har bour specific

BASE/ 3002
Super cl ass does not return an object
Descri ption

Passed argunment is not a name of defined class or specified class doesn't
have a super cl ass

Functi ons
I NSTSUPER
St at us

Har bour specific

BASE/ 3003
Cannot find super class
Descri ption
Passed argunment is not a name of defined class
Functi ons
1 NSTSUPER
St at us

Har bour specific

BASE/ 3004
Cannot nodify a DATAitemin a class
Descri ption

The attenpt to nodify a data nmenber of a class was nade. Only |INLINE and
METHOD can be nodified

Functi ons
CLASSMOD
St at us

Har bour specific

BASE/ 3005
Incorrect argunents type
Descri ption

Either the first argunent was not an object or the second argunent wasn't a
string.

Functi ons
| SMESSAGE, OSEND
St at us

Har bour specific

BASE/ 3007
Invalid type of argunent
Descri ption

The passed arguments are causing conflict in hanndling of the request. There
is no point in waiting forever for no input events!

Functi ons
| NKEY
St at us

Har bour specific

BASE/ 3008
Invalid type of argunent
Descri ption

The passed argument(s) is not a string. It should be a string with a variable
nane or an one-di nensional array of strings.

Functi ons
__MWPRI VATE, __ MPUBLIC
St at us

Har bour specific

BASE/ 3009
I ncorrect argument passed to _ MVGET function
Descri ption

__MVGET function expects only one argunent: a string with a name of variable.
The value of this variable will be returned.

Functi ons
_ MWGET
St at us

Har bour specific

BASE/ 3010
I ncorrect argument passed to __ MVPUT function
Descri ption

__MV/PUT function expects at |east one argunent: a string with a name of
vari able. The value of this variable will be set.

Functi ons
__MPUT
St at us

Har bour specific

BASE/ 3011
I nvalid argunment passed to a function
Descri ption

The attenpt to retrieve the function argunment that was not passed. The nunber
of requested argunent is greated then the nunmber of passed argunents.

Functi ons
PVALUE
St at us

Har bour specific

BASE/ 3012

I nvalid argunment passed to a function

Descri ption
The first argunent is not a string with function/procedure nane that should
be call ed.

Functi ons
DO

St at us

Har bour specific

BASE/ 3101
Invalid argument passed to an object/class function
Descri ption
One passed argunent is not of the required type
Functi ons
__0BJ*()
St at us

Har bour specific

BASE/ 3102
A synbol should be nodified or deleted froma class, but the synbol
Descri ption

A synbol should be nodified or deleted froma class, but the synbol doesn't
exi st.

Functi ons
__OBI*()
St at us

Har bour specific

BASE/ 3103
A synbol shoul d be added to a class, but the synbol already exists.
Descri ption
A synbol should be added to a class, but the synbol already exists.
Functi ons
__0BJ*()
St at us

Har bour specific

TOOLS/ 4001
I nvalid argunment passed to function
Descri ption
The second arguments passed to a function is not a string.
Functi ons
| SLEAPYEAR
St at us

Har bour specific

TERM 2013
Create error
Descri ption
The specified file cannot be created due sone OS error.
Functi ons
SET, SET ALTERNATE TO
St at us
Cl i pper

Har bour EXxt ensi ons
Har bour Ext ensi ons
Descri ption

Language extensi ons:

* Class generation and nmanagenent.

Clipper only allowed creation of objects froma few standard cl asses.

In Harbour, you can create your own cl asses--conplete with Methods,

I nstance Variables, Cass Variables and | nheritance. Entire applications can be
designed and coded in bject Oriented style.

* @Functi onNane>()

Returns the pointer (address) to a function

The returned value is not useful to application-level programm ng, but is
used at a low level to inplenent object oriented coding. (Internally, a class
method is a static function and there is no synbol for it, so it is accessed via
its address).

* (Cl ass HBGet Li st

hj ect oriented support for GetLists nmanagenent.

* ProcNane() support for class Method nanes.

Class Methods can be retrieved fromthe call stack

* Memory() has new return val ues.

See hbrenory. ch

* Transform() --> new function in format string

@ Make a zero padded string out of the nunber.

* SToD() --> dbate

New function that converts a yyyymdd string to a Date val ue.

* Optional Conpile Tine STRONG TYPE decl aration (and conpile tine TYPE M SVATCH
war ni ngs)

Exanpl e: LOCAL/ STATIC Var AS ...

* The Harbour debugger provides new interesting classes:

Cl ass TDbW ndow coul d be the foundation for a generic nultiplatform

Cl ass TForm

Cl ass TDbMenu i npl enent both pul |l down and popup mnenus.

RTL enhanced functionality:

- Directory(<cMask>, <cFlags>, <l Ei ghtDotThree>)

The 3rd paraneter is a Harbour (optional) paraneter and indicates that on those
platforns that support long filenames, that you wish to receive what would be

consi dered the dos equivalant 8.3 name. Could affect Adir() and Dir if they were
nmodi fied to take advantage of it - currently, they will return long nanmes if the os
supports it.

- HB_Di skSpace(<nDrive>, <nType>)

The second parameter is a Harbour (optional) paranmeter and indicates the type of
di ski nfo being requested. See en/diskspac.txt for info.

G\U Li cense

Gw License File Part 1

Descri ption

GNU GENERAL PUBLI C LI CENSE

Version 2, June 1991

Copyright (C 1989, 1991 Free Software Foundation, Inc. 59 Tenple Place -
Suite 330, Boston, MA 02111-1307, USA

Everyone is permtted to copy and distribute verbatimcopies of this |license
docunent, but changing it is not allowed.

Pr eanbl e

The licenses for nost software are designed to take away your freedomto

share and change it. By contrast, the GNU General Public License is intended to
guarantee your freedomto share and change free software--to make sure the software
is free for all its users. This General Public License applies to nbst of the Free
Software Foundation's software and to any ot her program whose authors commit to
using it. (Some other Free Software Foundation software is covered by the GNU

Li brary General Public License instead.) You can apply it to your prograns, too.

When we speak of free software, we are referring to freedom not price. CQur
General Public Licenses are designed to make sure that you have the freedomto
distribute copies of free software (and charge for this service if you w sh), that
you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free prograns; and that you know you can do

t hese t hi ngs.

To protect your rights, we need to nake restrictions that forbid anyone to

deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
software, or if you nodify it

For exanple, if you distribute copies of such a program whether gratis or

for a fee, you nust give the recipients all the rights that you have. You nust
make sure that they, too, receive or can get the source code. And you rnust show
themthese terns so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you |legal permission to copy, distribute and/or
viodi fy the software

Al so, for each author's protection and ours, we want to make certain that

everyone understands that there is no warranty for this free software. If the
software is nodified by sonmeone el se and passed on, we want its recipients to know
that what they have is not the original, so that any problens introduced by others
will not reflect on the original authors' reputations

Finally, any free programis threatened constantly by software patents. W

wi sh to avoid the danger that redistributors of a free programw |l individually
obtain patent licenses, in effect making the programproprietary. To prevent this,
we have nmade it clear that any patent nust be |licensed for everyone's free use or
not licensed at all

The precise ternms and conditions for copying, distribution and nodification
fol I ow.

TERVS AND CONDI TI ONS FOR COPYI NG, DI STRI BUTI ON AND MCDI FI CATI ON

0. This License applies to any program or other work which contains a notice

pl aced by the copyright holder saying it may be distributed under the terns of

this General Public License. The "Program', below, refers to any such program or
wor k, and a "work based on the Progranml neans either the Program or any derivative
wor k under copyright law that is to say, a work containing the Programor a
portion of it, either verbatimor with nodifications and/or translated into another
| anguage. (Hereinafter, translation is included without limtation in the term
"nodification".) Each licensee is addressed as "you". Activities other than
copying, distribution and nodification are not covered by this License; they are
outside its scope. The act of running the Programis not restricted, and the out put
fromthe Programis covered only if its contents constitute a work based on the
Program (i ndependent of having been nmade by running the Progran). Wether that is
true depends on what the Program does.

1. You may copy and distribute verbatimcopies of the Programis source code

as you receive it, in any nedium provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and disclai mer
of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Programa copy of
this License along with the Program You rmay charge a fee for the physical act of
transferring a copy, and you nay at your option offer warranty protection in
exchange for a fee.

2. You may nodi fy your copy or copies of the Programor any portion of it,

thus formng a work based on the Program and copy and distribute such
nmodi fi cations or work under the terns of Section 1 above, provided that you al so
meet all of these conditions:

a) You must cause the nodified files to carry prom nent notices stating
that you changed the files and the date of any change.

b) You nust cause any work that you distribute or publish, that in whole or
in part contains or is derived fromthe Programor any part thereof, to be
licensed as a whole at no charge to all third parties under the terns of this
Li cense.

c) If the nodified programnornally reads comands interactively when run,

you mnmust cause it, when started running for such interactive use in the nost
ordinary way, to print or display an announcenent including an appropriate
copyright notice and a notice that there is no warranty (or el se, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user howto view a copy of this License. (Exception: if
the Programitself is interactive but does not nornmally print such an announcenent,
your work based on the Programis not required to print an announcenent.)

These requirenents apply to the nodified work as a whole. If identifiable

sections of that work are not derived fromthe Program and can be reasonably

consi dered i ndependent and separate works in themselves, then this License, and its
terns, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based
on the Program the distribution of the whole nmust be on the terns of this License,
whose perm ssions for other |licensees extend to the entire whole, and thus to each
and every part regardless of who wote it.

Thus, it is not the intent of this section to claimrights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on the
Program

In addition, nere aggregation of another work not based on the Programwth
the Program (or with a work based on the Progran) on a volune of a storage or
di stribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable formunder the terms of Sections 1 and 2
above provided that you also do one of the follow ng:

a) Accompany it with the conpl ete correspondi ng machi ne-readabl e source
code, which nmust be distributed under the terns of Sections 1 and 2 above on a
medi um customarily used for software interchange; or

b) Acconpany it with a witten offer, valid for at least three years, to

give any third party, for a charge no nore than your cost of physically performng
source distribution, a conplete machine-readable copy of the correspondi ng source
code, to be distributed under the terns of Sections 1 and 2 above on a nedi um
custonmarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to

di stribute corresponding source code. (This alternative is allowed only for
noncomrerci al distribution and only if you received the programin object code or
executable formwith such an offer, in accord with Subsection b above.)

The source code for a work means the preferred formof the work for naking

nmodi fications to it. For an executable work, conplete source code neans all the
source code for all npodules it contains, plus any associated interface definition
files, plus the scripts used to control conpilation and installation of the
execut abl e. However, as a special exception, the source code distributed need not
include anything that is normally distributed (in either source or binary form
with the major conponents (conpiler, kernel, and so on) of the operating system on
whi ch the executable runs, unless that conponent itself acconpani es the executabl e.

If distribution of executable or object code is made by offering access to

copy from a designated place, then offering equivalent access to copy the source
code fromthe sanme place counts as distribution of the source code, even though
third parties are not conpelled to copy the source along with the object code.

4. You may not copy, nodify, sublicense, or distribute the Program except as
expressly provided under this License. Any attenpt otherw se to copy, nodify,
sublicense or distribute the Programis void, and will automatically term nate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses ternminated so |ong as
such parties remain in full conpliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permssion to nodify or distribute the Program or
its derivative works. These actions are prohibited by lawif you do not accept this
Li cense. Therefore, by nodifying or distributing the Program (or any work based on
the Progran), you indicate your acceptance of this License to do so, and all its
terns and conditions for copying, distributing or nodifying the Program or works
based on it.

6. Each tine you redistribute the Program (or any work based on the Progran),

the recipient automatically receives a license fromthe original licensor to copy,
distribute or nodify the Program subject to these terns and conditions. You nay not
i mpose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing conmpliance by third parties to this
Li cense.

See Al so:
G\U Li cense Part 2

GN\U Li cense Part 2

Gw License File Part 2
Descri ption

7. 1f, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limted to patent 1ssues), conditions

are inposed on you (whether by court order, agreenment or otherw se) that contradict
the conditions of this License, they do not excuse you fromthe conditions of this
Li cense. |If you cannot distribute so as to satisfy sinultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you
may not distribute the Programat all. For example, if a patent |icense would not
permit royalty-free redistribution of the Programby all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely fromdistribution of the Program

If any portion of this section is held invalid or unenforceable wunder any
particul ar circunstance, the bal ance of the section is intended to apply and the
section as a whole is intended to apply in other circunstances.

It is not the purpose of this section to induce you to infringe any patents

or other property right clains or to contest validity of any such clains; this
section has the sole purpose of protecting the integrity of the free software
distribution system which is inplemented by public |icense practices. Many people
have nade generous contributions to the wi de range of software distributed through
that systemin reliance on consistent application of that system it is up to the
aut hor/donor to decide if he or she is wlling to distribute software through any
other systemand a |icensee cannot inpose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Programis restricted in certain
countries either by patents or by copyrighted interfaces, the original copyright
hol der who pl aces the Program under this License may add an explicit geographica
distribution limtation excluding those countries, so that distribution is
permitted only in or anobng countries not thus excluded. In such case, this License
incorporates the limtation as if witten in the body of this License.

9. The Free Software Foundation may publish revised and/ or new versions of

the CGeneral Public License fromtime to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new probl ens or
concerns.

Each version is given a distinguishing version nunber. If the Program

specifies a version nunber of this License which applies to it and "any later
version", you have the option of following the terns and conditions either of that
version or of any later version published by the Free Software Foundation. If the
Program does not specify a version nunber of this License, you may choose any
versi on ever published by the Free Software Foundation

10. If you wish to incorporate parts of the Programinto other free prograns

whose distribution conditions are different, wite to the author to ask for

perm ssion. For software which is copyrighted by the Free Software Foundati on,
wite to the Free Software Foundation; we sonetines nake exceptions for this. Qur
decision wll be guided by the two goals of preserving the free status of al
derivatives of our free software and of pronoting the sharing and reuse of software
general |l y.

NO WARRANTY

11. BECAUSE THE PROCRAM I S LI CENSED FREE OF CHARGE, THERE IS NO WARRANTY FCOR

THE PROGRAM TO THE EXTENT PERM TTED BY APPL|I CABLE LAW EXCEPT WHEN OTHERW SE
STATED I N WRI TI NG THE COPYRI GHT HOLDERS AND/ OR OTHER PARTI ES PROVI DE THE PROGRAM
"AS | S" WTHOUT WARRANTY OF ANY KI ND, ElI THER EXPRESSED OR | MPLI ED, | NCLUDI NG BUT
NOT LIMTED TO THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A

PARTI CULAR PURPOSE. THE ENTIRE RI SK AS TO THE QUALITY AND PERFORMANCE OF THE
PROCRAM | S WTH YOU. SHOULD THE PROCGRAM PROVE DEFECTI VE, YOU ASSUME THE COST OF ALL
NECESSARY SERVI CI NG REPAIR OR CORRECTI ON.

12. I N NO EVENT UNLESS REQUI RED BY APPLI CABLE LAW OR AGREED TO IN WRI TI NG

W LL ANY COPYRI GHT HOLDER, OR ANY OTHER PARTY WHO MAY MODI FY AND/ OR REDI STRI BUTE
THE PROGRAM AS PERM TTED ABOVE, BE LI ABLE TO YOU FOR DAMACES, | NCLUDI NG ANY
GENERAL, SPECI AL, | NCI DENTAL OR CONSEQUENTI AL DAMAGES ARI SI NG OUT OF THE USE OR
I NABI LI TY TO USE THE PROGRAM (| NCLUDI NG BUT NOT LIM TED TO LOSS OF DATA OR DATA

BEI NG RENDERED | NACCURATE OR LOSSES SUSTAI NED BY YOU OR THI RD PARTIES OR A FAI LURE
OF THE PROCRAM TO OPERATE W TH ANY OTHER PROGRAMS), EVEN I F SUCH HOLDER CR OTHER
PARTY HAS BEEN ADVI SED OF THE PGSSI BI LI TY OF SUCH DAMAGES

END OF TERVS AND CONDI TI ONS

Appendi x: How to Apply These Terns to Your New Prograns

If you devel op a new program and you want it to be of the greatest possible
use to the public, the best way to achieve this is to nake it free software which
everyone can redistribute and change under these terns.

To do so, attach the following notices to the program It is safest to attach
themto the start of each source file to nost effectively convey the exclusion of
warranty; and each file should have at |east the "copyright" line and a pointer to
where the full notice is found:

<One line to give the program s nane and an i dea of what it does.> Copyright
(O yyyy <name of author>

This programis free software; you can redistribute it and/or nodify it under
the terns of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version

This programis distributed in the hope that it will be useful, but

W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the GNU Genera
Public License for nore details.

You shoul d have received a copy of the GNU General Public License along with
this program if not, wite to the Free Software Foundation, Inc.,
59 Tenple Place - Suite 330, Boston, MA 02111-1307, USA

Al so add information on how to contact you by electronic and paper nmail. If
the programis interactive, make it output a short notice like this when it starts
in an interactive node

Gnonovi si on version 69, Copyright (C year nane of author Gionovision cones

with ABSCLUTELY NO WARRANTY; for details type “showw . This is free software,

and you are welcone to redistribute it under certain conditions; type “showc' for
details.

The hypot hetical commands “show w and “show ¢' should show the appropriate

parts of the General Public License. O course, the commands you use nay be call ed
sonet hing other than “show w and “show c'; they could even be nouse-clicks or nmenu
i tens--whatever suits your program

You should al so get your enployer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer"” for the program if necessary.
Here is a sanple; alter the nanes:

Yoyodyne, Inc., hereby disclains all copyright interest in the program
" Gnonovi sion' (which nmakes passes at conpilers) witten by Janes Hacker

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permt incorporating your programinto
proprietary programs. |f your programis a subroutine |ibrary, you may consider it
more useful to permt linking proprietary applications with the library. If thisis
what you want to do, use the GNU Library General Public License instead of this

Li cense.

FSF & GNU inquiries & questions to ghu@nu. org.
Copyri ght notice above.
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111, USA
Updated: 3 Jan 2000 rns

See Al so:

Li cense

G\U Li cense

Conpi | er tions
QN%IPGY Cpthﬁﬂ?

Descri ption

I nvoki ng the Harbour conpiler

harbour <file[.prg]> [options]

or

harbour [options] <file[.prg]>

or

har bour [options] <file[.prg]> [options]

The command |ine options have to be separated by at |east one space. The

option can start with either '/' character or '-' character

The Har bour command |ine options:

Thi s causes all variables declared by PARAMETER, PRI VATE or PUBLIC
statenents to be automatically declared as MEWAR vari abl es

/b debug info

The conpiler generates all information required for debuggi ng
[d<i d>[=<val >] #defi ne <id>

[es[<l evel >] set exit severity

/es or /esO - all warnings are ignored and exit code returned by the
compi l er (accessed by DOS ERRORLEVEL command) is equal to O if there are no errors
in conpiled source file.

/esl - any warnings generate a non-zero exit code, but output is
still created.
[es2 - all warnings are treated as errors and no output file is

created. The exit code is set to a non-zero val ue.

/ g<type> out put type generated is <type>

/gc[<type>] output type: C source (.c) (default) <type>: O=conpact
1=nornmal 2=verbose (default)

/ go out put type: Pl atform dependant object nodul e
/ gh out put type: Harbour Portable Object (.hrb)

/i <pat h> add #include file search path

/ k<node> enabl e <node> conpatibility node

/kc clear all flags (strict Cipper conpatibility)
/ kh Har bour extensions (default)

[ki HB_ I NLI NE support enabl ed (default)

[kr use runtinme settings for the macro conpiler

/ kx ot her xbase dial ects extensions (default)

/k? i nvoke hel p information

/1 suppress |ine nunmber infornmation

The conpil er does not generate the source code line nunbers in the output
file. The PROCLINE() function will return O for npdules conpiled using this
opti on.

/'m conpil e current nodul e only

/In no inplicit starting procedure

The conpiler does not create a procedure with the same nanme as the

compiled file. This means that any declarations placed before the first PROCEDURE
or FUNCTI ON statenent have file- w de scope and can be accessed/used in al
functions/procedures defined in the conpiled source file. Al executable statenents
pl aced at the beginning of the file and before the first PROCEDURE/ FUNCTI ON
statenent are ignored

/ o<pat h> output file drive and/or path

/p generate pre-processed output (.ppo) file

The conpiler only creates the file that contains the result of
pre-processing the source file.

The conpil er does not print any nessages during conpiling (except the
copyright info).

/g0 be really quiet and don't display even the copyright info

[r[<lib>] request linker to search <lib> (or none)

The conpiler checks the syntax only. No output file is generated.

/ t <pat h> path for tenp file creation

Currently not used in Harbour (the Harbour conpiler does not create any
tenmporary files).

fu[<fil e>] use command definition set in <file> (or none)

/v vari abl es are assuned M >

Al'l undecl ared or unaliased vari abl es are assuned MEMVAR vari abl es
(private or public variables). If this switch is not used then the scope of such
vari abl es i s checked at runtine.

/W <l evel >] set warning |evel nunber (0..4, default 1)

/w0 - Nno war ni ngs

[wor /wl - Cipper conpatible warnings

[w2 - sone useful warnings mssed in Cipper

/w3 war ni ngs generated for Harbour |anguage extensions and al so

enabl es strong type checking but only warns agai nst declared types, or types which
may be calculated at conpile tinme

/w4 - Enabl es war ni ng about suspicious operations, which nmneans if
you m x undecl ared types, or types which can not be calculated at conpile
time,together with declared types, a warning will be generated.

[X[<prefix>] set synbol init function nanme prefix (for .c only)

Sets the prefix added to the generated synbol init function nane (in C
output currently). This function is generated autonatically for every PRG nodul e
compil ed. This additional prefix can be used to suppress problens wth duplicated
synbols during linking an application with sonme third party libraries.

ly trace lex & yacc activity

The Harbour conpiler uses the FLEX and YACC utilities to parse the source
code and to generate the required output file. This option traces the activity of
these utilities.

/z suppress logical shortcutting (.and. & .or.)

Not supported yet.

Known i nconpatibilities between harbour and clipper conpilers

NOTE:

If you want a 100% conpatible runtinme libraries then you have to define
HARBOUR_STRI CT_CLI PPER_COWPATI BI LI TY. This option should be defined in the file

i nclude/ hbsetup.h (in fact this option is placed in a conment by default - you need
to remove the /* */ characters only). This change has to be done before invoking
the make utility.

Handl i ng of undecl ared vari abl es

When a value is assigned to an undecl ared variable and the '-v' comand |ine
option is not used, then the Cipper conpiler assumes that the variable is a
PRI VATE or a PUBLI C variabl e and generates POPM (pop nmenvar) opcode.

Wien the value of an undecl ared variable is accessed and the '-v' conmand

line option is not used, the Cipper conpiler generates PUSHV (push variable)
opcode that deternmines the type of variable at runtime. |If a field with the
requested nane exists in the current workarea then its value is used. If there is
no field then a PRIVATE or a PUBLIC variable is used (if exists).

The Harbour conpiler generates an opcode to determ ne the type of variable at
runti me (POPVARI ABLE or PUSHVARI ABLE) in both cases (assighnment and access).

The di fference can be checked by the follow ng code:

PROCEDURE MAI N()
PRI VATE nynane

DBCREATE("TEST", { { "MYNAME', "C', 10, 0} })
USE test NEW

SELECT test

APPEND BLANK

FI ELD- >nynane := "Fl ELD"

MEMWVAR- >nynane : = " MEMWAR'

nmyname := nynane + " assigned"

11 i pper: "FIELD', In Harbour: "FIELD assigned"

In d
? FlI ELD- >nynane

/1 In Cipper: "MEMAR assigned", In Harbour: "MEWAR"
? MEMWAR- >nynanme

USE
RETURN

Passi ng an undecl ared variable by the reference

The Cipper conpiler uses the special opcode PUSHP to pass a reference to an
undecl ared variable ('@ operator). The type of passed variable is checked at
runtime (field or menvar). However, field variables cannot be passed by reference.
This means that dipper checks the nmenvar variable only and doesn't | ook for a
field. This is the reason why the Harbour conpiler uses the usual PUSHVEMVARREF
opcode in such cases. Notice that the runtine behavior is the sane in dipper and
in Harbour - only the generated opcodes are different.

Handl i ng of object nmessages

The HARBOUR_STRI CT_CLI PPER_COWPATI BI LI TY setting determines the way chai ned
send nmessages are handl ed.

For exanple, the follow ng code:

a:b(COUNT()):c +=1

wi Il be handl ed as:

a:b(COUNT()):c := a:b(COUNT()):c + 1

in strict Clipper conpatibility node and

temp := a:b(COUNT()), tenmp:c +=1

in non-strict node.

In practice, Cipper will call the COUNT() function two times: the fir
before addition and the second one after addition. |In Harbour, COUNT()
called only once, before addition.

The Harbour (non-strict) method is:

1) faster

2) it guarantees that the sane instance variable of the same object wll be
changed

(See al so: source/conpiler/expropt.c)

Initialization of static variabl es

There is a difference in the initialization of static variables that are
initialized with a codeblock that refers to a |local variable. For exanple:

PROCEDURE TEST()
LOCAL MyLocal Var
STATIC MyStaticvar := {|| MyLocal var }

MyLocal Var : =0
? EVAL(MyStaticVar)

RETURN
The above code conpiles fine in Cipper, but it generates a runtine error
Error/BASE 1132 Bound error: array access

Cal | ed form (b) STATI CS$(0)

In Harbour this code generates a conpile time error: FError E0009 111 egal
variable (b) initializer: 'MlLocal vVar'

Both Cipper and Harbour are handling all |ocal variables used in a codebl ock

in a special way: they are detached fromthe |ocal stack of function/procedure
where they are declared. This allows access to these variables after the exit from
a function/procedure. However, all static variables are initialized in a separate

procedure
(" STATICS$' in dipper and ' (_INITSTATICS)' in Harbour) before the main
procedure and before all INIT procedures. The local variables don't exist on the

eval stack when static variables are initialized, so they cannot be detached.

HB_LANGSELECT()

Sel ect a specific nation nmessage nodul e

Synt ax

HB_LANGSELECT(<cNewLang>) --> cd dLang
Argunent s

<cNewlLang> The 1D of the country | anguage nodul e The possi bl e val ues for
<cNewlLang> is below as is defined in the Lang library,sorted by | anguage.

Ret ur ns
<cd dLang> The ol d | anguage indentifier
Descri ption
This function set a default |anguage nodul e for date/nonth nanes, internal

war ni gs, Nat Msg nmessages and internal errors. Wen

a Lang IDis selected all

messages will be output as the current lang selected until another one is sel ected

or the program ends.
Exanpl es

REQUEST HB_LANG PT
REQUEST HB_LANG RO
REQUEST HB_LANG ES
FUNCTI ON MAI N()

HB_LANGSELECT(' PT") /1 Default |anguage is
? CDOWN DATE()) /] Segunda-feira
? 'dd language id selected is ", HB LANGSELECT()
HB_LANGSELECT('RO /1 Default |anguage is
? CMONTH(DATE()) /1 Mai
? 'dd language id selected is ", HB_LANGSELECT()
HB_LANGSELECT('ES /1 Default |anguage is
? CMONTH(DATE()) /1 Mayo
? CDOW DATE()) /1 Lunes
RETURN NI L

Tests
See tests/langapi.prg

St at us
Ready

Conpl i ance
This function is a Harbour Extension.

Pl at f or ns
Dos, Wn32, s/ 2

Files

Libraty is rtl
See Al so:

HB_LANGNAME() NATI ONMBG()

now Portuguese

/1 PT
now Romani an

/1 RO
now Spani sh

HB_ L ANGNAME()

Return the Nane og the Current Language nodul e in USE
Synt ax
HB_LANGNAME() --> clLangNane
Argunent s

Ret ur ns

<cLangName> Nanme of the Current |anguage in use
Descri ption

This function return the current nane of the | anguage nodul e in use.
Exanpl es

REQUEST HB_LANG PT

REQUEST HB_LANG RO

REQUEST HB_LANG ES
FUNCTI ON MAI N()

HB_LANGSELECT(' PT') /1 Default |anguage is now Portuguese
? CDOWN DATE()) /] Segunda-feira
? 'Current language is ", HB LANGNAME() /1 Portuguese
? 'Ad language id selected is ", HB LANGSELECT() /1 PT
HB_LANGSELECT('RO) /1 Default |anguage is now Ronmani an
? CMONTH(DATE()) /1 Mai
? 'Ad language id selected is ", HB_ LANGSELECT() /1 RO
HB_LANGSELECT('ES) /1 Default |anguage is now Spanish
? "Current |anguage is ", HB_LANGNAME() /1 Spani sh
? CMONTH(DATE()) /1 Mayo
? CDOWN DATE()) /1 Lunes
RETURN NI L

Tests
See tests/langapi.prg

St at us
Ready

Conpl i ance
This function is a Harbour Extension

Pl at f or ns
Dos, W n32, OS5/ 2

Files

Library is | ang
See Al so:

HB_LANGSELECT() NATI ONMBG()

SETMODE()

Change the video node to a specified nunber of rows and col ums
Synt ax
SETMODE(<nRows>, <nCol s>) --> | Success
Argunent s
<nRows> is the nunber of rows for the video node to set.
<nCol s> is the nunmber of colums for the video node to set.
Ret ur ns

SETMODE() returns true if the video node change was successful; otherwi se,
it returns false.

Descri ption

SETMODE() is a function that change the video nbde depend on the video card

and nonitor conbination, to match the nunber of rows and colums specified. Note
that there are only a real few conbination or rows/cols pairs that produce the

vi deo node change. The followi ngs are availables for D.O S

12 rows x 40 col ums 12 rows x 80 col ums
P5 rows x 40 col ums P5 rows x 80 col ums
P8 rows x 40 col ums P8 rows x 80 col ums
50 rows x 40 col ums 43 rows x 80 col ums

O rows x 80 col ums

The foll ow nbdes are avaliable to W ndows

P5 rows x 40 col ums P5 rows x 80 col ums

50 rows x 40 col ums M3 rows x 80 col ums

50 rows x 80 col ums

Sone nodes only are avail ables for color and/or VGA nonitors. Any change
produced on the screen size is updated in the values returned by MAXROA) and
MAXCOL() .

Exanpl es

b The first exanple change to a 12 |ines of display node:
| F SETMODE(12, 40)
? "Hey man are you blind ?"
ELSE
? "Mom bring me ny gl asses!”
ENDI F

p Next exanple change to a 50 |ines npde
| F SETMODE(50, 80)
? "This wonderful nobde was successfully set”
ELSE
? "Wait. this nonitor are not nade in rubber !'"
ENDI F
St at us
Ready
Conpl i ance
Sone of these nobdes are not avail ables on di pper
Pl at f or ns

DOS, W N32

Fil es
Source is gtdos.c,gtwin.c

See Al so:
MAXCOL() MAXROW()

EVAL()

Eval uate a code bl ock

Synt ax

EVAL(<bBlock> [, <xVal>[,...]]) --> XExpression
Argunent s
<bBl ock> Code bl ock expression to be eval uated
<xVal > Argunment to be passed to the code bl ock expression
<xVal ...> Argunent list to be passed to the code bl ock expression
Ret ur ns
<xExpr essi on> The result of the eval uated code bl ock
Descri ption

This function eval uates the code bl oc expressed as <bBlock> and returns its
eval uated value.If their are nmultiple expressions within the code bl ock,the I ast
expression will be value of this function

If the code block requires paraneters to be passed to it,they are specified
in the paraneter |ist <xVal > and follow ng. Each paraneter is separated by a comma
within the expression |ist.

Exanpl es

FUNC MAI N

LOCAL sbBl ock = {|| NL}
? Bval(1)

? Eval (@bBl ock)

? BEval ({|pl] pl },"A","B")
? Eval ({|p1l, p2| pl+p2 },"A","B")
? Eval ({]|pl, p2,p3| pl}, "A","B")
Return Nil
Test s
See exanpl es
St at us
Ready
Conpl i ance
This function is Ca Cipper conpliant
Pl at f or ns
All
Fil es
Library is vm
See Al so:

AEVAL DBEVAL

Get

Creélt.es a CET object and displays it to the screen

Synt ax

@ <nRow>, <nCol > [SAY <cSay> [Pl CTURE <cSayPi ct>] COLOR <cSayCol or>]
GET <xVar> [PI CTURE <cCet Pict>] [WHEN <l When>] [COLOR <cGet Col or >]
[VALI D <l Valid> / RANGE <xStart>, <xEnd>]

Argunent s
<nRow> The row coordinat e.
<nCol > The col utm coordi nat e.
<cSay> Message to display.

<cSayPi ct > Character expression of PlICTURE displ ayed.
<cSayCol or> Color to be Used for the SAY expression.
<xVar > An variable/field nane.

<cGet Pi ct > Character expression of PICTURE to get.

<l When> Logi cal expression to all ow GET.

<l Val i d> Logi cal expression to validate CET input.
<xStart> Lower RANGE val ue.

<xEnd> Upper RANCGE val ue.

<cCet Color> Color string to be used for the GET expression.
Ret ur ns

Descri ption

This command adds a GET object to the reserved array variable named GETLI ST[]

and displays it to the screen. The field or variable to be added to the CGET object
is specified in <xVar> and is displayed at row, colum coordi nate <nRow>, <nCol >.

If the SAY clause is used <cSay> will be displayed starting at <nRow>, <nCol >,

with the field variable <xVar> displayed at RON), CO()+ 1. If <cSayPicr>, the

picture tenplate for the SAY expression <cSay>, is used, all formatting rules
contained wll apply See the TRANSFORM | function for futher information.

If <cGetPict> is specified, the PICTURE cl ause of <xVar> will be wused for the
CGET object and all formatting rules will apply. See the table below for GET
formatting rules.

If the WHEN cl ause i s specified, when <l When> evaluates to a logical true
(.T.) condition, the GET object will he activated otherwise the GET object wll
ski pped and no information will be obtained via the screen. The name of a

user-defined function returning a logical true (.T.) or false (F.) or a code bl ock

may be ,specified in <l Wen> This clause not activated until a READ conmand or
READMODAL() function call is issued.

If the VALID clause is specified and <l Valid> evaluates to it logical true

(.T.) condition the current GET will be considered valid and the get operation
will continue onto the next active GET object. If not, the cursor will renmain on
this GET object until aborted or wuntil the condition in <lIValid> evaluates to true
(.T.). The name of a user-defined function returning a logical true (.T.) or false
(.F.) or it code block nmay be specified in <IValid> This clause is not activated
until a READ conmand or READMODAL() function call is issued.

If the RANGE clause is specified instead of the VALID clause, the two
i nclusi ve range val ues for <xVar> nust be specified in <xStart> and <xEnd>. |d
<xVar> is a date data type,<xStart> and <xEnd> must also be date data types;

<xVar> is a nuneric data type <xStart> and <xEnd> nust al so be nuneric data types.

If a value fails the RANCE test ,a nessage of OUT OF RANGE will appear in the
SCOREBCARD area (row = 0, col = 60).The RANGE nessage may be turned off it the
SCOREBQARD command or SET() function appropriately toggled.

NOTE CGET functions/formatting rules:

@N Al | ows only al phabetic characters.

B Nunbers will be left justified

ac Al | positive nunbers will be followes by CR

@) Al | dates will be in the SET DATE fornat.

3 Dates will be in British formal: nunbers in European format.

CS Al | ows a suggested value to be seen within the GET
Area but clears It if any noncu sor key is pressed when
khe cursor is in the first Position in the GET area.

(ar Nont enpl ate characters will be inserted.

(@B<nSi ze> Al | ows horizontal scrolling of a field or variable that
s <nSize> characters wide.

@X Al | negative nunmbers will be followed by DB

@4 Di spl ays zero val ues as bl anks.

@ For ces uppercase lettering

@) Di spl ays negative nunbers in parentheses with | eadi ng spaces.

@ Di spl ays negative nunbers in parentheses without | eading
kpaces.

CGET tenpl ates/formatting rul es:

A Onl y al phabetic characters all owed.
Onl y al phabetic and nuneric characters allowed

X Any character all owed.

L Only T or F allowed For |ogical data.
Only or N allowed for |ogical data.

¢ Only digits, including signs, will be allowed.

i Only digits, signs. and spaces will he allowed.
Al phabetic characters are converted to Uppercase.

] Dol lar will be displayed in place of |eading
kpaces for nunmeric data types.

i Asterisk,, will Be displayed in place of |eading spaces
for nuneric data types.
Posi tion of decimal point
Posi tion of comma.

Format PI CTURE functions may he grouped together as well as used in
Conjunction with a PICTURE tenpl at es; however, a blank space must be included in
the PICTURE string if there are both functions and tenplates.

Exanpl es

Function Main()
Local cVar: =Space(50)
Local nld:
cls

@3,1 SAY "Name" GET cVar PICTURE "@ S 30"
@4,1 SAY "1d" GET nld PI CTURE "999. 999"

READ

? "The nane you entered is", cVar
? "The id you entered is",nld
RETURN NI L

Tests
See Exanpl es
St at us
Ready
Conpl i ance
This command is Ca-Cipper conpatible
Pl at f or ns
All
See Al so:

@..SAY ARRAY() TRANSFORM)

@ .. SAY

Di spl ays data to specified coordinates of the current device.

Synt ax

@ <nRow>, <nCol > SAY <xVal ue> [PICTURE <cPict>] [COLOR <cCol or>]

Argunent s
<nRow> Row coordi nat e
<nCol > Col um coordi nat e
<xVal ue> Val ue to display
<cPi ct > Pl CTURE f or mat
<cCol or > Col or string

Ret ur ns

Descri ption

This command di spl ays the contents of <xValue> at row columm coordi nates

<nRow>, <nCol >. A PICTURE cl ause may be speclfied in <cPict> |If the current

device is set to the printer, the output wll go to the printer; the default is for
all output to go to the screen.

For a conplete list of PICTURES tenplates and functions, see the @..GET
command.

Exanpl es

Function Main

Cs

@2,1 SAY "Harbour"

@3,1 SAY "is" COLOR "b/r+"
@4,1 SAY "Power" PICTURE "@"

Return NI L
Test s
See Exanpl es
St at us
Ready
Conpl i ance
This command is Ca-dipper conpliant
Pl at f or ns
All
Fil es
See Al so:

@..Get SET DEVI CETRANSFORM)

Strong Typi ng

Conpi | e-

ime type checklng

Descri ption

Strong Type Checking, could al so be described as "Conpile-Tinme Type
Checking”. As you mght know Clipper, generates a Run-Tinme Error, ("Type

M smat ch") when we attenpt to perform sone operations with the wong type of
Vari abl e.

Exanpl es:

LOCAL Varl := "A"

? Varl * 3 // Error here.

@Varl, 7 SAY 'Hello'" // Error here.

? SubStr("Hello", VvVarl) // Error here.

The above 3 lines would all result in Run-Time Error, because Varl is of type
CHARACTER but the above lines used it as if it was of type NUVERI C

Using Strong Type Checking, or Conpile-Time Type Checking, the above problem
woul d have been di scovered and reported in COWILE-TIME, rather than waiting for
the inevitable problemto be discovered when we finally execute the program

Strong Typed Languages allow the programrer to "tell" the conpiler (declare)

what is the type of a each Variable, so that the Conpiler in return can warn the
programer, when ever such Declared (Strong Typed) Variable, is used in a context
which is inconpatible with its declared type

For instance, if we "told" the conpiler that Varl above is of type CHARACTER
(LOCAL Var1l AS CHARACTER) the Harbour Conpiler could, in return, warn us if we
attenpted to performthe cal cul ation

Varl * 3

because the Conpiler knows we can't performa nultiplication of a Character

(we mght allow it in some context, but this is beyond the scope of this

di scussion). Simlarly we would have been warned when attenpting to use Varl as a
Row Number (@Varl), or as the 2nd operand of the SubStr() function SubStr(
"Hell 0", Varl)), because the Conpiler knows that these operations require a
NUMERI C rat her than CHARACTER type.

The above may save us lots of tine, by pointing a problem we can not escape,
since such code will never performcorrectly once executed. So rather than wait to
the testing cycle, for such problenms to be discovered, (and sone tines even |ater,
after we may have distributed our applications) instead we may know of such

probl enms as soon as we type HARBOUR ProgNane -w3

Har bour also offers a hybrid node, where it can report such type msmatch

probl enms, even without requiring the programer to declare the type of variabl es.
This feature, is referred to as Adaptive Type Checking. The progranmer, is not
required to nmake any changes in his code, to take advantage of this feature. Al of
the above 3 errors would have been reported just as effectively as if the
programer Strong Typed (decl ared) Varl. Harbour woul d have been able to report
such problens at conpile tine, because the assignnent Varl := "A" inplied that Varl
is of type CHARACTER until it will be assigned another value. Therefore Harbour
will "renenber" that Varl "adapted" type CHARACTER, and thus the subsequent
multiplication Varl * 3, will be reported as an error, as soon as you attenpt to
conpi | e such code

The nice aspect of this hybrid node, is that unlike Strong Typed

Vari abl es, you don't have to declare the type, so no code changes are need, the

Type instead is assunmed by inplication (type of the assigned value). The other
benefit, is that it is conpletely ok to assign a new value of different type, any
time, to such undeclared (variant) variable. As soon as we assignh a new type, the
Conmpiler will than protect us fromusing the Variable in an inconpatible context,
since the variable "adapted" this type as soon as we assigned a value which inplies
a type.

VWi | e Adapted Type Checking rmay be fairly effective in reporting many conmon
m stakes, to take full benefits of such Conpile-Tinme checking, it is recomended
to do declare the Type of Variables, when ever possible.

The Harbour Strong Type features, also allows the declaration of the expected
paraneters (including optionals) of User Defined Functions, as well as their

return Type. Sinilarly, you nay declare the Type of any C ass Variabl es, Methods,
and Met hods Paraneters.

The Garbage Col | ect or

Readne for Harbour Garbage Coll ect Feature

Descri ption
The garbage collector uses the following logic: - first collect all nenory
al | ocati ons that can cause garbage; - next scan all variables if these nenory
bl ocks are still referenced.

Notice that only arrays, objects and codebl ocks are coll ected because these
are the only datatypes that can cause self-references (a[l]:=a) or circular
references (a[1]:=b; b[1l]:=c; c[1]:=a) that cannot be properly deall ocated by
simpl e reference counting.

Since all variables in harbour are stored inside sone available tables (the

eval stack, nenvars table and array of static variables) then checking if the
reference is still alive is quite easy and doesn't require any special treatnent
during nmenory allocation. Additionaly the garbage collector is scanning some
internal data used by harbour objects inplenentation that al so stores sonme val ues
that can contain nmenory references. These data are used to initialize class

i nstance variables and are stored in class shared vari abl es.

I n special cases when the value of a harbour variable is stored internally in

some static area (at C or assenbler level), the garbage collector will be not able
to scan such values since it doesn't know their location. This could cause sone
menory bl ocks to be rel eased prematurely. To prevent the premature deallocation of
such nmenory bl ocks the static data have to store a pointer to the value created
with hb_itenNew() function. Exanple: static HBITEMs_ item // this itemcan be
rel eased by the GC

static HB_ITEM PTR pltem // this itemw || be maintained correctly pltem=
hb_itemNew hb_param(1l, | T_BLOCK));

However, scanning of all variables can be a time consum ng operation. It

requires that all allocated arrays have to be traversed through all their elenents
to find nore arrays. Al so all codebl ocks are scanned for detached |ocal variables
they are referencing. For this reason, |ooking for unreferenced nenory blocks is
performed during the idle states.

The idle state is a state when there is no real application code executed.

For exanple, the user code is stopped for 0.1 of a second during INKEY(O0.1) -
Har bour is checking the keyboard only during this time. It |eaves however quite
enough tine for many other background tasks. One such background task can be

| ooking for unreferenced nmenory bl ocks.

Al l ocati ng nenory

The garbage coll ector collects menory bl ocks allocated with hb_gcAlloc()
function calls. Menory allocated by hb_gcAll oc() should be released with
hb_gcFree() function.

The garbage coll ecting

Duri ng scanni ng of unreferenced menory the GCis using a mark & sweep
algorithm This is done in three steps:

1) mark all menory bl ocks allocated by the GC with unused fl ag;

2) sweep (scan) all known places and cl ear unused flag for nenory bl ocks that
are referenced there;

3) finalize collecting by deallocation of all menory bl ocks that are stil
mar ked as unused and that are not | ocked.

To speed things up, the mark step is sinplified by swapping the neaning of

the unused flag. After deallocation of unused blocks all still alive nmenory bl ocks
are marked with the sane 'used' flag so we can reverse the nmeaning of this flag to
"unused' state in the next collecting. All new or unlocked menory bl ocks are
automatically marked as 'unused' using the current flag, which assures that all
menory bl ocks are marked with the sanme flag before the sweep step will start. See
hb_gcCol l ect All () and hb_gcltenRef()

Cal l'ing the garbage collector from harbour code

The garbage coll ector can be called directly fromthe harbour code. This is
usefull in situations where there is no idle states available or the application
is working in the loop with no user interaction and there is many nenory

all ocations. See HB GCALL() for explanation of howto call this function from your
har bour code.

See Al so:

hb_gcAlloc() np_gcFree()hb_gcCol |l ect All () hb_geltenRef () HB_GCALL() HB_I dl eSt at e()

hb _gcAl | oc()

Al locates nenory that will be collected by the garbage collector

Synt ax

#i ncl ude <hbapi . h>
voi d *hb_gcAl l oc(ULONG ul Si ze,
HB_GARBAGE_FUNC_PTR pd eanupFunc);

Argunent s
<ul Si ze> Requested size of nenory bl ock
<pCl eanupFunc> Pointer to HB GARBAGE FUNC function that will be called

directly before rel easing the garbage nmenory bl ock or NULL. This function should
rel ease all other nmenory allocated and stored inside the nmenory bl ock. For exanpl e,

it releases all itens stored inside the array. The functions receives a single
paraneter: the pointer to nenory allocated by hb_gcAl loc().

Ret ur ns

Descri ption

hb_gcAlloc() is used to allocate the menory that will be tracked by the

garbage collector. It allows to properly release menory in case of

sel f-referencing or cross-referencing harbour |evel variables. Mnory allocated

with this function should be released with hb_gcFree() function or it will be

automatically deallocated by the GCif it is not locked or if it is not referenced

by some harbour |evel variable.
Exanpl es

See source/vnmlarrays.c
St at us

d i pper
Conpl i ance

This function is a Harbour extension
Pl at f or ns

Al'l
Files

sour ce/ vim gar bage. c

See Al so:

hb_gcFree

hb_gcFree()

Rel eases the nenory that was allocated with hb_gcAlloc().
Synt ax
void hb_gcFree(void *pMenoryPtr);
Argunent s

<pMenoryPtr> The pointer to menory for release. This nenory pointer have to
be allocated with hb_gcAlloc() function

Ret ur ns

Descri ption

hb_gcFree() is used to deallocate the nmenory that was allocated with the
hb_gcAl | oc() function.

Exanpl es
See source/vm arrays.c
St at us
Cl i pper
Conpl i ance
This function is a Harbour extension
Pl at f or ns
All
Files
sour ce/ vim gar bage. ¢
See Al so:

hb_gcAl | oc

hb _gcCol | ect Al l ()

Scans all nenory bl ocks and rel eases the garbage nenory.
Synt ax
void hb_gcCollectAl(void);
Argunent s

Ret ur ns

Descri ption
This function scans the eval stack, the nenmvars table, the array of static

vari abl es and table of created classes for referenced nenory blocks. After
scanning all unused nmenory bl ocks and bl ocks that are not |ocked are rel eased.

St at us
C i pper
Conpl i ance
This function is a Harbour extension
Pl at f or ns
All
Files
sour ce/ vim gar bage. ¢

See Al so:
hb_gcAl | oc hb_gcFree

hb _gcltenRef ()

Marks the nenory to prevent deal |l ocation by the garbage collector.
Synt ax
void hb_gcltenRef (HB_I TEM PTR pltem);

Argunent s
<plten> The pointer to itemstructure that will be scanned. The passed item

can be of any datatype although arrays, objects and codebl ocks are scanned only.
O her datatypes don't require |ocking so they are sinply ignored.

Ret ur ns

Descri ption
The garbage coll ector uses hb_gcltenRef () function during scanning of
referenced nmenmory pointers. This function checks the type of passed item and scans
recursively all other nenory blocks referenced by this itemif it is an array, an
obj ect or a codebl ock
NOTE: This function is reserved for the garbage collector only. It cannot be
called fromthe user code - calling it can cause wunpredicted results (nenory
bl ocks referenced by the passed itemcan be released prematurely during the cl osest
gar bage col |l ection).

St at us
C i pper

Conpl i ance
This function is a Harbour extension

Pl at f or ns
Al'l

Files
sour ce/ vim gar bage. ¢

See Al so:

hb_gcAl | oc hb_gcFree

HB GCALL()

Scans the nmenory and rel eases all garbage nmenory bl ocks.
Synt ax

HB_GCALL()
Argunent s

Ret ur ns

Descri ption
This function rel eases all nenory bl ocks that are considered as the garbage.
St at us
Har bour
Conpl i ance
This function is a Harbour extension
Pl at f or ns
Al'l
Files
sour ce/ vim gar bage. c
See Al so:
hb_gcCol I ect Al l ()

The

| dl e states

Read ne file for Idle States

Descri ption

The idle state is the state of the harbour virtual machine when it waits for

the user input fromthe keyboard or the nouse. The idle state is entered during

I NKEY() calls currently. Al applications that don't use INKEY() function call can
signal the idle states with the call of HB I DLESTATE() function (or hb_idleState()
on C level).

During idle states the virtual nachine calls the garbage collector and it can
call user defined actions (background tasks). It also releases the CPUtine slices
for sone poor platforns that are not smart enough (W ndows NT).

For defining the background tasks see the HB | DLEADD() and HB_| DLEDEL()
functions.

For direct call for background actions see HB | DLESTATE() function

For signaling the idle state from C code see the hb_idleState() APl function

See Al so:

HB_| DLEA HB_| DLEDEL ()

HB_| DLEADD)

Adds™ t he background task
Synt ax
HB | DLEADD(<cbAction>) --> nHandl e
Argunent s

<cbAction> is a codeblock that will be executed during idle states. There
are no argunents passed to this codebl ock during eval uati on.

Ret ur ns

<nHandl e> The handl e (an integer value) that identifies the task. This
handl e can be used for deleting the task.

Descri ption
HB | DLEADD() adds a passed codebl ock to the |list of background tasks that
will be evaluated during the idle states. There is no |imt for the nunber of
t asks.

Exanpl es
nTask := HB I DLEADD({|| SayTinme()})

St at us
Ready

Conpl i ance
Har bour extension simlar to FT_ONIDLE() function available in NanForum
l'ibrary.

Pl at f or ms
All

Fil es

source/rtl/idle.c

See Al so:
HB I DLEDEL() HB | dl eState()

HB_| DLEDEL()

Renpbves the background task fromthe list of tasks.

Synt ax
HB | DLEDEL(<nHandl e>) --> xAction
Argunent s

<nHandl e> is the identifier of the task returned by the HB_| DLEADD()
functi on.

Ret ur ns

<xAction> N L if invalid handle is passed or a codebl ock that was passed to
HB_| DLEADD() function

Descri ption
HB | DLEDEL() renoves the action associated with passed identifier fromthe
|ist of background tasks. The identifer should be the value returned by the
previous call of HB_IDLEADD() functi on.

If specified task is defined then the codeblock is returned otherwise the NI L
val ue is returned.

Exanpl es
nTask := HB I DLEADD({|| SayTinme()})
| NKEY(10)
cbAction := HB_| DLEDEL(nTask)
St at us
Ready
Conpl i ance
Har bour ext ensi on
Pl at f or ns
Al'l
Files
source/rtl/idle.c
See Al so:

HB | DLEA HB | dl eState()

HB 1 dl eState()

Evaluates a single background task and calls the garbage collector.

Synt ax

HB | DLESTATE()
Argunent s

Ret ur ns

Descri ption

HB_| DLESTATE() requests the garbage collection and executes a single

background task defined by the codebl ock passed with HB IDLEADD() function. Every
call to this function evaluates a different task in the order of task creation.
There are no argunments passed during a codebl ock eval uati on.

This function can be safely called even if there are no background tasks
defi ned.

Exanpl es

nTaskl := HB_|I DLEADD({]|| SayTime()})

nTask2 := HB_ | DLEADD({|| SaveScreen()})

DO WHI LE(! bFi ni shed)
bFi ni shed : =DOSormet hi ngVer yl nport ant ()
HB I dl eState()

ENDDO

cbAction := HB_| DLEDEL(nTaskl)

HB_ | DLEDEL(nTask2)

St at us
Ready
Conpl i ance

Har bour extension simlar to FT_IAM DLE() function available in NanForum
l'ibrary.

Pl at f or ns
Al'l

Fil es
source/rtl/idle.c

See Al so:
HB | DLEADD() HB | DLEDEL()

hb i dl eState()

Evaluates a single background task and calls the garbage collector.
Synt ax
void hb_idleState(void);
Argunent s

Ret ur ns

Descri ption
hb_idl eState() is a C function that requests garbage collection and executes
a single background task defined by the codebl ock passed w th HB | DLEADI)
function. It also releases the CPUtine slices for platforns that require it.

Every call for this function evaluates different task in the order of task
creation. There are no argunents passed during codeblock eval uation

This function can be safely called even if there are no background tasks
defi ned.

This function is automatically called fromthe I NKEY() function

St at us

Ready
Pl at f or s
Al |
Files

source/rtl/idle.c

See Al so:

HB_I DLEAI HB_ | DLEDEL() HB | dI eSt at e()

Command line Uility
Conpi | er Options

Descri ption

This spec goes for CLI PPERCVMD, HARBOURCMD, Harbour conpiler and #pragma
directives in the source code.

The conmmand |ine al ways
Note that sone sw tches

First the parser should

separ at ed by whitespace.

overrides the envvar.
are not accepted in envvar,sone others in

the tokens in the
argv[])

start to step through all
(or just wal k through all

#pragnes.

st

ring

1.) If the token begins with "-", it should be treated as a new style switch.
One or nore switch characters can follow this. The "-" sign inside the token
will turn off the swtch.

If the switch has an argunent all
part of the argunent.

The "/" sign has no speci al

the followi ng characters are treated as

meani ng here.

ISwi t ch Resul t option
- wn WN)
LW n TWN)

- wi / har bour /i ncl ude/

W I =/ har bour /i ncl ude/)

- wi / har bour /i ncl ude/ n

W | =/ har bour /i ncl ude/n)

- wesOn WES=0 N)
Cwen Wlinvalid switch. e] N)
- wesn W ES=defaul t(0) N)
- wses W S ES=defaul t(0))
- wess W ES=default(0) S)
[invalid switch])
W n-p IWINP)
W n-p TWINIP)
F W - Wo- W finally: 'W)
2.) If the token begins with "/", it should be treated as a conpatibility

style switch.

The parser scans the token for the next

resulting string as one switch.

This means that a switch with an argument containing "/" sign has
This may be solved by allow ng the usage of quote
nmostly a probl emon systens which use "/" as

limtations.

The "-"
swi t ch.

sign has no speci al

meani ng here,

"/" sign or ECS and treats the

some
characters.
pat h separator.

it can't be used to disable a

This is

ISwi t ch

Resul t option

w' n

WN)

wo/ n

[invalid switch: wo] N)

i hel | o/ wor | d/

I=hello [invalid switch: world] [invalid switch:

/1

)

i"hello/world/"/w

I =hel | o/ worl d/ W)

i hel | o\ wor | d\

I =hel | o\ wor | d\)

3.) If the token begins with anything else it should be skipped.
The Harbour switches are always case insensitive.

In the Harbour commandline the two style can be used together
HARBOUR -wnes2 /gc0/q0 -ic:\hello

Excepti ons:

- Handlig of the /CREDI T undocumented switch on Harbour command line is
unusual , check the current code for this.

- The CLI PPER, HARBOUR and Harbour application command line parsing is a
different beast, see CMDARG C for a NOTE.

Not es:

- Al occurences where a path is accepted, Harbour should handle the quote
char to specify path containing space, negative sign, slash, or any other chars
wi th speci al neaning.

[i"c:/hellol"
-i"c:/hello-n"
[i"c:/programfiles/"
-i"c:/programfiles/™

Just some exanples for the various accepted forns:
[/ F20 == [F20 == F20 == F: 20 == F20X

/| TMPPATH: C. \ HELLO

F20/ /| TMPPATH: / TEMP/ / / F: 30000000 NO DLE

FONO DLEX10

SQUAVKNO DLE

"/1" should al ways be used on the command I|i ne.
See Al so:

Conpi | er Options

TBROWSENew(

Create a Browse (bject

Constructor syntax

TBROWSENew(<nTop>, <nLeft >, <nBot t on®, <nRi ght >) --> <oBrowse>
Argunent s
<nTop> Top Row

<nLeft> Top Left Col um

<nBottonm> Bottom Row

<nRi ght > Bott om Ri ght Col um

Ret ur ns

<oBrowse> An new Browse hject

Descri ption

This function set up a browsi ng wi ndow at top-left coordinates of
<nTop>, <nLeft> to bottomright coordinates of <nBottone, <nRi ght>. To browse
Dat abase fil es use TBROASEDB() function insted.

Dat a

:aCol umtms
rautolite
:cargo

: col or Spec

: col Pos

2 col Sep

- f oot Sep
:freeze

: goBot t onBl ock
1 goTopBl ock
: headSep

> hit Bottom
“hitTop
cleftVisible
:nBottom
inLeft

:nRi ght
:nTop
:rightVisible
: rowCount

. rowPos

: ski pBl ock

:stable

Array to hold all browse col umms

Logi cal value to control highlighting

User -definabl e variabl e

Color table for the TBrowse display

Current cursor colum position

Col um separator character

Footing separator character

Nunber of colums to freeze

Code bl ock executed by TBrowse: goBotton()

Code bl ock executed by TBrowse: goTop()

Headi ng separator character

Indi cates the end of avail able data

I ndi cates the begi nning of avail able data

I ndi cates position of |eftnost unfrozen colum in display
Bott om row nunber for the TBrowse display

Left most columm for the TBrowse di spl ay

Ri ght nbost columm for the TBrowse displ ay

Top row nunber for the TBrowse displ ay

I ndi cates position of rightnmost unfrozen columm in display
Nunber of visible data rows in the TBrowse display
Current cursor row position

Code bl ock used to reposition data source

Indicates if the TBrowse object is stable

: aRedr aw row need to

be redraw

Array of logical itenms indicating, is appropriate

. Rel ati vePos first record

on the screen

I ndi cates record position relatively position of

.| Header s
footers to paint

Internal variable which indicates whether there are columm

;| Footers Internal variable which indicates whether there are colum

footers to paint

: aRect The rectangl e specified with Col orRect ()
: aRect Col or The color positions to use in the rectangle specified with
Col or Rect ()
: aKeys Hol ds the Default novenent keys
Met hod

New(nTop, nLeft, nBottom nRight) Create an new Browse class and set the

defaul t val ues

Down() Moves the cursor down one row

End() Moves the cursor to the rightnost visible data col um
GoBot t om() Repositions the data source to the bottomof file
GoTop() Repositions the data source to the top of file
Hone() Moves the cursor to the | eftnost visible data col um
Left() Moves the cursor |eft one colum

PageDown() Repositions the data source downward

PageUp() Repositions the data source upward

PanEnd() Moves the cursor to the rightnost data col um
PanHome() Moves the cursor to the leftnost visible data col um
PanLeft () Pans | eft wi thout changing the cursor position

PanRi ght () Pans right w thout changing the cursor position

Ri ght () Moves the cursor right one col um

Up() Moves the cursor up one row

Col Count () Return the Current nunber of Col ums

Col or Rect () Alters the color of a rectangular group of cells

Col Wdt h(nCol um)
Confi gure(nhbde)

Returns the display width of a particular colum

Reconfigures the internal settings of the TBrowse object

nhMbde is an undocunented paraneter in CA-Cl *pper

Left Det er m ne()

DeHilite()

Del Col um(nPos)
For ceSt abl e()

Determ ne | eft nost unfrozen colum in display
Dehi ghl i ghts the current cell
Del ete a columm object froma browse

Perfornms a full stabilization

Get Col um(nColum) Gets a specific TBCol um obj ect

Hlite()

I nsCol um(nPos, oCol)

I nval i dat e()

Hi ghl i ghts the current cell
Insert a columm object in a browse

Forces entire redraw during next stabilization

RefreshAl | () Causes all data to be recal cul ated during the next
stabilize

RefreshCurrent () Causes the current rowto be refilled and repainted on
next stabilize

Set Col um(nCol utm, oCol) Repl aces one TBCol unm obj ect with another

Stabilize() Perforns increnental stabilization

Di spCel | (nColum, cColor) Displays a single cell
Exanpl es

See tests/testbrw prg
Tests

See tests/testbrw. prg
St at us

Started
Conpl i ance

This functions is Conpatible with Ca-Cipper 5.2. The appl ykey() and Setkey()
met hods are only visible if HB_COWAT_C53 is defined.

Pl at f or ns
Al |
Fil es

Library is rtl
See Al so:
TBROWSENe ARRAY/

Set Key()

Get an optionaly Set an new Code bl ock associated to a inkey val ue

Synt ax

Set Key(<nKey>[, <bBI ock>])
Argunent s

<nKey> An valid inkey Code

<bBl ock> An optiona
Ret ur ns

<bd dBl ock>

previus one; otherwise, it wl
Descri ption

This nethod Get an optionaly set an code bl ock that

--> bA dBl ock

If an Keypress has it code bl ock changes,

| return the current one

it wll

is associated to

action to associate to the inkey val ue.

return the

an i nkey

val ue. The table bel ow show the default keypress/ Code Bl ock definitions

nkey Val ue Code Bl ock
K_DOMN | Ob, nKey| Ob: Down(), 0}
K_END | b, nKey| Ob: End(), O}
K_CTRL_PGDN | Ob, nKey| Ob: GoBottont(), 0}
K_CTRL_PGUP | O, nKey| Ob: GoTop(), 0}
K_HOVE | O, nKey| Ob: Hone(), 0}
K_LEFT | O, nKey| Ob: Left(), 0}
K_PGDN | Ob, nKey| Ob: PageDown(), 0}
K_PGUP | Ob, nKey| Ob: PageUp(), 0}
K_CTRL_END | Ob, nKey| Ob: PanEnd(), 0}
K_CTRL_HOVE | b, nKey| Ob: PanHone(), 0}
K_CTRL_LEFT | O, nKey| Ob: PanLeft (), 0}
K_CTRL_RI GHT | O, nKey| Ob: PanRi ght (), 0}
K_RI GHT | b, nKey| Ob: Ri ght (), 0}
K_UP | b, nKey| Cb: Up(), 0}
K_ESC | Ob, nKey| -1}

The keys handl ers can be queri
i nternal keyboard dictionary.

oTb: SETKEY(K_TAB, {| oTh, nKey|
An default key handl er can be

<nKey>.It associate code block wll

called with an key val ue that

ed, added and repl ace an renoved from the

See the exanpl e.
-1})

decl ared by specifyin a value of 0O

for

be eval uated each tinme TBrowse: Appl ykey()

is not contained

in the dictionary. For exanple

Thi s cal

the a function

0Tb: Set Key(0, {| oTh, nKey|

naned Def KeyHandl er () when nKey is not

To renove an keypress/code bl ock definition,

0Th: Set Key(K_ESC, ni |)
Exanpl es

0Th: SeyKey(K_F10, {]| ot b, nkey|

Def KeyHandl er (ot b, nkey})

ShowLi st Bynane(ot b) }

contained in the dictionary.

specify NIL for <bBl ock>

is

Appl ykey()

Eval uates an code bl ock associated with an specific key

Synt ax

Appl yKey(<nKey>) --> nResult

Argunent s
<nKey> An valid Inkey code
Ret ur ns
<nResul t > Val ue returned fromthe eval uated Code Bl ock See Tabl e Bel ow
al ue IMeani ng
-1 User request for the browse |ost input focus
0 Code bl ock associated with <nkey> was eval uat ed
il Unable to locate <nKey> in the dictionary, Key was not
br ocessed
Descri ption

This nmethod eval uate an code bl ock associated with <nkey> that is contained

in the TBrowse: setkey() dictionary.

Exanpl es

while .t.
oTb: f orceSt abl e()

if (oTb:applykey(inkey(0))==-1)

exit
endi f
enddo

AddCol umm()

Add an New Col utmm to an TBrowse Obj ect

Synt ax

AddCol uim(oCol) --> Self
Argunent s

<oCol > I's an TbCol utm obj ect
Ret ur ns

<Sel f> The Current object
Descri ption

Thi s nmethod add an new col uim obj ect specified as <oCol > to the assigned
br owsi ng obj ect.

	Document
	License
	OVERVIEW
	Harbour Extensions
	GNU License
	GNU License Part 2
	Compiler Options
	Strong Typing
	The Garbage Collector
	The idle states
	Command line Utility

	Array
	ARRAY()
	AADD()
	ASIZE()
	ATAIL()
	AINS()
	ADEL()
	AFILL()
	ASCAN()
	AEVAL()
	ACOPY()
	ACLONE()
	ASORT()
	ADIR()
	ACHOICE()

	Binary conversion
	BIN2W()
	BIN2I()
	BIN2L()
	BIN2U()
	I2BIN()
	W2BIN()
	L2BIN()
	U2BIN()

	Conversion
	WORD()
	__dbDelim()
	__dbSDF()
	EMPTY()
	DESCEND()

	Data input and output
	DBEDIT()*
	BROWSE()
	__TYPEFILE()
	READKEY()*
	__AtPrompt()
	__MenuTo()
	__XSaveScreen()
	__XRestScreen()
	ALERT()
	__NONOALERT()
	__INPUT()
	OUTSTD()
	OUTERR()
	READVAR()

	TBrowse class
	TBrowseDB()
	TBROWSENew()

	Database
	dbSkipper()
	__dbCopyStruct()
	__dbCopyXStruct()
	__dbCreate()
	__FLEDIT()*
	__dbStructFilter()
	RDDLIST()
	RDDNAME()
	RDDSETDEFAULT()
	__RDDSETDEFAULT()
	DBEVAL()
	DBF()
	DBAPPEND()
	DBCLEARFILTER()
	DBCLOSEALL()
	DBCLOSEAREA()
	DBCOMMIT()
	DBCOMMITALL()
	__DBCONTINUE()
	DBCREATE()
	DBDELETE()
	DBFILTER()
	DBGOBOTTOM()
	DBGOTO()
	DBGOTOP()
	DBRECALL()
	DBRLOCK()
	DBRLOCKLIST()
	DBRUNLOCK()
	DBSEEK()
	DBSELECTAREA()
	DBSETDRIVER()
	DBSKIP()
	DBSETFILTER()
	DBSTRUCT()
	DBUNLOCK()
	DBUNLOCKALL()
	DBUSEAREA()
	__DBZAP()
	ORDBAGEXT()
	ORDBAGNAME()
	ORDCONDSET()
	ORDCREATE()
	ORDDESTROY()
	ORDFOR()
	ORDKEY()
	ORDLISTADD()
	ORDLISTCLEAR()
	ORDLISTREBUILD()
	ORDNAME()
	ORDNUMBER()
	ORDSETFOCUS()
	INDEXEXT()
	INDEXKEY()
	INDEXORD()
	AFIELDS()
	ALIAS()
	BOF()
	DELETED()
	EOF()
	FCOUNT()
	FIELDGET()
	FIELDNAME()
	FIELDPOS()
	FIELDPUT()
	FLOCK()
	FOUND()
	HEADER()
	LASTREC()
	LUPDATE()
	NETERR()
	RECCOUNT()
	RECNO()
	RECSIZE()
	RLOCK()
	SELECT()
	USED()

	OOP Command
	CLASS
	DATA
	CLASSDATA
	METHOD
	MESSAGE
	ERROR HANDLER
	ON ERROR
	ENDCLASS

	Date
	CDOW()
	CMONTH()
	DATE()
	CTOD()
	DAY()
	DAYS()
	DOW()
	DTOC()
	DTOS()
	MONTH()
	YEAR()

	Time
	ELAPTIME()
	SECONDS()
	SECS()
	TIME()

	Command
	COPY STRUCTURE
	COPY STRUCTURE EXTENDED
	CREATE
	CREATE FROM
	DIR
	RENAME
	ERASE
	DELETE FILE
	TYPE
	COPY FILE
	KEYBOARD
	@...PROMPT
	MENU TO
	RUN
	ZAP
	PACK
	SET FUNCTION
	SET KEY
	SET DEFAULT
	SET WRAP
	SET MESSAGE
	SET PATH
	SET INTENSITY
	SET ALTERNATE
	SET CENTURY
	SET DATE
	SET EPOCH
	SET FIXED
	SET PRINTER
	SET CONSOLE
	SET DECIMALS
	SET DEVICE
	SET BELL
	SAVE SCREEN
	RESTORE SCREEN
	EJECT
	LABEL FORM
	REPORT FORM
	@...Get
	@...SAY

	Low Level
	DISKSPACE()
	HB_DISKSPACE()
	FOPEN()
	FCREATE()
	FREAD()
	FWRITE()
	FERROR()
	FCLOSE()
	FERASE()
	FSEEK()
	FREADSTR()
	CURDIR()
	HB_FEOF()
	DIRREMOVE()
	DIRCHANGE()
	MAKEDIR()
	ISDISK()

	File management
	__Dir()*
	FRENAME()
	FILE()

	Error recovery
	ERRORSYS()
	BREAK()

	Misc
	PROCNAME()
	PROCLINE()
	PROCFILE()
	TYPE()
	VALTYPE()
	HB_ISBYREF()

	Parameter Checks
	HB_PVALUE()
	PCOUNT()

	Events
	__QUIT()
	SETKEY()
	HB_SetKeyGet()
	HB_SETKEYSAVE()
	HB_SetKeyCheck()
	__WAIT()

	Internal
	CLIPINIT()
	__SetHelpK()
	__XHELP()
	__TextSave()
	__TextRestore()

	Utility
	DO()

	Variable Management
	__VMVARLGET()
	__MVPUBLIC()
	__MVPRIVATE()
	__MVXRELEASE()
	__MVRELEASE()
	__MVSCOPE()
	__MVCLEAR()
	__MVDBGINFO()
	__MVEXIST()
	__MVGET()
	__MVPUT()
	MEMVARBLOCK()

	Console input
	INKEY()
	__KEYBOARD()
	HB_KEYPUT()
	NEXTKEY()
	LASTKEY()
	MROW()
	MCOL()

	Math
	ABS()
	EXP()
	INT()
	LOG()
	MAX()
	MIN()
	MOD()
	SQRT()
	ROUND()
	MATHERRMODE()
	MATHERRORBLOCK()

	Math API
	hb_mathGetLastError()
	hb_mathResetError()
	hb_mathIsMathErr()
	hb_mathSetHandler()
	hb_mathGetHandler()
	hb_mathSetErrMode()
	hb_mathGetErrMode()

	Strings
	MEMOTRAN()
	HARDCR()
	ISALPHA()
	ISDIGIT()
	ISUPPER()
	ISLOWER()
	LTRIM()
	AT()
	RAT()
	LEFT()
	RIGHT()
	SUBSTR()
	STR()
	STRZERO()
	HB_VALTOSTR()
	LEN()
	HB_ANSITOOEM()
	HB_OEMTOANSI()
	LOWER()
	UPPER()
	CHR()
	ASC()
	PADC()
	PADL()
	PADR()
	ALLTRIM()
	RTRIM()
	TRIM()
	REPLICATE()
	SPACE()
	VAL()
	STRTRAN()
	TRANSFORM()

	Memo Field
	MEMOREAD()
	MEMOWRIT()

	DOS
	OS()
	__RUN()

	Environment
	VERSION()
	GETENV()
	__SETCENTURY()
	SET()
	__SetFunction()
	SETTYPEAHEAD()
	SETMODE()

	Miscellaneous
	TONE()

	Nation
	ISAFFIRM()
	ISNEGATIVE()
	NATIONMSG()
	HB_LANGSELECT()
	HB_LANGNAME()

	Object manipulation
	__objHasData()
	__objHasMethod()
	__objGetMsgList()
	__objGetMethodList()
	__objGetValueList()
	__ObjSetValueList()
	__objAddMethod()
	__objAddInline()
	__objAddData()
	__objModMethod()
	__objModInline()
	__objDelMethod()
	__objDelInline()
	__objDelData()
	__objDerivedFrom()

	Classes
	HBClass()

	Operating System Specific
	HB_OSNEWLINE()

	GT
	hb_ColorIndex()
	COL()
	ROW()
	MAXCOL()
	MAXROW()

	Terminal
	DEVOUTPICT()

	Code Block
	FIELDBLOCK()
	FIELDWBLOCK()
	EVAL()

	Run Time Errors
	BASE/1003
	BASE/1068
	BASE/1068
	BASE/1069
	BASE/1078
	BASE/1072
	BASE/1073
	BASE/1074
	BASE/1075
	BASE/1076
	BASE/1077
	BASE/1078
	BASE/1079
	BASE/1076
	BASE/1081
	BASE/1082
	BASE/1100
	BASE/1101
	BASE/1102
	BASE/1103
	BASE/1104
	BASE/1105
	BASE/1106
	BASE/1107
	BASE/1108
	BASE/1076
	BASE/1110
	BASE/1110
	BASE/1112
	BASE/1113
	BASE/1114
	BASE/1115
	BASE/1116
	BASE/1117
	BASE/1120
	BASE/1122
	BASE/1124
	BASE/1126
	BASE/1132
	BASE/1133
	BASE/1068
	BASE/1085
	BASE/1089
	BASE/1090
	BASE/1092
	BASE/1093
	BASE/1094
	BASE/1095
	BASE/1096
	BASE/1097
	BASE/1098
	BASE/1099
	BASE/2010
	BASE/2012
	BASE/2017
	BASE/2020
	BASE/3001
	BASE/3002
	BASE/3003
	BASE/3004
	BASE/3005
	BASE/3007
	BASE/3008
	BASE/3009
	BASE/3010
	BASE/3011
	BASE/3012
	BASE/3101
	BASE/3102
	BASE/3103
	TOOLS/4001
	TERM/2013

	The garbage collector
	hb_gcAlloc()
	hb_gcFree()
	hb_gcCollectAll()
	hb_gcItemRef()
	HB_GCALL()

	The idle states
	HB_IDLEADD()
	HB_IDLEDEL()
	HB_IdleState()
	hb_idleState()

	TBrowse Method
	SetKey()
	Applykey()
	AddColumn()

